A COMPACT EMBEDDING OF SEMISIMPLE SYMMETRIC SPACES

Tran Dao Dong and Tran Vui
** Department of Mathematics, Faculty of Education, Hue University 32 Le Loi Hue, Vietnam email:tddong@yahoo.com

Abstract

Let G be a connected real semisimple Lie group with finite center and σ be an involutive automorphism of G. Suppose that H is a closed subgroup of G with $G_{e}^{\sigma} \subset H \subset G^{\sigma}$, where G^{σ} is the fixed points group of σ and G_{e}^{σ} denotes its identity component. The coset space $\mathbf{X}=G / H$ is then a semisimple symmetric space. Let θ be a Cartan involution which commutes with σ and K be the set of all fixed points of θ. Then K is a σ-stable maximal compact subgroup of G and the coset space G / K becomes a Riemannian symmetric space of noncompact type. By using the action of the Weyl group, we have constructed a compact real analytic manifold in which the Riemannian symmetric space G / K is realized as an open subset and that G acts analytically on it. The purpose of this note is to apply the above construction to the case of semisimple symmetric spaces $\mathbf{X}=G / H$. Our construction is similar to those of Schlichtkrull, Lizhen Ji, Oshima for Riemannian symmetric spaces and similar to those of Kosters, Sekiguchi, Oshima for semisimple symmetric spaces.

1 Introduction

Let G be a connected real semisimple Lie group with finite center, σ be an involutive automorphism of G and $\mathbf{X}=G / H$ be the corresponding semisimple symmetric space. Here H is a closed subgroup of G with $G_{e}^{\sigma} \subset H \subset G^{\sigma}$, where G^{σ} is the fixed points group of σ and G_{e}^{σ} denotes its identity component.

Denote by θ the Cartan involution which commutes with σ and K the set of all fixed points of θ. Then K is a σ-stable maximal compact subgroup of G.

Key words: symmetric space, Weyl group, Cartan decomposition, compactification. 2000 Mathematics Subject Classification:

Let \mathcal{G} be the Lie algebra of G. The involutions of \mathcal{G} induced by σ and θ are denoted by the same letters, respectively.

Suppose that $\mathcal{G}=\mathcal{H} \oplus \mathcal{Q}=\mathcal{K} \oplus \mathcal{P}$ are the decompositions of \mathcal{G} into +1 and -1 eigenspaces for σ and θ, respectively, where \mathcal{H} (resp. \mathcal{K}) is the Lie algebra of H (resp. K). Fix a maximal Abelian subspace \mathcal{A} in $\mathcal{P} \cap \mathcal{Q}$ and let \mathcal{A}^{*} denote the dual space of \mathcal{A}. The corresponding analytic subgroup A of \mathcal{A} in G is then called the vectorial part of X. For a $\alpha \in \mathcal{A}^{*}$, put

$$
\mathcal{G}_{\alpha}=\{Y \in \mathcal{G} \mid[H, Y]=\alpha(H) Y, \forall H \in \mathcal{A}\} .
$$

Then the set $\Sigma=\left\{\alpha \in \mathcal{A}^{*} \mid \mathcal{G}_{\alpha} \neq\{0\}, \alpha \neq 0\right\}$ defines a root system with the inner product induced by the Killing form $<,>$ of \mathcal{G}. Moreover, the Weyl group W of Σ is defined with the normalizer $N_{K}(\mathcal{A})$ of \mathcal{A} in K modulo the centralizer $M=Z_{K}(\mathcal{A})$ of \mathcal{A} in K. It acts naturally on \mathcal{A} and coincides via this action with the reflection group of the root system Σ.

Choose a fundamental system $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ of Σ, where the number l which equals $\operatorname{dim} \mathcal{A}$ is called the split rank of the symmetric space X and denote Σ^{+}the corresponding set of all positive roots in Σ. Denote by $W_{K \cap H}$ the normalizer $N_{K \cap H}(\mathcal{A})$ of \mathcal{A} in K modulo the centralizer $Z_{K \cap H}(\mathcal{A})$ of \mathcal{A} in K. We see that $W_{K \cap H}$ is a subgroup of W. For each element ω of W we fix a representative $\underline{\omega}$ in $N_{K}(\mathcal{A})$ so that $\underline{\omega} \in N_{K \cap H}(\mathcal{A})$ if $\omega \in W_{K \cap H}$.

The purpose of this note is to construct a compact real analytic manifold $\widehat{\mathbf{X}}$ in which the semisimple symmetric space $\mathbf{X}=G / H$ is realized as an open subset and that G acts analytically on it. By the Cartan decomposition $G=K A H$, we must compactify the vectorial part A. Our construction is a motivation of Oshima's construction. In [5] we proposed a construction for the Riemannian symmetric spaces G / K. Here we apply the construction for the semisimple symmetric spaces $\mathbf{X}=G / H$.

Denote by $\mathcal{G}_{\mathbf{C}}$ the complexification of \mathcal{G} and $G_{\mathbf{C}}$ the corresponding analytic group. For simplicity, we assume that G is the real form of the complex Lie group $G_{\mathbf{C}}$. Let $\mathcal{A}_{\mathbf{C}}$ be the complexification of \mathcal{A} and $A_{\mathbf{C}}$ be the analytic subgroup of $\mathcal{A}_{\mathbf{C}}$ in $G_{\mathbf{C}}$. For each $a \in A_{\mathbf{C}}$ and $\alpha \in \Sigma$ we define $a^{\alpha}=e^{\alpha . \log a} \in$ $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$ and consider the subset

$$
A_{\mathbb{R}}=\left\{a \in A_{\mathbf{C}} \mid a^{\alpha} \in \mathbb{R}, \forall \alpha \in \Sigma\right\}
$$

This note is organized as follows. In Section 1, we consider the compactification of the vectorial part based on the construction in [5]. By this way, we firstly construct an embedding of $A_{\mathbb{R}}$ into a compact real analytic manifold $\widehat{A}_{\mathbb{R}}$ which is called a compactification of $A_{\mathbb{R}}$. Then we illustrate the construction via an example. In Section 2, we construct the compact manifold $\widehat{\mathbf{X}}$ based on the action of Weyl group on $\widehat{A}_{\mathbb{R}}$ and consider the real analytic structure of $\widehat{\mathbf{X}}$ induced from the real analytic structure of $\widehat{A}_{\mathbb{R}}$.

