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Abstract

Let G be a connected real semisimple Lie group with finite center
and o be an involutive automorphism of . Suppose that H is a closed
subgroup of G with GZ C H C G, where G” is the fixed points group of
o and GY denotes its identity component. The coset space X = G/H is
then a semisimple symmetric space. Let 6 be a Cartan involution which
commutes with ¢ and K be the set of all fixed points of 8. Then K is
a o-stable maximal compact subgroup of G and the coset space G/K
becomes a Riemannian symmetric space of noncompact type. By using
the action of the Weyl group, we have constructed a compact real analytic
manifold in which the Riemannian symmetric space G/ K is realized as an
open subset and that G acts analytically on it. The purpose of this note
is to apply the above construction to the case of semisimple symmetric
spaces X = G/H. Our construction is similar to those of Schlichtkrull,
Lizhen Ji, Oshima for Riemannian symmetric spaces and similar to those
of Kosters, Sekiguchi, Oshima for semisimple symmetric spaces.

1 Introduction

Let G be a connected real semisimple Lie group with finite center, ¢ be an
involutive automorphism of G and X = G/H be the corresponding semisimple
symmetric space. Here H is a closed subgroup of G with GZ C H C G, where
G7 is the fixed points group of o and G7 denotes its identity component.
Denote by 6 the Cartan involution which commutes with ¢ and K the set
of all fixed points of #. Then K is a o-stable maximal compact subgroup of G.
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44 A compact embedding of semisimple symmetric spaces

Let G be the Lie algebra of G. The involutions of G induced by ¢ and 6 are
denoted by the same letters, respectively.

Suppose that G = H® Q = K@ P are the decompositions of G into +1 and
-1 eigenspaces for o and 6, respectively, where H (resp. K) is the Lie algebra of
H (resp. K). Fix a maximal Abelian subspace A in P N Q and let A* denote
the dual space of A. The corresponding analytic subgroup A of A in G is then
called the vectorial part of X. For a o € A*, put

Go={Y €G|[H,Y]=a(H)Y, VH € A}.

Then the set ¥ = {a € A* | Go # {0}, a # 0} defines a root system with the
inner product induced by the Killing form <, > of G. Moreover, the Weyl group
W of ¥ is defined with the normalizer Ng (A) of A in K modulo the centralizer
M = Zg(A) of Ain K. It acts naturally on A and coincides via this action
with the reflection group of the root system 3.

Choose a fundamental system A = { ai,...,a; } of ¥, where the number
I which equals dim A is called the split rank of the symmetric space X and
denote X7 the corresponding set of all positive roots in ¥. Denote by Wxnx
the normalizer Ngng(A) of A in K modulo the centralizer Zxng(A) of A in
K. We see that Winp is a subgroup of W. For each element w of W we fix a
representative w in Ni (A) so that w € Ngag (A) if w € Wknn.

The purpose of this note is to construct a compact real analytic mani-
fold X in which the semisimple symmetric space X = G/H is realized as an
open subset and that G acts analytically on it. By the Cartan decomposition
G = KAH, we must compactify the vectorial part A. Our construction is a
motivation of Oshima’s construction. In [5] we proposed a construction for the
Riemannian symmetric spaces G/K. Here we apply the construction for the
semisimple symmetric spaces X = G/H.

Denote by Gc the complexification of G and G¢ the corresponding analytic
group. For simplicity, we assume that G is the real form of the complex Lie
group Gg. Let Ac be the complexification of A and Ac be the analytic
subgroup of Ac in G¢. For each a € Ac and o € ¥ we define a® = e*°9 2 ¢
C* = C\ {0} and consider the subset

Ar={a€ Ac|a* €eR, Vae X }.

