
East-West J. of Mathematics: Vol. 6, No 1 (2004) pp. 43-54

A COMPACT EMBEDDING OF

SEMISIMPLE SYMMETRIC SPACES

Tran Dao Dong and Tran Vui

∗∗Department of Mathematics,
Faculty of Education, Hue University

32 Le Loi Hue, Vietnam
email:tddong@yahoo.com

Abstract

Let G be a connected real semisimple Lie group with finite center
and σ be an involutive automorphism of G. Suppose that H is a closed
subgroup of G with Gσ

e ⊂ H ⊂ Gσ, where Gσ is the fixed points group of
σ and Gσ

e denotes its identity component. The coset space X = G/H is
then a semisimple symmetric space. Let θ be a Cartan involution which
commutes with σ and K be the set of all fixed points of θ. Then K is
a σ-stable maximal compact subgroup of G and the coset space G/K
becomes a Riemannian symmetric space of noncompact type. By using
the action of the Weyl group, we have constructed a compact real analytic
manifold in which the Riemannian symmetric space G/K is realized as an
open subset and that G acts analytically on it. The purpose of this note
is to apply the above construction to the case of semisimple symmetric
spaces X = G/H. Our construction is similar to those of Schlichtkrull,
Lizhen Ji, Oshima for Riemannian symmetric spaces and similar to those
of Kosters, Sekiguchi, Oshima for semisimple symmetric spaces.

1 Introduction

Let G be a connected real semisimple Lie group with finite center, σ be an
involutive automorphism of G and X = G/H be the corresponding semisimple
symmetric space. Here H is a closed subgroup of G with Gσ

e ⊂ H ⊂ Gσ, where
Gσ is the fixed points group of σ and Gσ

e denotes its identity component.
Denote by θ the Cartan involution which commutes with σ and K the set

of all fixed points of θ. Then K is a σ-stable maximal compact subgroup of G.
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Let G be the Lie algebra of G. The involutions of G induced by σ and θ are
denoted by the same letters, respectively.

Suppose that G = H⊕Q = K⊕P are the decompositions of G into +1 and
-1 eigenspaces for σ and θ, respectively, where H (resp. K) is the Lie algebra of
H (resp. K). Fix a maximal Abelian subspace A in P ∩Q and let A∗ denote
the dual space of A. The corresponding analytic subgroup A of A in G is then
called the vectorial part of X. For a α ∈ A∗, put

Gα = {Y ∈ G | [H, Y ] = α(H)Y, ∀H ∈ A}.

Then the set Σ = {α ∈ A∗ | Gα �= {0}, α �= 0} defines a root system with the
inner product induced by the Killing form <, > of G. Moreover, the Weyl group
W of Σ is defined with the normalizer NK(A) of A in K modulo the centralizer
M = ZK(A) of A in K. It acts naturally on A and coincides via this action
with the reflection group of the root system Σ.

Choose a fundamental system Δ = { α1, ..., αl } of Σ, where the number
l which equals dim A is called the split rank of the symmetric space X and
denote Σ+ the corresponding set of all positive roots in Σ. Denote by WK∩H

the normalizer NK∩H (A) of A in K modulo the centralizer ZK∩H(A) of A in
K. We see that WK∩H is a subgroup of W. For each element ω of W we fix a
representative ω in NK(A) so that ω ∈ NK∩H (A) if ω ∈ WK∩H .

The purpose of this note is to construct a compact real analytic mani-
fold X̂ in which the semisimple symmetric space X = G/H is realized as an
open subset and that G acts analytically on it. By the Cartan decomposition
G = KAH, we must compactify the vectorial part A. Our construction is a
motivation of Oshima’s construction. In [5] we proposed a construction for the
Riemannian symmetric spaces G/K. Here we apply the construction for the
semisimple symmetric spaces X = G/H.