2 Compactification of the vectorial part

Let $\left(\mathbf{C}^{*}\right)^{\Sigma}$ be the set of complexes $z=\left(z_{\beta}\right)_{\beta \in \Sigma}$, where $z_{\beta} \in \mathbf{C}^{*}$ and $\mathbf{C P}{ }^{1}$ be the 1-dimensional complex projective space. Consider the map $\varphi: A_{\mathbf{C}} \longrightarrow\left(\mathbf{C}^{*}\right)^{\Sigma}$ defined by $\varphi(a)=\left(a^{\alpha}\right)_{\alpha \in \Sigma}, \forall a \in A_{\mathbf{C}}$. Then, for every $z=\left(z_{\alpha}\right)_{\alpha \in \Sigma} \in \varphi\left(A_{\mathbf{C}}\right)$ we have

$$
\begin{gather*}
z_{-\alpha}=\left(z_{\alpha}\right)^{-1}, \forall \alpha \in \Sigma \tag{2.1}\\
z_{\alpha}=\prod_{\gamma \in \Delta}\left(z_{\gamma}\right)^{k(\alpha, \gamma)}, \forall \alpha \in \Sigma^{+}, \alpha=\sum_{\gamma \in \Delta} k(\alpha, \gamma) \cdot \gamma . \tag{2.2}
\end{gather*}
$$

By using the natural embedding of $\left(\mathbf{C}^{*}\right)^{\Sigma}$ into $\left(\mathbf{C P}^{1}\right)^{\Sigma}$, we get an embedding map of $A_{\mathbf{C}}$ into $\left(\mathbf{C P}^{1}\right)^{\Sigma}$ denoted also by φ.

Let $\mathbf{M}=\left\{z \in\left(\mathbb{R} \mathbb{P}^{1}\right)^{\Sigma} \mid z_{-\alpha}=z_{\alpha}^{-1}, \forall \alpha \in \Sigma\right\}$, where $\mathbb{R} \mathbb{P}^{1}$ is the 1dimensional real projective space. By definition, \mathbf{M} is compact. Moreover, the subset

$$
\mathcal{U}_{\Sigma^{+}}=\left\{m=\left(m_{\alpha}, m_{-\alpha}\right) \in \mathbf{M} \mid m_{\alpha} \in \mathbb{R}, m_{-\alpha} \in \mathbb{R}^{*} \cup\{\infty\}, \forall \alpha \in \Sigma^{+}\right\}
$$

is an open subset in $\left(\mathbb{R} \mathbb{P}^{1}\right)^{\Sigma}$ and we get a homeomorphism $\chi_{\Sigma^{+}}: \mathcal{U}_{\Sigma^{+}} \longrightarrow \mathbb{R}^{\Sigma^{+}}$ defined by $\chi_{\Sigma^{+}}(m)=\left(m_{\alpha}\right)_{\alpha \in \Sigma^{+}}, \forall m \in \mathcal{U}_{\Sigma^{+}}$.

Recall that W acts on \mathbf{M} by $(w . z)_{\alpha}=z_{w^{-1} \alpha}, \forall \alpha \in \Sigma, w \in W, z \in \mathbf{M}$. So we have $\mathcal{U}_{w\left(\Sigma^{+}\right)}=w .\left(\mathcal{U}_{\Sigma^{+}}\right), \forall w \in W$. By a similar way as in [5, Lemma 1.2], we see that the pair $\left\{\mathcal{U}_{\Sigma^{+}}, \chi_{\Sigma^{+}}\right\}$is a chart on \mathbf{M} and $\left\{\mathcal{U}_{w\left(\Sigma^{+}\right)}, \chi_{w\left(\Sigma^{+}\right)}\right\}_{w \in W}$ defines an atlas of charts on \mathbf{M} such that \mathbf{M} becomes a real analytic submanifold.

By definition, $\varphi\left(A_{\mathbb{R}}\right)$ is a subset of $\left(\mathbb{R} \mathbb{P}^{1}\right)^{\Sigma}$. Denote by $\widehat{A}_{\mathbb{R}}$ the closure of $\varphi\left(A_{\mathbb{R}}\right)$ in $\left(\mathbb{R} \mathbb{P}^{1}\right)^{\Sigma}$. It follows from (2.1) and (2.2) that $\widehat{A}_{\mathbb{R}}$ is a compact subset of \mathbf{M}. We now define an atlas of charts on $\widehat{A}_{\mathbb{R}}$ induced from the atlas on \mathbf{M}.

Let \mathcal{U}_{Δ} be the subset of $\mathcal{U}_{\Sigma^{+}}$consists of elements $m=\left(m_{\alpha}, m_{-\alpha}\right)$ such that $m_{\alpha}=\prod_{\gamma \in \Delta}\left(m_{\gamma}\right)^{k(\alpha, \gamma)}, \forall \alpha \in \Sigma^{+}, \alpha=\sum_{\gamma \in \Delta} k(\alpha, \gamma) \cdot \gamma$. Then \mathcal{U}_{Δ} is an open subset in $\widehat{A}_{\mathbb{R}}$. It follows that $\chi_{\Sigma^{+}}\left(\mathcal{U}_{\Delta}\right)=\left\{x \in \mathbb{R}^{\Sigma^{+}} \mid x_{\alpha}=\prod_{\gamma \in \Delta}\left(x_{\gamma}\right)^{k(\alpha, \gamma)}\right\}$ and we get a homeomorphism $\chi_{\Delta}: \mathcal{U}_{\Delta} \longrightarrow \mathbb{R}^{\Delta}$ defined by $\chi_{\Delta}(m)=\left(m_{\gamma}\right)_{\gamma \in \Delta}, \forall m \in \mathcal{U}_{\Delta}$. Moreover, by a similar argument as that given in [5, Theorem 1.4], we have

Theorem 2.1. $\widehat{A}_{\mathbb{R}}$ is a compact real analytic manifold that is called a compactification of $A_{\mathbb{R}}$. The set of charts $\left\{\mathcal{U}_{w(\Delta)}, \chi_{w(\Delta)}\right\}_{w \in W}$ defines an atlas of charts on $\widehat{A}_{\mathbb{R}}$ so that the manifold $\widehat{A}_{\mathbb{R}}$ is covered by $|W|$-many charts.

Remark 2.2. Denote by $\mathcal{G}_{+}=\mathcal{G}^{\sigma \theta}=\mathcal{K} \cap \mathcal{H} \oplus \mathcal{P} \cap \mathcal{Q}$ and let

$$
\Sigma_{+}=\Sigma\left(\mathcal{A}, \mathcal{G}_{+}\right)=\left\{\alpha \in \Sigma \mid \mathcal{G}_{\alpha} \cap \mathcal{G}_{+} \neq\{0\}, \alpha \neq 0\right\}
$$

be the set of restricted roots of \mathcal{A} in \mathcal{G}_{+}.