This note is organized as follows. In Section 1, we consider the compactifi-
cation of the vectorial part based on the construction in [5]. By this way, we
firstly construct an embedding of Ag into a compact real analytic manifold Ap
which is called a compactification of Ag. Then we illustrate the construction
via an example. In Section 2, we construct the compact manifold X based on
the action of Weyl group on A]R and consider the real analytic structure of X
induced from the real analytic structure of Ap.
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2 Compactification of the vectorial part

Let (C*)” be the set of complexes z = (23)gex, where z5 € C* and CIP* be the
1-dimensional complex projective space. Consider the map ¢ : Ac — (C*)*
defined by ¢(a) = (a%*)aes, Va € Ac. Then, for every z = (24)acs € p(Ac)
we have

Zoo=(2a)"H, Va €Y (2.1)

Zo = H (z)F@7) Yo e ot a = Z k(a, 7). (2.2)

vEA YEA

By using the natural embedding of (C*)> into (CIP')”, we get an embedding
map of Ac into (CIP*)> denoted also by .

Let M = {z ¢ (RP")* | 2, = 27!, Va € ¥ }, where RIP' is the 1-
dimensional real projective space. By definition, M is compact. Moreover, the
subset

Us+ :{m: (moum—oz) €M|ma ER,m_¢o GR*U{OO}’VOZG E+}

is an open subset in (RIP*)” and we get a homeomorphism s+ : Us+ — RE"
defined by xs+(m) = (Ma)aes+, VM € Us+.

Recall that W acts on M by (w.2)q = 214, V@ € X, w € W, 2 € M. So
we have U, s+) = w.(Us+), Yw € W. By a similar way as in [5, Lemma 1.2], we
see that the pair {Us;+, xs+} is a chart on M and {Uy, sy, Xw(z+) Jwew defines
an atlas of charts on M such that M becomes a real analytic submanifold.

By definition, p(Ag) is a subset of (RIP')>. Denote by Ag the closure of
©(Ag) in (RIPY)Z. Tt follows from (2.1) and (2.2) that Ag is a compact subset
of M. We now define an atlas of charts on ER induced from the atlas on M.

Let Ua be the subset of Us+ consists of elements m = (mq, m—_q) such that
ma = [ (m)**7, Vae 2t a= 3 k(a,7).7. Then Ua is an open subset

YEA YEA
in Ag. It follows that s+ (Ua) = { z € R | 2o = [] (z4)** } and we get
yEA
a homeomorphism xa : Ua — R defined by xa(m) = (m,)yea, ¥m € Ua.
Moreover, by a similar argument as that given in [5, Theorem 1.4], we have

Theorem 2.1. A\R is a compact real analytic manifold that is called a com-
pactification of Ar. The set of charts {Uy(a), Xw(a)}wew defines an atlas of

charts on A so that the manifold Ap is covered by |W|-many charts.

Remark 2.2. Denoteby G, = G2 =KNH @ PNQ and let
L = 3AG) ={aeX|Gang, #{0},a#0}

be the set of restricted roots of A in G, .
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Suppose that H is connected. Since H = (H N K).exp (H N P) we have
that H N K is connected. Then Gy = (HNK).exp (PN Q) is connected
and the corresponding Weyl group Wgng of A in G, defined by

Wkor = Wiknm., = W(A,Gy) =<sa|aciy>.

Since G = KNH & PN Q is the Cartan decomposition and K N H is
a maximal compact subgroup of G, the coset X := G4 /(K N H) becomes
a Riemannian symmetric space of non-compact type. We then can apply the
construction for the vectorial part of X;.

Denote Agr 4+ = {a € Ac | a” € R, Vy € X4 } By construction, the

corresponding compactification A\R,+ is contained in the compact manifold
My = {z€(P'R)™ |2, =(5)7, Vye 5y |

Moreover, A\R,+ is a compact real analytic manifold which is covered by |Winm|-
many charts. Here, each Weyl chamber of A for ¥ contains |[Wxng \ W|-
corresponding Weyl chambers of A for ¥ and these subchambers are parame-
terized by Wikng \ W.

Example Consider the real semi-simple Lie group G = SL(3,R) and denote by

G = sl(3,R) the corresponding Lie algebra of G. Suppose that 6 is the Cartan
involution defined by #(X) = (*X)7!, VX € G and K = SO(3,R) is the
maximal compact subgroup in G with respect to §. Then G = K ® P is the
Cartan decomposition of G with respect to 6, where K = SO(3,R) is the Lie
algebra of K.