Denote by GC the complexification of G and GC the corresponding analytic
group. For simplicity, we assume that G is the real form of the complex Lie
group GC. Let AC be the complexification of A and AC be the analytic
subgroup of AC in GC. For each a ∈ AC and α ∈ Σ we define aα = eα.log a ∈
C∗ = C \ {0} and consider the subset

AR = { a ∈ AC | aα ∈ R, ∀α ∈ Σ }.

This note is organized as follows. In Section 1, we consider the compactifi-
cation of the vectorial part based on the construction in [5]. By this way, we
firstly construct an embedding of AR into a compact real analytic manifold ÂR

which is called a compactification of AR. Then we illustrate the construction
via an example. In Section 2, we construct the compact manifold X̂ based on
the action of Weyl group on ÂR and consider the real analytic structure of X̂
induced from the real analytic structure of ÂR.



Tran Dao Dong and Tran Vui 45

2 Compactification of the vectorial part

Let (C∗)Σ be the set of complexes z = (zβ)β∈Σ, where zβ ∈ C∗ and CIP1 be the
1-dimensional complex projective space. Consider the map ϕ : AC −→ (C∗)Σ

defined by ϕ(a) = (aα)α∈Σ, ∀a ∈ AC. Then, for every z = (zα)α∈Σ ∈ ϕ(AC)
we have

z−α = (zα)−1, ∀α ∈ Σ (2.1)

zα =
∏
γ∈Δ

(zγ)k(α,γ), ∀α ∈ Σ+, α =
∑
γ∈Δ

k(α, γ).γ. (2.2)

By using the natural embedding of (C∗)Σ into (CIP1)Σ, we get an embedding
map of AC into (CIP1)Σ denoted also by ϕ.

Let M = {z ∈ (RIP1)Σ | z−α = z−1
α , ∀α ∈ Σ }, where RIP1 is the 1-

dimensional real projective space. By definition, M is compact. Moreover, the
subset

UΣ+ =
{

m = (mα, m−α) ∈ M | mα ∈ R, m−α ∈ R
∗ ∪ {∞}, ∀α ∈ Σ+

}
is an open subset in (RIP1)Σ and we get a homeomorphism χΣ+ : UΣ+ −→ R

Σ+

defined by χΣ+(m) = (mα)α∈Σ+ , ∀m ∈ UΣ+ .

Recall that W acts on M by (w.z)α = zw−1α, ∀α ∈ Σ, w ∈ W, z ∈ M. So
we have Uw(Σ+) = w.(UΣ+), ∀w ∈ W. By a similar way as in [5, Lemma 1.2], we
see that the pair {UΣ+ , χΣ+} is a chart on M and {Uw(Σ+), χw(Σ+)}w∈W defines
an atlas of charts on M such that M becomes a real analytic submanifold.

By definition, ϕ(AR) is a subset of (RIP1)Σ. Denote by ÂR the closure of
ϕ(AR) in (RIP1)Σ. It follows from (2.1) and (2.2) that ÂR is a compact subset
of M. We now define an atlas of charts on ÂR induced from the atlas on M.

Let UΔ be the subset of UΣ+ consists of elements m = (mα, m−α) such that
mα =

∏
γ∈Δ

(mγ)k(α,γ), ∀α ∈ Σ+, α =
∑

γ∈Δ

k(α, γ).γ. Then UΔ is an open subset

in ÂR. It follows that χΣ+(UΔ) = { x ∈ R
Σ+ | xα =

∏
γ∈Δ

(xγ)k(α,γ) } and we get

a homeomorphism χΔ : UΔ −→ R
Δ defined by χΔ(m) = (mγ)γ∈Δ, ∀m ∈ UΔ.

Moreover, by a similar argument as that given in [5, Theorem 1.4], we have

Theorem 2.1. ÂR is a compact real analytic manifold that is called a com-
pactification of AR. The set of charts {Uw(Δ), χw(Δ)}w∈W defines an atlas of
charts on ÂR so that the manifold ÂR is covered by |W |-many charts.