Suppose that H is connected. Since $H=(H \cap K) \cdot \exp (\mathcal{H} \cap \mathcal{P})$ we have that $H \cap K$ is connected. Then $G_{+}=(H \cap K) \cdot \exp (\mathcal{P} \cap \mathcal{Q})$ is connected and the corresponding Weyl group $W_{K \cap H}$ of \mathcal{A} in \mathcal{G}_{+}defined by

$$
W_{K \cap H}=W_{(K \cap H)_{e}}=W\left(\mathcal{A}, \mathcal{G}_{+}\right)=<s_{\alpha} \mid \alpha \in \Sigma_{+}>
$$

Since $\mathcal{G}_{+}=\mathcal{K} \cap \mathcal{H} \oplus \mathcal{P} \cap \mathcal{Q}$ is the Cartan decomposition and $K \cap H$ is a maximal compact subgroup of G_{+}, the coset $\mathbf{X}_{+}:=G_{+} /(K \cap H)$ becomes a Riemannian symmetric space of non-compact type. We then can apply the construction for the vectorial part of \mathbf{X}_{+}.

Denote $A_{\mathbb{R},+}=\left\{a \in A_{\mathbf{C}} \mid a^{\gamma} \in \mathbb{R}, \forall \gamma \in \Sigma_{+}\right\}$. By construction, the corresponding compactification $\widehat{A}_{\mathbb{R},+}$ is contained in the compact manifold

$$
\mathbf{M}_{+}=\left\{z \in\left(\mathbb{P}^{1}(\mathbb{R})\right)^{\Sigma_{+}} \mid z_{-\gamma}=\left(z_{\gamma}\right)^{-1}, \forall \gamma \in \Sigma_{+}\right\}
$$

Moreover, $\widehat{A}_{\mathbb{R},+}$ is a compact real analytic manifold which is covered by $\left|W_{K \cap H}\right|^{-}$ many charts. Here, each Weyl chamber of \mathcal{A} for Σ_{+}contains $\left|W_{K \cap H} \backslash W\right|-$ corresponding Weyl chambers of \mathcal{A} for Σ and these subchambers are parameterized by $W_{K \cap H} \backslash W$.

Example Consider the real semi-simple Lie group $G=S L(3, \mathbb{R})$ and denote by
$\mathcal{G}=\operatorname{sl}(3, \mathbb{R})$ the corresponding Lie algebra of G. Suppose that θ is the Cartan involution defined by $\theta(X)=\left({ }^{t} X\right)^{-1}, \forall X \in G$ and $K=S O(3, \mathbb{R})$ is the maximal compact subgroup in G with respect to θ. Then $\mathcal{G}=\mathcal{K} \oplus \mathcal{P}$ is the Cartan decomposition of \mathcal{G} with respect to θ, where $\mathcal{K}=S O(3, \mathbb{R})$ is the Lie algebra of K.

Let σ be the involution of G defined by

$$
\sigma(X)=J \theta(X) J, \forall X \in G \text {, where } J=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and $\mathcal{G}=\mathcal{H} \oplus \mathcal{Q}$ be the decomposition of \mathcal{G} with respect to σ, where $\mathcal{H}=S O(1,2)$ is the Lie algebra of the corresponding fixed points group $H=S O_{0}(1,2)$.

It follows that $\mathbf{X}=G / H=S L(3, \mathbb{R}) / S O_{0}(1,2)$ is a semisimple symmetric space of rank two and we get a maximal Abelian subspace of $\mathcal{P} \cap \mathcal{Q}$ defined by

$$
\mathcal{A}=\left\{\left.\left(\begin{array}{ccc}
t_{1} & 0 & 0 \\
0 & t_{2} & 0 \\
0 & 0 & t_{3}
\end{array}\right) \right\rvert\, t_{1}+t_{2}+t_{3}=0\right\}
$$

By definition, the root system Σ of \mathcal{A} in \mathcal{G} is $\Sigma=\left\{e_{i}-e_{j} \mid 1 \leq i \neq j \leq 3\right\}$ and the Weyl group W is isomorphic to S_{3}, the symmetric group of order three.

Moreover, the corresponding analytic subgroup in G of \mathcal{A} defined by

$$
A=\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right) \right\rvert\, a_{1} a_{2} a_{3}=1, a_{i}>0\right\} \cong(0, \infty)^{2}
$$

and we get

$$
A_{\mathbb{R}}=\left\{\left.\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right) \right\rvert\, a_{1} a_{2} a_{3}=1\right\} \cong\left(\mathbb{R}^{*}\right)^{2}
$$

Denote $\alpha=e_{1}-e_{2}, \beta=e_{2}-e_{3}$. We see that $\Delta=\{\alpha, \beta\}$ and $\Sigma=\Sigma^{+} \cup\left(-\Sigma^{+}\right)$, where $\Sigma^{+}=\{\alpha, \beta, \alpha+\beta\}$. Then we have

$$
\mathbf{M}=\left\{\left(z_{\gamma}, z_{-\gamma}\right) \mid z_{\gamma} \in \mathbb{P}^{1}(\mathbb{R}), \gamma \in \Sigma^{+}\right\} \cong \mathbb{P}^{1}(\mathbb{R})^{3}
$$

It follows that the pair $\left\{\mathcal{U}_{\Sigma^{+}}, \chi_{\Sigma^{+}}\right\}$is a chart on \mathbf{M}, where

$$
\mathcal{U}_{\Sigma^{+}}=\left\{\left(m_{\alpha}, m_{\beta}, m_{\alpha+\beta}, m_{-\alpha}, m_{-\beta}, m_{-\alpha-\beta}\right) \mid m_{\alpha}, m_{\beta}, m_{\alpha+\beta} \in \mathbb{R}\right\} \cong \mathbb{R}^{3}
$$

is an open subset in $\left(\mathbb{R} \mathbb{P}^{1}\right)^{\Sigma^{+}}$and $\chi_{\Sigma^{+}}: \mathcal{U}_{\Sigma^{+}} \longrightarrow \mathbb{R}^{\Sigma^{+}}$is the homeomorphism defined by $\quad \chi_{\Sigma^{+}}(m)=\left(m_{\alpha}, m_{\beta}, m_{\alpha+\beta}\right), \forall m \in \mathcal{U}_{\Sigma^{+}}$. Then we get
$\mathcal{U}_{\Delta}=\left\{\left(m_{\alpha}, m_{\beta}, m_{\alpha+\beta}, m_{-\alpha}, m_{-\beta}, m_{-\alpha-\beta}\right) \mid m_{\alpha}, m_{\beta}, m_{\alpha+\beta} \in \mathbb{R}, m_{\alpha+\beta}=m_{\alpha} \cdot m_{\beta}\right\}$
and $\quad \chi_{\Sigma^{+}}\left(\mathcal{U}_{\Delta}\right)=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{3}=x_{1} \cdot x_{2}\right\} \cong \mathbb{R}^{2}$. Hence $\widehat{A}_{\mathbb{R}} \cong \mathbb{R}^{2} \cup\{\infty\} \cong S^{2}$ is a compact smooth manifold that is covered by 6 -many charts.