Let o be the involution of G defined by

-1 0 0
o(X) = JI(X)J, VX € G, where S = | 0 1 O
0 0 1
and G = H®Q be the decomposition of G with respect to o, where H = SO(1, 2)
is the Lie algebra of the corresponding fixed points group H = SOq(1, 2).
It follows that X = G/H = SL(3,R)/S0y(1,2) is a semisimple symmetric
space of rank two and we get a maximal Abelian subspace of PN Q defined by

t1 0 O
A = { 0 ta O t1+t2—|—t3=0}.
0 0 t3

By definition, the root system Y of AinGis X = {e; —e; |1 <i#j<3}
and the Weyl group W is isomorphic to Ss3, the symmetric group of order three.
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Moreover, the corresponding analytic subgroup in G of A defined by

a1 0 0
A:{ 0 ay O ’alagagzl,a¢>0}%(0,oo)2
0 0 as
and we get
a1 0
A]R = { 0 ag 0 ’a1a2a3 = 1}2 (R*)Q
0 O

Denote a = €1 —e2, 8 = ea—e3. Wesee that A = {a, 8} and ¥ = TtU(-XT),
where X1 = { «, 8,a+ 8 }. Then we have

M = {(520) |2 e PUR) 7B ) = PIRY
It follows that the pair {Us+, xs+} is a chart on M, where
Z/{E+ = {(mo” meg, Ma4-3, M—q, M —3, m_a_g)|ma, mg, Ma+g cR } o RB

is an open subset in (RIP)®" and ys+ : Us+ — RE" is the homeomorphism
defined by xs+(m) = (mqa, mg, Ma+s), ¥Ym € Us+. Then we get

L{Az{(ma, mg, Mat8, M—q, M—g, M_q—_g)|Ma, Mg, Mo+t € R,Mats zma.mg}

and Xs+(Ua) = {x = (v1,79,73) € R® | 23 = 21.22 } = RZ Hence

Ap = R2U {00} = §2 is a compact smooth manifold that is covered by 6-many
charts.
By definition, we see that

a 0 0 “ “
11 12
G+:{ 0 ann a2 ’
a21 Aa22

> € GL(2,R), a ! =det(A) >0 }
0 a2 a2

Then X, = G1/KNH is a Riemannian symmetric space of non-compact
type.

Moreover, we have X4 = {e; —¢; [2<i#;j<3}={3,-8} and
the Weyl group Wing is isomorphic to So, where Ss is the symmetric group
of order two. It follows that the coset Wxngy \ W has three elements. Note
that

Ay = {aeAda”eR, VyeXi} = R

Then the corresponding compactification ER7+ is contained in the compact
manifold

M = { (5.2 |2 €P'(R), vy € T, } = P'(R),
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It follows that A, =~ R U {co} = S is a compact smooth manifold that is
covered by 2-many charts.

Here each Weyl chamber of A for ¥ contains three corresponding Weyl
chambers of A for 3 and these subchambers are parameterized by Wxng \ W.

3 Construction of a compact embedding

In this Section, we will construct an embedding of the semisimple symmetric
space X into a compact real analytic manifold X such that the action of G on
X is analytic. Our construction is based on the indicated construction in [5]
for Riemannian symmetric spaces and similar to those of Kosters, Sekiguchi,
Oshima for semisimple symmetric spaces.

First we recall some notations concerning the compactification Ap as in [5].
Consider the subset Xﬂg ={ac Ag | (@) € [-1,1] } and recall that the
Weyl group W acts on Ag as follows (W.a) = (@)y-1(a), Yw €W, Va € Ag.
Then we have W.Eﬂg = Ap (see [5, Lemma 2.1]). Moreover, for each element
a € A\R we have a unique decomposition a = (a)fin.€(@), where af;, € Ag
and €(d) € Ag such that (@) € {-1,0,4+1,00 }, Vy € A.

Note that e(a) € { —1,0,+1,00 }* and for all a = 3 k(a,7).y € & we

€A
have !
(@) = T (el@y) e

YEA

Motivating the Oshima’s definition, €(a) is called an extended signature of
the element a. Now we define parabolic subalgebras with respect to extended
signatures €(a), for all a € Ag.