Remark 2.2. Denote by G+ = Gσθ = K ∩H ⊕ P ∩Q and let

Σ+ = Σ(A, G+) = { α ∈ Σ | Gα ∩ G+ �= {0}, α �= 0 }
be the set of restricted roots of A in G+.
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Suppose that H is connected. Since H = (H ∩ K).exp (H ∩ P) we have
that H ∩ K is connected. Then G+ = (H ∩ K).exp (P ∩ Q) is connected
and the corresponding Weyl group WK∩H of A in G+ defined by

WK∩H = W(K∩H)e
= W (A, G+) = < sα | α ∈ Σ+ > .

Since G+ = K ∩ H ⊕ P ∩ Q is the Cartan decomposition and K ∩ H is
a maximal compact subgroup of G+, the coset X+ := G+/(K ∩ H) becomes
a Riemannian symmetric space of non-compact type. We then can apply the
construction for the vectorial part of X+.

Denote AR,+ =
{

a ∈ AC | aγ ∈ R, ∀γ ∈ Σ+

}
. By construction, the

corresponding compactification ÂR,+ is contained in the compact manifold

M+ =
{

z ∈ (IP 1(R))Σ+ | z−γ = (zγ)−1, ∀γ ∈ Σ+

}
.

Moreover, ÂR,+ is a compact real analytic manifold which is covered by |WK∩H |-
many charts. Here, each Weyl chamber of A for Σ+ contains |WK∩H \ W |-
corresponding Weyl chambers of A for Σ and these subchambers are parame-
terized by WK∩H \ W.

Example Consider the real semi-simple Lie group G = SL(3, R) and denote by

G = sl(3, R) the corresponding Lie algebra of G. Suppose that θ is the Cartan
involution defined by θ(X) = (tX)−1, ∀X ∈ G and K = SO(3, R) is the
maximal compact subgroup in G with respect to θ. Then G = K ⊕ P is the
Cartan decomposition of G with respect to θ, where K = SO(3, R) is the Lie
algebra of K.

Let σ be the involution of G defined by

σ(X) = Jθ(X)J, ∀X ∈ G, where J =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠

and G = H⊕Q be the decomposition of G with respect to σ, where H = SO(1, 2)
is the Lie algebra of the corresponding fixed points group H = SO0(1, 2).

It follows that X = G/H = SL(3, R)/SO0(1, 2) is a semisimple symmetric
space of rank two and we get a maximal Abelian subspace of P ∩Q defined by

A =
{⎛
⎝t1 0 0

0 t2 0
0 0 t3

⎞
⎠ ∣∣∣ t1 + t2 + t3 = 0

}
.

By definition, the root system Σ of A in G is Σ = { ei − ej | 1 ≤ i �= j ≤ 3 }
and the Weyl group W is isomorphic to S3, the symmetric group of order three.
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Moreover, the corresponding analytic subgroup in G of A defined by

A =
{⎛

⎝a1 0 0
0 a2 0
0 0 a3

⎞
⎠∣∣∣ a1a2a3 = 1, ai > 0

} ∼= (0,∞)2

and we get

AR =
{⎛

⎝a1 0 0
0 a2 0
0 0 a3

⎞
⎠∣∣∣ a1a2a3 = 1

} ∼= (R∗)2.

Denote α = e1−e2, β = e2−e3. We see that Δ = {α, β} and Σ = Σ+∪(−Σ+),
where Σ+ = { α, β, α + β }. Then we have

M =
{

(zγ , z−γ) | zγ ∈ IP1(R), γ ∈ Σ+
} ∼= IP1(R)3.