By definition, we see that

$$
G_{+}=\left\{\left.\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a_{11} & a_{12} \\
0 & a_{21} & a_{22}
\end{array}\right) \right\rvert\,\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in G L(2, \mathbb{R}), a^{-1}=\operatorname{det}(A)>0\right\}
$$

Then $X_{+}=G_{+} / K \cap H$ is a Riemannian symmetric space of non-compact type.

Moreover, we have $\Sigma_{+}=\left\{e_{i}-e_{j} \mid 2 \leq i \neq j \leq 3\right\}=\{\beta,-\beta\}$ and the Weyl group $W_{K \cap H}$ is isomorphic to S_{2}, where S_{2} is the symmetric group of order two. It follows that the coset $W_{K \cap H} \backslash W$ has three elements. Note that

$$
A_{\mathbb{R},+}=\left\{a \in A_{\mathbf{C}} \mid a^{\gamma} \in \mathbb{R}, \forall \gamma \in \Sigma_{+}\right\} \cong \mathbb{R}^{*}
$$

Then the corresponding compactification $\widehat{A}_{\mathbb{R},+}$ is contained in the compact manifold

$$
\mathbf{M}_{+}=\left\{\left(z_{\gamma}, z_{\gamma}^{-1}\right) \mid z_{\gamma} \in \mathbb{P}^{1}(\mathbb{R}), \forall \gamma \in \Sigma_{+}\right\} \cong \mathbb{P}^{1}(\mathbb{R})
$$

It follows that $\widehat{A}_{\mathbb{R},+} \cong \mathbb{R} \cup\{\infty\} \cong S^{1}$ is a compact smooth manifold that is covered by 2 -many charts.

Here each Weyl chamber of \mathcal{A} for Σ_{+}contains three corresponding Weyl chambers of \mathcal{A} for Σ and these subchambers are parameterized by $W_{K \cap H} \backslash W$.

3 Construction of a compact embedding

In this Section, we will construct an embedding of the semisimple symmetric space \mathbf{X} into a compact real analytic manifold $\widehat{\mathbf{X}}$ such that the action of G on $\widehat{\mathbf{X}}$ is analytic. Our construction is based on the indicated construction in [5] for Riemannian symmetric spaces and similar to those of Kosters, Sekiguchi, Oshima for semisimple symmetric spaces.

First we recall some notations concerning the compactification $\widehat{A}_{\mathbb{R}}$ as in [5]. Consider the subset $\widehat{A}_{\mathbb{R}}^{-}=\left\{\tilde{a} \in \widehat{A}_{\mathbb{R}} \mid(\tilde{a})^{\alpha} \in[-1,1]\right\}$ and recall that the Weyl group W acts on $\widehat{A}_{\mathbb{R}}$ as follows $(w \cdot \tilde{a})_{\alpha}=(\tilde{a})_{w^{-1}(\alpha)}, \forall w \in W, \forall \tilde{a} \in \widehat{A}_{\mathbb{R}}$. Then we have $W \cdot \widehat{A}_{\mathbb{R}}^{-}=\widehat{A}_{\mathbb{R}}$ (see [5, Lemma 2.1]). Moreover, for each element $\tilde{a} \in \widehat{A}_{\mathbb{R}}$ we have a unique decomposition $\tilde{a}=(\tilde{a})_{\text {fin }} . \epsilon(\tilde{a})$, where $a_{f i n} \in A_{\mathbb{R}}$ and $\epsilon(\tilde{a}) \in \widehat{A}_{\mathbb{R}}$ such that $\epsilon(\tilde{a})^{\gamma} \in\{-1,0,+1, \infty\}, \forall \gamma \in \Delta$.

Note that $\epsilon(\tilde{a}) \in\{-1,0,+1, \infty\}^{\Delta}$ and for all $\alpha=\sum_{\gamma \in \Delta} k(\alpha, \gamma) \cdot \gamma \in \Sigma$ we have

$$
\epsilon(\tilde{a})^{\alpha}=\prod_{\gamma \in \Delta}\left(\epsilon(\tilde{a})^{\gamma}\right)^{|k(\alpha, \gamma)|}
$$

Motivating the Oshima's definition, $\epsilon(\tilde{a})$ is called an extended signature of the element \tilde{a}. Now we define parabolic subalgebras with respect to extended signatures $\epsilon(\tilde{a})$, for all $\tilde{a} \in \widehat{A}_{\mathbb{R}}$.

First we consider $\tilde{a}_{t} \in \widehat{A}_{\mathbb{R}}^{-}$and let $F_{\epsilon}=\left\{\gamma \mid \epsilon_{\gamma}=\epsilon\left(\tilde{a}_{t}\right)^{\gamma} \neq 0\right\}$ be a subset of the simple root system Δ with respect to the extended signature $\epsilon=\epsilon\left(\tilde{a}_{t}\right)$. Denote $\Sigma_{\epsilon}=\left(\sum_{\gamma \in F_{\epsilon}} \mathbb{R} \gamma\right) \cap \Sigma$ and suppose that W_{ϵ} is the subgroup of W generated by reflections with respect to γ in F_{ϵ}. Let P_{σ} be the parabolic subgroup of G with the corresponding Langlands decomposition $P_{\sigma}=M_{\sigma} A_{\sigma} N_{\sigma}$ so that $M_{\sigma} A_{\sigma}$ is the centralizer of \mathcal{A} in G and the Lie algebra \mathcal{N}_{σ} of N_{σ} equals $\sum_{\alpha \in \Sigma^{+}} \mathcal{G}_{\alpha}$. Then we can define a parabolic subalgebra

$$
\mathcal{P}_{\epsilon}=\mathcal{M}_{\sigma}+\mathcal{A}_{\sigma}+\sum_{\alpha \in \Sigma_{\epsilon}} \mathcal{G}_{\alpha}+\sum_{\alpha \in \Sigma^{+}-\Sigma_{\epsilon}} \mathcal{G}_{\alpha}
$$

of \mathcal{G} and its Langlands decomposition $\mathcal{P}_{\epsilon}=\mathcal{M}_{\epsilon}+\mathcal{A}_{\epsilon}+\mathcal{N}_{\epsilon}$ so that $\mathcal{A}_{\epsilon} \subset \mathcal{A}_{\sigma}$ (see [11]).