First we consider a; € jﬂg and let Fe = { v | ey =€(a)? # 0 } be a subset
of the simple root system A with respect to the extended signature € = e(ay).

Denote ¥ = ( Y. Ry)NY and suppose that W, is the subgroup of W generated
vEF.

by reflections with respect to 7 in F,. Let P, be the parabolic subgroup of G

with the corresponding Langlands decomposition P, = M, A, N, so that M, A,

is the centralizer of A in G and the Lie algebra N, of N, equals > §,. Then
aeXt
we can define a parabolic subalgebra

Pe=Mo+ A+ > Gat > Ga

a€X, aEXt -2,

of G and its Langlands decomposition P, = M. + A + N, so that A, C A,
(see [11]).

Let P, denote the corresponding parabolic subgroup of P, in G. It follows
that P, = M AN, is the corresponding Langlands decomposition of P. and we
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define a closed subgroup P(¢) of G by P(e) = (M. Nw~'Hw)A.N,, where w is
a representative of w € W in Nk (A) so that w € Nxnu(A) if w € Wknp.

In general, for each = n(a) with @ = w.d, € Ag, we firstly consider the
parabolic subalgebra P. with respect to the element € = €(a;). Then we define
a parabolic subalgebra P, = w.P..w™"! based on the action of the Weyl group
W on the parabolic subalgebra P. (see [3]).

We now define an equivalent relation on the product manifold G' x Ap.
Let = (g,a) be an element of G x Ag, where @ = w.a; and t = (ty)ea,
t, € [—1,1]. Then we put sgn = = €(a;) = sgn t, which is an element of
{ —1,0,1 }». Here sgn t = (sgn t,),eca and for an s in R we define sgn s = 1
(resp. 0,—1) if s > 0 (resp. s =0,s <0).

Denote F, ¥, and W, instead of F¢, ¥, and W,, respectively, we define a
parabolic subalgebra

Po=Mo+ Ao+ D> Gat > G

a€X, aext-%,

of G and its Langlands decomposition P, = M, + A, + N, so that A. C A,.
Moreover, denoting by P, the corresponding subgroup of P, in G, we get the
Langlands decomposition P, = M,A,N, and P(x) = (M, Nw 'Hw))A,N,
is a closed subgroup of G. Let { Hy, Ho,...,H; } denote the dual basis of
A= { a1,y .o, O }, that is, H; ¢ A and OQ'(HJ') = 5“, Vi,j =1,2,...,l and put
a(z) = exp(— Y, log|ty| Hy), where H, € { Hy, Ho, ..., H; } with respect to
Fy
ot e R
Note that for all elements x = (g,w.a;) and ' = (¢',w’.a) of G x Ar such
that sgn z = sgn z’, we have W, = W.

Definition 3.1. We say that two elements x = (g,w.a;) and ' = (¢’,w’.ap)
of G x Ap are equivalent if and only if the following conditions hold:

(i) sgn z = sgn =’

(i) Wrnr oWy = Wrag o'W,

(iii) ga(z)P(z) = g'a(z’) (M, Nw' ™ " Hw)A,N,.

Remark 3.2. Let z = (g,w.a;) and ' = (¢',w’.ay) be elements of G x Ap
and suppose that z and z’ satisfy the above condition (iii). Then there exist
u, v’ € Wgng and v,v' € W, and m,m’ € M such that u w v m = v/w'v'm’.
Moreover, (see [11, Lemma 1.2]) the condition (iii) in Definition 2.1 is equivalent
to
ga(x)P(x)vm = g'a’ (") P(2')u'm/. (3.1)
It follows from Remark 3.2 that the Definition 3.1 really gives an equivalent
relation, and we write z ~ z’. The quotient space of G x Ag by this equivalent
relation becomes a topological space with the quotient topology and is denoted
by X.
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Let m: G x Ap — X be the natural projection. Because the action of G
on G x Ag are compatible with the equivalent relation, we can define an action
of G on X by

a7(g,a) =w(qg,a), Vg,g1 € G,a € Ag. (3.2)

Put XKE —={aeAg|e@ =e}foreach e € { —=1,0,1 }* and denote
X =7(G x Ag,¢). Then we have

Proposition 3.3. (i) X isa compact connected G-space and X = U X
ec{—-1,0,1}4
gives the orbital decomposition of X for the action of G on it.
(ii) Each X is homeomorphic to G/P(€). There are just 2121 open orbits
that are isomorphic to G/H and the number of compact orbits in X equal that
of the elements of the coset Wi \ W.