It follows that the pair {UΣ+, χΣ+} is a chart on M, where

UΣ+ =
{

(mα, mβ, mα+β, m−α, m−β, m−α−β)|mα, mβ, mα+β ∈ R

} ∼= R
3

is an open subset in (RIP1)Σ
+

and χΣ+ : UΣ+ −→ R
Σ+

is the homeomorphism
defined by χΣ+(m) = (mα, mβ, mα+β), ∀m ∈ UΣ+ . Then we get

UΔ=
{
(mα, mβ , mα+β, m−α, m−β, m−α−β)|mα, mβ , mα+β ∈R,mα+β =mα.mβ

}
and χΣ+(UΔ) = { x = (x1, x2, x3) ∈ R

3 | x3 = x1.x2 } ∼= R
2. Hence

ÂR
∼= R

2 ∪ {∞} ∼= S2 is a compact smooth manifold that is covered by 6-many
charts.

By definition, we see that

G+ =
{⎛

⎝a 0 0
0 a11 a12

0 a21 a22

⎞
⎠∣∣∣ (

a11 a12

a21 a22

)
∈ GL(2, R), a−1 = det(A) > 0

}
.

Then X+ = G+/K ∩H is a Riemannian symmetric space of non-compact
type.

Moreover, we have Σ+ = { ei − ej | 2 ≤ i �= j ≤ 3 } = { β,−β } and
the Weyl group WK∩H is isomorphic to S2, where S2 is the symmetric group
of order two. It follows that the coset WK∩H \ W has three elements. Note
that

AR,+ =
{

a ∈ AC| aγ ∈ R, ∀γ ∈ Σ+ } ∼= R
∗.

Then the corresponding compactification ÂR,+ is contained in the compact
manifold

M+ =
{

(zγ , z−1
γ ) | zγ ∈ IP1(R), ∀γ ∈ Σ+

} ∼= IP1(R).
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It follows that ÂR,+
∼= R ∪ {∞} ∼= S1 is a compact smooth manifold that is

covered by 2-many charts.
Here each Weyl chamber of A for Σ+ contains three corresponding Weyl

chambers of A for Σ and these subchambers are parameterized by WK∩H \W.

3 Construction of a compact embedding

In this Section, we will construct an embedding of the semisimple symmetric
space X into a compact real analytic manifold X̂ such that the action of G on
X̂ is analytic. Our construction is based on the indicated construction in [5]
for Riemannian symmetric spaces and similar to those of Kosters, Sekiguchi,
Oshima for semisimple symmetric spaces.

First we recall some notations concerning the compactification ÂR as in [5].
Consider the subset Â−

R
= { ã ∈ ÂR | (ã)α ∈ [−1, 1] } and recall that the

Weyl group W acts on ÂR as follows (w.ã)α = (ã)w−1(α), ∀w ∈ W, ∀ã ∈ ÂR.

Then we have W.Â−
R

= ÂR (see [5, Lemma 2.1]). Moreover, for each element
ã ∈ ÂR we have a unique decomposition ã = (ã)fin.ε(ã), where afin ∈ AR

and ε(ã) ∈ ÂR such that ε(ã)γ ∈ { −1, 0, +1,∞ }, ∀γ ∈ Δ.
Note that ε(ã) ∈ { −1, 0, +1,∞ }Δ and for all α =

∑
γ∈Δ

k(α, γ).γ ∈ Σ we

have
ε(ã)α =

∏
γ∈Δ

(ε(ã)γ)|k(α,γ)|.

Motivating the Oshima’s definition, ε(ã) is called an extended signature of
the element ã. Now we define parabolic subalgebras with respect to extended
signatures ε(ã), for all ã ∈ ÂR.