Let P_{ϵ} denote the corresponding parabolic subgroup of \mathcal{P}_{ϵ} in G. It follows that $P_{\epsilon}=M_{\epsilon} A_{\epsilon} N_{\epsilon}$ is the corresponding Langlands decomposition of P_{ϵ} and we
define a closed subgroup $P(\epsilon)$ of G by $P(\epsilon)=\left(M_{\epsilon} \cap \underline{\omega}^{-1} H \underline{\omega}\right) A_{\epsilon} N_{\epsilon}$, where $\underline{\omega}$ is a representative of $\omega \in W$ in $N_{K}(\mathcal{A})$ so that $\underline{\omega} \in N_{K \cap H}(\mathcal{A})$ if $\omega \in W_{K \cap H}$.

In general, for each $\eta=\eta(\tilde{a})$ with $\tilde{a}=w \cdot \tilde{a}_{t} \in \widehat{A}_{\mathbb{R}}$, we firstly consider the parabolic subalgebra P_{ϵ} with respect to the element $\epsilon=\epsilon\left(\tilde{a}_{t}\right)$. Then we define a parabolic subalgebra $P_{\eta}=w \cdot P_{\epsilon} \cdot w^{-1}$ based on the action of the Weyl group W on the parabolic subalgebra P_{ϵ} (see [3]).

We now define an equivalent relation on the product manifold $G \times \widehat{A}_{\mathbb{R}}$. Let $x=(g, \tilde{a})$ be an element of $G \times \widehat{A}_{\mathbb{R}}$, where $\tilde{a}=w . \tilde{a}_{t}$ and $t=\left(t_{\gamma}\right)_{\gamma \in \Delta}$, $t_{\gamma} \in[-1,1]$. Then we put $\operatorname{sgn} x=\epsilon\left(\tilde{a}_{t}\right)=\operatorname{sgn} t$, which is an element of $\{-1,0,1\}^{\Delta}$. Here sgn $t=\left(\operatorname{sgn} t_{\gamma}\right)_{\gamma \in \Delta}$ and for an s in \mathbb{R} we define $\operatorname{sgn} s=1$ (resp. $0,-1$) if $s>0$ (resp. $s=0, s<0$).

Denote F_{x}, Σ_{x} and W_{x} instead of $F_{\epsilon}, \Sigma_{\epsilon}$ and W_{ϵ}, respectively, we define a parabolic subalgebra

$$
\mathcal{P}_{x}=\mathcal{M}_{\sigma}+\mathcal{A}_{\sigma}+\sum_{\alpha \in \Sigma_{x}} \mathcal{G}_{\alpha}+\sum_{\alpha \in \Sigma^{+}-\Sigma_{x}} \mathcal{G}_{\alpha}
$$

of \mathcal{G} and its Langlands decomposition $\mathcal{P}_{x}=\mathcal{M}_{x}+\mathcal{A}_{x}+\mathcal{N}_{x}$ so that $\mathcal{A}_{\epsilon} \subset \mathcal{A}_{\sigma}$.
Moreover, denoting by P_{x} the corresponding subgroup of \mathcal{P}_{x} in G, we get the Langlands decomposition $P_{x}=M_{x} A_{x} N_{x}$ and $\left.P(x)=\left(M_{x} \cap \underline{\omega}^{-1} H \underline{\omega}\right)\right) A_{x} N_{x}$ is a closed subgroup of G. Let $\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$ denote the dual basis of $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$, that is, $H_{j} \in \mathcal{A}$ and $\alpha_{i}\left(H_{j}\right)=\delta_{i j}, \forall i, j=1,2, \ldots, l$ and put $a(x)=\exp \left(-\sum_{\gamma \in F_{x}} \log \left|t_{\gamma}\right| H_{\gamma}\right)$, where $H_{\gamma} \in\left\{H_{1}, H_{2}, \ldots, H_{l}\right\}$ with respect to γ.

Note that for all elements $x=\left(g, \omega \cdot \tilde{a}_{t}\right)$ and $x^{\prime}=\left(g^{\prime}, \omega^{\prime} \cdot \tilde{a}_{t^{\prime}}\right)$ of $G \times \widehat{A}_{\mathbb{R}}$ such that $\operatorname{sgn} x=\operatorname{sgn} x^{\prime}$, we have $W_{x}=W_{x^{\prime}}$.
Definition 3.1. We say that two elements $x=\left(g, \omega \cdot \tilde{a}_{t}\right)$ and $x^{\prime}=\left(g^{\prime}, \omega^{\prime} \cdot \tilde{a}_{t^{\prime}}\right)$ of $G \times \widehat{A}_{\mathbb{R}}$ are equivalent if and only if the following conditions hold:
(i) $\operatorname{sgn} x=\operatorname{sgn} x^{\prime}$
(ii) $W_{K \cap H} \omega W_{x}=W_{K \cap H} \omega^{\prime} W_{x}$
(iii) $g a(x) P(x)=g^{\prime} a\left(x^{\prime}\right)\left(M_{x} \cap \underline{\omega}^{\prime-1} H \underline{\omega}\right) A_{x} N_{x}$.

Remark 3.2. Let $x=\left(g, \omega \cdot \tilde{a}_{t}\right)$ and $x^{\prime}=\left(g^{\prime}, \omega^{\prime} \cdot \tilde{a}_{t^{\prime}}\right)$ be elements of $G \times \widehat{A}_{\mathbb{R}}$ and suppose that x and x^{\prime} satisfy the above condition (iii). Then there exist $u, u^{\prime} \in W_{K \cap H}$ and $v, v^{\prime} \in W_{x}$ and $m, m^{\prime} \in M$ such that $\underline{u} \underline{\omega} \underline{v} m=\underline{u}^{\prime} \underline{\omega}^{\prime} \underline{v}^{\prime} m^{\prime}$. Moreover, (see [11, Lemma 1.2]) the condition (iii) in Definition 2.1 is equivalent to

$$
\begin{equation*}
g a(x) P(x) \underline{v} m=g^{\prime} a^{\prime}\left(x^{\prime}\right) P\left(x^{\prime}\right) \underline{\prime^{\prime}} m^{\prime} . \tag{3.1}
\end{equation*}
$$

It follows from Remark 3.2 that the Definition 3.1 really gives an equivalent relation, and we write $x \sim x^{\prime}$. The quotient space of $G \times \widehat{A}_{\mathbb{R}}$ by this equivalent relation becomes a topological space with the quotient topology and is denoted by $\widehat{\mathbf{X}}$.