Proof (i) Since (G x Ua) is connected and contains any open orbit, the
connectedness of X is clear. Denote by AT the positive chamber corresponding
to £t and put AT = exp A*. Let At = {exp X | X € A with a(X) > 0 for
all @ € 1 } be the closure of AT, we see that

AT = {exp (- Z(log ty)Hy) |ty € (0,1] }.

Consider the compact subset K x Agp = K x W.Eﬂg ~ K x [-1,1]2 x W of

G x Ag. Then the subset m(K X A\R) is also compact because it is the image of

a compact set under the continuous map. Moreover, it follows from the Cartan

decomposition G = KAH that G = |J KATwH (see [11]). Hence, Definition
weW

3.1 and Remark 3.2 prove that the compact set m(K x Ag) contains all open
G-orbits in X. Tn other words, this compact set is dense in X and therefore it
must be coincided with X.

(ii) Put @ € Ag, for each e € { —1,0,1 }* and define amap ¥ : G/P(¢) —
X, by ¥(gP(€)) = 7(g,a), Yg € G. Then by a similar way as in [5, Proposition
2.4], we get that the map is well defined and becomes an homeomorphism which
is equivariant for the action of G.

We now define an analytic structure on X based on the analytic structure
on A\]R.

Let Ap be a maximal Abelian subspace of P containing A and let X(Ap, G)
be the set of corresponding restricted roots. By [11, Lemma 1.4], we can
assume that the representatives w of elements w € W satisfy Ad(w)(Ap) =
Ap. Denote by G(o) the reductive Lie algebra generated by {G(Ap;A) | A €
Y(Ap,G), Na =0}, where G(Ap; \) ={X € G | [X,Y]=AY)X forallY €
Ap} and put

M(o)={X eM, | [X,Y]=XY)X forall Y € G(o)}.
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Let G(o) and M (o) be the analytic subgroups of G corresponding to G(o)
and M (o), respectively, and denote

M (o) = M(0)o.AdZ (Ad(K) N exp(ad(v=T.Ap))).

Then G(o) C H, M(o) C Nk (Ap) and the representative w normalizes G(o)
and M (o) for any w € W. Moreover, it follows from [11, Lemma 1.5] that
M, = M(0)G(o) and

M(o)/(M(0) Nw 'Hw) =~ M,/(MyNw 'Hw) ~ M/(M Nw 'Hw).

For every g € G and w € W, we put Q¥ = 7(gNoM(0) X Uy(a)), where
N, is the analytic subgroup of G' corresponding to Ny = 8(N,) and define a

map
w —1 A w
D, N, xM(o)/(M(oc)Nw™ "Hw) X R —

by ®¥(n,m,t) = n(gnm,w.a;), ¥(n,m,t) € Ny x M(0)/(M(0) Nw 'Hw) x
RA. O By the same argument as that given in [5, Lemma 2.6], we get

Lemma 3.4. For every g € G and w € W, the map &P} is a homeomorphism
of NyxM(o)/(M(o)Nw *Hw)xRA onto an open subset QY =m(gN,M(o)x
Z/{w(A)) of X.

For brevity, we denote Q% = N, x M (c)/(M (o) Nw™ ' Hw) x R®. Then we
have

Lemma 3.5. Let g,¢9' € G and w,w’ € W. Then the map

(@) o () : (B2)7HQY NQY) — (84)7HQY N QY)

define an analytic diffeomorphism between the open subsets of the set Q%.