First we consider ãt ∈ Â−
R

and let Fε = { γ | εγ = ε(ãt)γ �= 0 } be a subset
of the simple root system Δ with respect to the extended signature ε = ε(ãt).
Denote Σε = (

∑
γ∈Fε

Rγ)∩Σ and suppose that Wε is the subgroup of W generated

by reflections with respect to γ in Fε. Let Pσ be the parabolic subgroup of G
with the corresponding Langlands decomposition Pσ = MσAσNσ so that MσAσ

is the centralizer of A in G and the Lie algebra Nσ of Nσ equals
∑

α∈Σ+

Gα. Then

we can define a parabolic subalgebra

Pε = Mσ + Aσ +
∑

α∈Σε

Gα +
∑

α∈Σ+−Σε

Gα

of G and its Langlands decomposition Pε = Mε + Aε + Nε so that Aε ⊂ Aσ

(see [11]).
Let Pε denote the corresponding parabolic subgroup of Pε in G. It follows

that Pε = MεAεNε is the corresponding Langlands decomposition of Pε and we
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define a closed subgroup P (ε) of G by P (ε) = (Mε ∩ ω−1Hω)AεNε, where ω is
a representative of ω ∈ W in NK (A) so that ω ∈ NK∩H(A) if ω ∈ WK∩H .

In general, for each η = η(ã) with ã = w.ãt ∈ ÂR, we firstly consider the
parabolic subalgebra Pε with respect to the element ε = ε(ãt). Then we define
a parabolic subalgebra Pη = w.Pε.w

−1 based on the action of the Weyl group
W on the parabolic subalgebra Pε (see [3]).

We now define an equivalent relation on the product manifold G × ÂR.
Let x = (g, ã) be an element of G × ÂR, where ã = w.ãt and t = (tγ)γ∈Δ,
tγ ∈ [−1, 1]. Then we put sgn x = ε(ãt) = sgn t, which is an element of
{ −1, 0, 1 }Δ. Here sgn t = (sgn tγ)γ∈Δ and for an s in R we define sgn s = 1
(resp. 0,−1) if s > 0 (resp. s = 0, s < 0).

Denote Fx, Σx and Wx instead of Fε, Σε and Wε, respectively, we define a
parabolic subalgebra

Px = Mσ + Aσ +
∑

α∈Σx

Gα +
∑

α∈Σ+−Σx

Gα

of G and its Langlands decomposition Px = Mx + Ax + Nx so that Aε ⊂ Aσ .
Moreover, denoting by Px the corresponding subgroup of Px in G, we get the

Langlands decomposition Px = MxAxNx and P (x) = (Mx ∩ ω−1Hω))AxNx

is a closed subgroup of G. Let { H1, H2, ..., Hl } denote the dual basis of
Δ = { α1, ..., αl }, that is, Hj ∈ A and αi(Hj) = δij , ∀i, j = 1, 2, ..., l and put
a(x) = exp(− ∑

γ∈Fx

log|tγ | Hγ), where Hγ ∈ { H1, H2, ..., Hl } with respect to

γ.
Note that for all elements x = (g, ω.ãt) and x′ = (g′, ω′.ãt′) of G× ÂR such

that sgn x = sgn x′, we have Wx = Wx′ .

Definition 3.1. We say that two elements x = (g, ω.ãt) and x′ = (g′, ω′.ãt′)
of G × ÂR are equivalent if and only if the following conditions hold:

(i) sgn x = sgn x′

(ii) WK∩H ωWx = WK∩H ω′Wx

(iii) ga(x)P (x) = g′a(x′)(Mx ∩ ω′−1
Hω)AxNx.

Remark 3.2. Let x = (g, ω.ãt) and x′ = (g′, ω′.ãt′) be elements of G × ÂR

and suppose that x and x′ satisfy the above condition (iii). Then there exist
u, u′ ∈ WK∩H and v, v′ ∈ Wx and m, m′ ∈ M such that u ω v m = u′ω′v′m′.
Moreover, (see [11, Lemma 1.2]) the condition (iii) in Definition 2.1 is equivalent
to

ga(x)P (x)vm = g′a′(x′)P (x′)v′m′. (3.1)