Let $\pi: G \times \widehat{A}_{\mathbb{R}} \longrightarrow \widehat{\mathbf{X}}$ be the natural projection. Because the action of G on $G \times \widehat{A}_{\mathbb{R}}$ are compatible with the equivalent relation, we can define an action of G on $\widehat{\mathbf{X}}$ by

$$
\begin{equation*}
g_{1} \pi(g, \tilde{a})=\pi\left(g_{1} g, \tilde{a}\right), \forall g, g_{1} \in G, \tilde{a} \in A_{\mathbb{R}} \tag{3.2}
\end{equation*}
$$

Put $\widehat{A}_{\mathbb{R}, \epsilon}=\left\{\tilde{a} \in \widehat{A}_{\mathbb{R}} \mid \epsilon(\tilde{a})=\epsilon\right\}$ for each $\epsilon \in\{-1,0,1\}^{\Delta}$ and denote $\mathbf{X}_{\epsilon}=\pi\left(G \times \widehat{A}_{\mathbb{R}, \epsilon}\right)$. Then we have
Proposition 3.3. (i) $\widehat{\mathbf{X}}$ is a compact connected G-space and $\widehat{\mathbf{X}}=\underset{\epsilon \in\{-1,0,1\}^{\Delta}}{\bigcup} \mathbf{X}_{\epsilon}$ gives the orbital decomposition of $\widehat{\mathbf{X}}$ for the action of G on it.
(ii) Each \mathbf{X}_{ϵ} is homeomorphic to $G / P(\epsilon)$. There are just $2^{|\Delta|}$ open orbits that are isomorphic to G / H and the number of compact orbits in $\widehat{\mathbf{X}}$ equal that of the elements of the coset $W_{K \cap H} \backslash W$.

Proof (i) Since $\pi\left(G \times \mathcal{U}_{\Delta}\right)$ is connected and contains any open orbit, the connectedness of $\widehat{\mathbf{X}}$ is clear. Denote by \mathcal{A}^{+}the positive chamber corresponding to Σ^{+}and put $A^{+}=\exp \mathcal{A}^{+}$. Let $\overline{A^{+}}=\{\exp X \mid X \in \mathcal{A}$ with $\alpha(X) \geq 0$ for all $\left.\alpha \in \Sigma^{+}\right\}$be the closure of A^{+}, we see that

$$
\overline{A^{+}}=\left\{\exp \left(-\sum_{\gamma}\left(\log t_{\gamma}\right) H_{\gamma}\right) \mid t_{\gamma} \in(0,1]\right\}
$$

Consider the compact subset $K \times \widehat{A}_{\mathbb{R}}=K \times W \cdot \widehat{A}_{\mathbb{R}}^{-} \cong K \times[-1,1]^{\Delta} \times W$ of $G \times \widehat{A}_{\mathbb{R}}$. Then the subset $\pi\left(K \times \widehat{A}_{\mathbb{R}}\right)$ is also compact because it is the image of a compact set under the continuous map. Moreover, it follows from the Cartan decomposition $G=K A H$ that $G=\bigcup_{w \in W} K \overline{A^{+}} \underline{\omega} H$ (see [11]). Hence, Definition 3.1 and Remark 3.2 prove that the compact set $\pi\left(K \times \widehat{A}_{\mathbb{R}}\right)$ contains all open G-orbits in $\widehat{\mathbf{X}}$. In other words, this compact set is dense in $\widehat{\mathbf{X}}$ and therefore it must be coincided with $\widehat{\mathbf{X}}$.
(ii) Put $\tilde{a} \in \widehat{A}_{\mathbb{R}, \epsilon}$ for each $\epsilon \in\{-1,0,1\}^{\Delta}$ and define a $\operatorname{map} \Psi: G / P(\epsilon) \longrightarrow$ \mathbf{X}_{ϵ} by $\Psi(g P(\epsilon))=\pi(g, \tilde{a}), \forall g \in G$. Then by a similar way as in [5, Proposition 2.4], we get that the map is well defined and becomes an homeomorphism which is equivariant for the action of G.

We now define an analytic structure on $\widehat{\mathbf{X}}$ based on the analytic structure on $\widehat{A}_{\mathbb{R}}$.

Let $\mathcal{A}_{\mathcal{P}}$ be a maximal Abelian subspace of \mathcal{P} containing \mathcal{A} and let $\Sigma\left(\mathcal{A}_{\mathcal{P}}, \mathcal{G}\right)$ be the set of corresponding restricted roots. By [11, Lemma 1.4], we can assume that the representatives $\underline{\omega}$ of elements $\omega \in W$ satisfy $\operatorname{Ad}(\underline{\omega})\left(\mathcal{A}_{\mathcal{P}}\right)=$ $\mathcal{A}_{\mathcal{P}}$. Denote by $\mathcal{G}(\sigma)$ the reductive Lie algebra generated by $\left\{\mathcal{G}\left(\mathcal{A}_{\mathcal{P}} ; \lambda\right) \mid \lambda \in\right.$ $\left.\Sigma\left(\mathcal{A}_{\mathcal{P}}, \mathcal{G}\right),\left.\lambda\right|_{\mathcal{A}}=0\right\}$, where $\mathcal{G}\left(\mathcal{A}_{\mathcal{P}} ; \lambda\right)=\{X \in \mathcal{G} \mid[X, Y]=\lambda(Y) X$ forall $Y \in$ $\left.\mathcal{A}_{\mathcal{P}}\right\}$ and put

$$
\mathcal{M}(\sigma)=\left\{X \in \mathcal{M}_{\sigma} \mid[X, Y]=\lambda(Y) X \quad \text { forall } Y \in \mathcal{G}(\sigma)\right\}
$$

Let $G(\sigma)$ and $M(\sigma)_{0}$ be the analytic subgroups of G corresponding to $\mathcal{G}(\sigma)$ and $\mathcal{M}(\sigma)$, respectively, and denote

$$
M(\sigma)=M(\sigma)_{0} \cdot A d_{G}^{-1}\left(A d(K) \cap \exp \left(\operatorname{ad}\left(\sqrt{-1} \mathcal{A}_{\mathcal{P}}\right)\right)\right)
$$

Then $G(\sigma) \subset H, M(\sigma) \subset N_{K}\left(\mathcal{A}_{p}\right)$ and the representative $\underline{\omega}$ normalizes $G(\sigma)$ and $M(\sigma)$ for any $\omega \in W$. Moreover, it follows from [11, Lemma 1.5] that $M_{\sigma}=M(\sigma) G(\sigma)$ and

$$
M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \simeq M_{\sigma} /\left(M_{\sigma} \cap \underline{\omega}^{-1} H \underline{\omega}\right) \simeq M /\left(M \cap \underline{\omega}^{-1} H \underline{\omega}\right)
$$