Proof By definition, @} is bijective and continuous. Then the map (@;”,,)_1 o
(@3) is bijective and its inverse is of the same form. So we need only to show
that the map (&%)~! o (#¥) is analytic. Since (%)~ o (BY) = (P¥) ! o

@ _, ), we can assume that ¢’ = e.
g g

Fix an arbitrary element u = (n,, mo, t,) of the domain of (#*)~! o (@)
and put = = (gnome, way,) € X and v’ = (nl, m),t)) = (#*') Lo D7) (u) in
O, we will show that the map is analytic in a neighborhood of w.

We first consider the case where w' = w and g € N,M(0)A”. Here A” is

the analytic subgroup of G corresponding to A® = > RH.,. Suppose that
YEF,

g = nimyay, where ny € Ny, m; € M(o) and a; € A®. Then we have

(@) o (®Y)(n,m, 1) = (numyarn(miar) ", mim, art),
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where a1t = (exp < —a,log a1 > t1,...,exp < —ay,log a; > ;). It follows
that the map is analytic.

Next we assume that w’' = w and v’ = u = (e, 1,€) with an € € {—1,0,1}%.
Then we have g € P(z) and [11, Lemma 1.9 (i)] there exist neighborhoods V'
of the origin in P(x) and Uy of u in Q% such that for any Y € V and s € [0, 1],
the map (P%)~! oexp(sY) o ®¥ defines an analytic diffeomorphism of Uy onto
a neighborhood of u. Hence we have the claim if g € exp V. Moreover, any
g € P(x) can be written in the form g = gog1...gx With go € M (o) Nw 'Hw
and g; € expV (i = 1,..., k), where k is a suitable positive integer. Then we
have the relation

(@) Lo Py = (2¥)"to PY) o (@) to P¥)o...o (@) to Py)

and (¢) ' o @Y map the point u to the same point for i = 0,1, ..., k. It follows
that (@¥)~1o @, are analytic in some neighborhoods of u in " and we have
the claim.

We consider the case where w’ # w, g = e and u = (e, 1, €). Then it follows
that u' = (e, 1,¢) when ¢’ = v'm'm~tv~!, with v,v" € W,. By a similar way
as in [11, Lemma 1.9 (ii)], we can prove that the map @;’J,, o (PY¥) is analytic in
the set

2" (e) = N, x M(0)/(M(o) Nw ™" Hu) x R,

where R2 = {t € R® | sgn t, = e, if e, # 0}.
= v =€y 1€y

Now we consider the general case. Put g1 = (n, mo, a(t,))™, g2 =
9595 g1 ", where g3 = v'm'm~'v"!, g4 = nl, m, a(t,) and consider the
maps

Py = (BV) TodY | Py = (BY) oY, Dy = (BL)Lo(SY), By = (L) oD

Then we have )
(®Y )_1o¢;” = PpoP30Py0P.

Since @1(u) = (e,1,sgn z) and go € P(x), it follows from what we have
proved that the maps &, @2, @3 and P4 are analytic in a neighborhood of
u = (N, Mo, t,). This implies that the map ($2 ) "' o P¥ is analytic in a neigh-
borhood of u and we have the Lemma. O Lemma 3.4 and Lemma 3.5
assures that we can define an analytic structure on X through the maps @}
so that they define analytic diffeomorphisms onto open subsets 27 of X and
the action of G on X is analytic. On the other hand X is Hausdorff because
@Y is homeomorphic and N, x M(c)/(M(c) Nw™'Hw) x R? is Hausdorff.
Combining this with Proposition 3.3 we get

Theorem 3.6. (i) X is a compact connected real analytic manifold and
U Qg is an open covering of X such that the maps ¥y are real ana-

weW,geG

lytic diffeomorphisms.
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(ii) The action of G on X is analytic and the orbit Gm(z) for a point x in
X is isomorphic to G/P(z).

(iii) There are just 2121 open orbits that are isomorphic to G/H and the
number of compact orbits in X equal that of the elements of the coset W \W.

Remark 3.7. (i) By a similar way, we can construct the compactification of
the corresponding Riemannian symmetric spaces X, = Gt /K N H.

(ii) For the special case H = K, i.e., for the case of Riemannian symmet-
ric spaces of non-compact type, we obtain the corresponding compactification
indicated in [5].

Acknowledgment: The authors would like to thanks Professor van den
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