It follows from Remark 3.2 that the Definition 3.1 really gives an equivalent
relation, and we write x ∼ x′. The quotient space of G× ÂR by this equivalent
relation becomes a topological space with the quotient topology and is denoted
by X̂.
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Let π : G × ÂR −→ X̂ be the natural projection. Because the action of G
on G× ÂR are compatible with the equivalent relation, we can define an action
of G on X̂ by

g1π(g, ã) = π(g1g, ã), ∀g, g1 ∈ G, ã ∈ AR. (3.2)

Put ÂR,ε = { ã ∈ ÂR | ε(ã) = ε } for each ε ∈ { −1, 0, 1 }Δ and denote
Xε = π(G × ÂR,ε). Then we have

Proposition 3.3. (i) X̂ is a compact connected G-space and X̂ =
⋃

ε∈{−1,0,1}Δ
Xε

gives the orbital decomposition of X̂ for the action of G on it.
(ii) Each Xε is homeomorphic to G/P (ε). There are just 2|Δ| open orbits

that are isomorphic to G/H and the number of compact orbits in X̂ equal that
of the elements of the coset WK∩H \ W.

Proof (i) Since π(G × UΔ) is connected and contains any open orbit, the
connectedness of X̂ is clear. Denote by A+ the positive chamber corresponding
to Σ+ and put A+ = exp A+. Let A+ = { exp X | X ∈ A with α(X) ≥ 0 for
all α ∈ Σ+ } be the closure of A+, we see that

A+ = { exp (−
∑

γ

(log tγ)Hγ) | tγ ∈ (0, 1] }.

Consider the compact subset K × ÂR = K × W.Â−
R

∼= K × [−1, 1]Δ × W of
G× ÂR. Then the subset π(K × ÂR) is also compact because it is the image of
a compact set under the continuous map. Moreover, it follows from the Cartan
decomposition G = KAH that G =

⋃
w∈W

KA+ωH(see [11]). Hence, Definition

3.1 and Remark 3.2 prove that the compact set π(K × ÂR) contains all open
G-orbits in X̂. In other words, this compact set is dense in X̂ and therefore it
must be coincided with X̂.

(ii) Put ã ∈ ÂR,ε for each ε ∈ { −1, 0, 1 }Δ and define a map Ψ : G/P (ε) −→
Xε by Ψ(gP (ε)) = π(g, ã), ∀g ∈ G. Then by a similar way as in [5, Proposition
2.4], we get that the map is well defined and becomes an homeomorphism which
is equivariant for the action of G.

We now define an analytic structure on X̂ based on the analytic structure
on ÂR.

Let AP be a maximal Abelian subspace of P containing A and let Σ(AP , G)
be the set of corresponding restricted roots. By [11, Lemma 1.4], we can
assume that the representatives ω of elements ω ∈ W satisfy Ad(ω)(AP) =
AP . Denote by G(σ) the reductive Lie algebra generated by {G(AP ; λ) | λ ∈
Σ(AP , G), λ|A = 0}, where G(AP ; λ) = {X ∈ G | [X, Y ] = λ(Y )X forall Y ∈
AP} and put

M(σ) = {X ∈ Mσ | [X, Y ] = λ(Y )X forall Y ∈ G(σ)}.
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Let G(σ) and M(σ)0 be the analytic subgroups of G corresponding to G(σ)
and M(σ), respectively, and denote

M(σ) = M(σ)0.Ad−1
G (Ad(K) ∩ exp(ad(

√−1AP))).

Then G(σ) ⊂ H, M(σ) ⊂ NK(Ap) and the representative ω normalizes G(σ)
and M(σ) for any ω ∈ W. Moreover, it follows from [11, Lemma 1.5] that
Mσ = M(σ)G(σ) and

M(σ)/(M(σ) ∩ ω−1Hω) � Mσ/(Mσ ∩ ω−1Hω) � M/(M ∩ ω−1Hω).