For every $g \in G$ and $w \in W$, we put $\Omega_{g}^{w}=\pi\left(g \bar{N}_{\sigma} M(\sigma) \times \mathcal{U}_{w(\Delta)}\right)$, where \bar{N}_{σ} is the analytic subgroup of G corresponding to $\overline{\mathcal{N}}_{\sigma}=\theta\left(\mathcal{N}_{\sigma}\right)$ and define a map

$$
\Phi_{g}^{w}: \bar{N}_{\sigma} \times M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \times \mathbb{R}^{\Delta} \longrightarrow \Omega_{g}^{w}
$$

by $\Phi_{g}^{w}(n, m, t)=\pi\left(g n m, w . \tilde{a}_{t}\right), \forall(n, m, t) \in \bar{N}_{\sigma} \times M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \times$ \mathbb{R}^{Δ}. \quad By the same argument as that given in [5, Lemma 2.6], we get

Lemma 3.4. For every $g \in G$ and $w \in W$, the map Φ_{g}^{w} is a homeomorphism of $\bar{N}_{\sigma} \times M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \times \mathbb{R}^{\Delta}$ onto an open subset $\Omega_{g}^{w}=\pi\left(g \bar{N}_{\sigma} M(\sigma) \times\right.$ $\left.\mathcal{U}_{w(\Delta)}\right)$ of \widehat{X}.

For brevity, we denote $\Omega^{w}=\bar{N}_{\sigma} \times M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \times \mathbb{R}^{\Delta}$. Then we have

Lemma 3.5. Let $g, g^{\prime} \in G$ and $w, w^{\prime} \in W$. Then the map

$$
\left(\Phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ\left(\Phi_{g}^{w}\right):\left(\Phi_{g}^{w}\right)^{-1}\left(\Omega_{g}^{w} \cap \Omega_{g^{\prime}}^{w^{\prime}}\right) \longrightarrow\left(\Phi_{g^{\prime}}^{w^{\prime}}\right)^{-1}\left(\Omega_{g}^{w} \cap \Omega_{g^{\prime}}^{w^{\prime}}\right)
$$

define an analytic diffeomorphism between the open subsets of the set Ω^{w}.
Proof By definition, Φ_{g}^{w} is bijective and continuous. Then the map $\left(\Phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ$ $\left(\Phi_{g}^{w}\right)$ is bijective and its inverse is of the same form. So we need only to show that the $\operatorname{map}\left(\Phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ\left(\Phi_{g}^{w}\right)$ is analytic. Since $\left(\Phi_{g^{\prime}}^{w^{\prime}}\right)^{-1} \circ\left(\Phi_{g}^{w}\right)=\left(\Phi_{e}^{w^{\prime}}\right)^{-1} \circ$ $\left(\Phi_{g^{\prime-1} g}^{w}\right)$, we can assume that $g^{\prime}=e$.

Fix an arbitrary element $u=\left(n_{o}, m_{o}, t_{o}\right)$ of the domain of $\left(\Phi_{e}^{w^{\prime}}\right)^{-1} \circ\left(\Phi_{g}^{w}\right)$ and put $x=\left(g n_{o} m_{o}, w \tilde{a}_{t_{o}}\right) \in \widehat{\mathbf{X}}$ and $u^{\prime}=\left(n_{o}^{\prime}, m_{o}^{\prime}, t_{o}^{\prime}\right)=\left(\left(\Phi_{e}^{w^{\prime}}\right)^{-1} \circ \Phi_{g}^{w}\right)(u)$ in $\Omega^{w^{\prime}}$, we will show that the map is analytic in a neighborhood of u.

We first consider the case where $w^{\prime}=w$ and $g \in \bar{N}_{\sigma} M(\sigma) A^{x}$. Here A^{x} is the analytic subgroup of G corresponding to $\mathcal{A}^{x}=\sum_{\gamma \in F_{x}} \mathbb{R} H_{\gamma}$. Suppose that $g=n_{1} m_{1} a_{1}$, where $n_{1} \in \overline{\mathcal{N}}_{\sigma}, m_{1} \in M(\sigma)$ and $a_{1} \in A^{x}$. Then we have

$$
\left(\Phi_{e}^{w}\right)^{-1} \circ\left(\Phi_{g}^{w}\right)(n, m, t)=\left(n_{1} m_{1} a_{1} n\left(m_{1} a_{1}\right)^{-1}, m_{1} m, a_{1} t\right)
$$

where $\quad a_{1} t=\left(\exp <-a_{1}, \log a_{1}>t_{1}, \ldots, \exp <-a_{l}, \log a_{1}>t_{l}\right)$. It follows that the map is analytic.

Next we assume that $w^{\prime}=w$ and $u^{\prime}=u=(e, 1, \epsilon)$ with an $\epsilon \in\{-1,0,1\}^{\Delta}$. Then we have $g \in P(x)$ and [11, Lemma 1.9 (i)] there exist neighborhoods V of the origin in $\mathcal{P}(x)$ and U_{0} of u in Ω^{w} such that for any $Y \in V$ and $s \in[0,1]$, the map $\left(\Phi_{e}^{w}\right)^{-1} \circ \exp (s Y) \circ \Phi_{e}^{w}$ defines an analytic diffeomorphism of U_{0} onto a neighborhood of u. Hence we have the claim if $g \in \exp V$. Moreover, any $g \in P(x)$ can be written in the form $g=g_{0} g_{1} \ldots g_{k}$ with $g_{0} \in M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}$ and $g_{i} \in \exp V(i=1, \ldots, k)$, where k is a suitable positive integer. Then we have the relation

$$
\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g}^{w}=\left(\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{0}}^{w}\right) \circ\left(\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{1}}^{w}\right) \circ \ldots \circ\left(\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{k}}^{w}\right)
$$

and $\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{i}}^{w}$ map the point u to the same point for $i=0,1, \ldots, k$. It follows that $\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{i}}^{w}$ are analytic in some neighborhoods of u in Ω^{w} and we have the claim.

We consider the case where $w^{\prime} \neq w, g=e$ and $u=(e, 1, \epsilon)$. Then it follows that $u^{\prime}=(e, 1, \epsilon)$ when $g^{\prime}=\underline{v}^{\prime} m^{\prime} m^{-1} \underline{v}^{-1}$, with $v, v^{\prime} \in W_{x}$. By a similar way as in [11, Lemma 1.9 (ii)], we can prove that the $\operatorname{map} \Phi_{g^{\prime}}^{w^{\prime}} \circ\left(\Phi_{e}^{w}\right)$ is analytic in the set

$$
\Omega^{w}(\epsilon)=\bar{N}_{\sigma} \times M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \times \mathbb{R}_{\epsilon}^{\Delta}
$$

where $\mathbb{R}_{\epsilon}^{\Delta}=\left\{t \in \mathbb{R}^{\Delta} \mid \operatorname{sgn} t_{\gamma}=\epsilon_{\gamma}\right.$ if $\left.\epsilon_{\gamma} \neq 0\right\}$.
Now we consider the general case. Put $g_{1}=\left(n_{o} \underline{m_{o}} a\left(t_{o}\right)\right)^{-1}, g_{2}=$ $g_{3}^{-1} g_{4}^{-1} g g_{1}^{-1}$, where $g_{3}=\underline{v}^{\prime} m^{\prime} m^{-1} \underline{v}^{-1}, g_{4}=n_{o}^{\prime} \underline{m_{o}} a\left(\overline{\left.t_{o}^{\prime}\right)}\right.$ and consider the maps
$\Phi_{1}=\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{1}}^{w}, \Phi_{2}=\left(\Phi_{e}^{w}\right)^{-1} \circ \Phi_{g_{2}}^{w}, \Phi_{3}=\left(\Phi_{g_{3}}^{w^{\prime}}\right)^{-1} \circ\left(\Phi_{e}^{w}\right), \Phi_{4}=\left(\Phi_{e}^{w^{\prime}}\right)^{-1} \circ \Phi_{g_{4}}^{w^{\prime}}$.
Then we have

$$
\left(\Phi_{e}^{w^{\prime}}\right)^{-1} \circ \Phi_{g}^{w}=\Phi_{4} \circ \Phi_{3} \circ \Phi_{2} \circ \Phi_{1}
$$

Since $\Phi_{1}(u)=(e, 1, \operatorname{sgn} x)$ and $g_{2} \in P(x)$, it follows from what we have proved that the maps $\Phi_{1}, \Phi_{2}, \Phi_{3}$ and Φ_{4} are analytic in a neighborhood of $u=\left(n_{o}, m_{o}, t_{o}\right)$. This implies that the $\operatorname{map}\left(\Phi_{e}^{w^{\prime}}\right)^{-1} \circ \Phi_{g}^{w}$ is analytic in a neighborhood of u and we have the Lemma. Lemma 3.4 and Lemma 3.5 assures that we can define an analytic structure on $\widehat{\mathbf{X}}$ through the maps Φ_{g}^{w} so that they define analytic diffeomorphisms onto open subsets Ω_{g}^{w} of $\widehat{\mathbf{X}}$ and the action of G on $\widehat{\mathbf{X}}$ is analytic. On the other hand $\widehat{\mathbf{X}}$ is Hausdorff because Φ_{g}^{w} is homeomorphic and $\bar{N}_{\sigma} \times M(\sigma) /\left(M(\sigma) \cap \underline{\omega}^{-1} H \underline{\omega}\right) \times \mathbb{R}^{\Delta}$ is Hausdorff. Combining this with Proposition 3.3 we get
Theorem 3.6. (i) $\widehat{\mathbf{X}}$ is a compact connected real analytic manifold and $\bigcup_{w \in W, g \in G} \Omega_{g}^{w}$ is an open covering of \widehat{X} such that the maps Φ_{g}^{w} are real analytic diffeomorphisms.
(ii) The action of G on $\widehat{\mathbf{X}}$ is analytic and the orbit $G \pi(x)$ for a point x in $\widehat{\mathbf{X}}$ is isomorphic to $G / P(x)$.
(iii) There are just $2^{|\Delta|}$ open orbits that are isomorphic to G / H and the number of compact orbits in $\widehat{\mathbf{X}}$ equal that of the elements of the coset $W_{K \cap H} \backslash W$.

Remark 3.7. (i) By a similar way, we can construct the compactification of the corresponding Riemannian symmetric spaces $\mathbf{X}_{+}=G^{+} / K \cap H$.
(ii) For the special case $H=K$, i.e., for the case of Riemannian symmetric spaces of non-compact type, we obtain the corresponding compactification indicated in [5].

Acknowledgment: The authors would like to thanks Professor van den Ban, Professor Do Ngoc Diep and Professor Toshio Oshima for many helpful discussions.

References

[1] E. van den Ban and H. Schlichtkrull,Harmonic analysis on reductive symmetric spaces, Proc. $3^{\text {rd }}$ European Congress of Mathematics, 2000.
[2] A. Borel and Lizhen Ji, Compactifications of locally symmetric spaces symmetric spaces, Lectures for the European School of Group Theory, Luminy, France, 2001.
[3] A. Borel and Lizhen Ji, Compactifications of symmetric spaces I, Lectures for the European School of Group Theory, Luminy, France, 2001.
[4] C. De Concini and C. Procesi, Complete symmetric varieties, Lecture Notes in Math., 996 (1983), 1-44, Springer.
[5] Tran Dao Dong and Tran Vui, A realization of Riemannian symmetric spaces in compact manifolds, Proc. of the ICAA 2002, 188-196, Bangkok.
[6] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math., 111 (1980), 253-311.
[7] Lizhen Ji, Introduction to symmetric spaces and their compactifications, Lectures for the European School of Group Theory, Luminy, France, 2001.
[8] W.A. Kosters, Eigenspaces of the Laplace-Beltrami operator on $S L(n, \mathbb{R}) / S(G(1) \times G L(n-1))$, Part I, Proc. of Math., University of Leiden (1984).
[9] T. Matsuki and T. Oshima, A description of discrete series for semisimple symmetric Spaces, Adv. Studies in Pure Math., 4(1984), 331-390.
[10] T. Oshima, A realization of Riemannian symmetric spaces, J. Math. Soc. Japan, vol 30 (1978), 117-132.
[11] T. Oshima, A realization of semisimple symmetric spaces and construction of boundry value maps, Advanced Studies in Pure Math., vol 14 (1988), 603-650.
[12] T. Oshima and J. Sekiguchi, Eigenspaces of invariant differential operators on an affine symmetric spaces, Invent Math., vol 57 (1980), 1-81.
[13] H. Schlichtkrull, "Hyperfunctions and Harmonic Analysis on Symmetric Spaces", Birkhäuser, Boston, 1984.
[14] H. Schlichtkrull, Harmonic analysis on semisimple symmetric spaces, Lectures for the European School of Group Theory, University of Twente, The Netherlands, 1992.
[15] J. Sekiguchi, Eigenspaces of the Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J., vol 79 (1980), 151-185.