For every g ∈ G and w ∈ W , we put Ωw
g = π(gNσM(σ) × Uw(Δ)), where

Nσ is the analytic subgroup of G corresponding to N σ = θ(Nσ) and define a
map

Φw
g : Nσ × M(σ)/(M(σ) ∩ ω−1Hω) × R

Δ −→ Ωw
g

by Φw
g (n, m, t) = π(gnm, w.ãt), ∀(n, m, t) ∈ Nσ × M(σ)/(M(σ) ∩ ω−1Hω) ×

R
Δ. � By the same argument as that given in [5, Lemma 2.6], we get

Lemma 3.4. For every g ∈ G and w ∈ W, the map Φw
g is a homeomorphism

of Nσ×M(σ)/(M(σ)∩ω−1Hω)×R
Δ onto an open subset Ωw

g = π(gNσM(σ)×
Uw(Δ)) of X̂.

For brevity, we denote Ωw = Nσ ×M(σ)/(M(σ)∩ω−1Hω)×R
Δ. Then we

have

Lemma 3.5. Let g, g′ ∈ G and w, w′ ∈ W. Then the map

(Φw′
g′ )−1 ◦ (Φw

g ) : (Φw
g )−1(Ωw

g ∩ Ωw′
g′ ) −→ (Φw′

g′ )−1(Ωw
g ∩ Ωw′

g′ )

define an analytic diffeomorphism between the open subsets of the set Ωw.

Proof By definition, Φw
g is bijective and continuous. Then the map (Φw′

g′ )−1 ◦
(Φw

g ) is bijective and its inverse is of the same form. So we need only to show
that the map (Φw′

g′ )−1 ◦ (Φw
g ) is analytic. Since (Φw′

g′ )−1 ◦ (Φw
g ) = (Φw′

e )−1 ◦
(Φw

g′−1g
), we can assume that g′ = e.

Fix an arbitrary element u = (no, mo, to) of the domain of (Φw′
e )−1 ◦ (Φw

g )
and put x = (gnomo, wãto) ∈ X̂ and u′ = (n′

o, m
′
o, t

′
o) = ((Φw′

e )−1 ◦ Φw
g )(u) in

Ωw′
, we will show that the map is analytic in a neighborhood of u.
We first consider the case where w′ = w and g ∈ NσM(σ)Ax. Here Ax is

the analytic subgroup of G corresponding to Ax =
∑

γ∈Fx

RHγ . Suppose that

g = n1m1a1, where n1 ∈ N σ, m1 ∈ M(σ) and a1 ∈ Ax. Then we have

(Φw
e )−1 ◦ (Φw

g )(n, m, t) = (n1m1a1n(m1a1)−1, m1m, a1t),
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where a1t = (exp < −a1, log a1 > t1, ..., exp < −al, log a1 > tl). It follows
that the map is analytic.

Next we assume that w′ = w and u′ = u = (e, 1, ε) with an ε ∈ {−1, 0, 1}Δ.
Then we have g ∈ P (x) and [11, Lemma 1.9 (i)] there exist neighborhoods V
of the origin in P(x) and U0 of u in Ωw such that for any Y ∈ V and s ∈ [0, 1],
the map (Φw

e )−1 ◦ exp(sY ) ◦ Φw
e defines an analytic diffeomorphism of U0 onto

a neighborhood of u. Hence we have the claim if g ∈ exp V. Moreover, any
g ∈ P (x) can be written in the form g = g0g1...gk with g0 ∈ M(σ) ∩ ω−1Hω
and gi ∈ exp V (i = 1, ..., k), where k is a suitable positive integer. Then we
have the relation

(Φw
e )−1 ◦ Φw

g = ((Φw
e )−1 ◦ Φw

g0
) ◦ ((Φw

e )−1 ◦ Φw
g1

) ◦ ... ◦ ((Φw
e )−1 ◦ Φw

gk
)

and (Φw
e )−1 ◦Φw

gi
map the point u to the same point for i = 0, 1, ..., k. It follows

that (Φw
e )−1 ◦ Φw

gi
are analytic in some neighborhoods of u in Ωw and we have

the claim.
We consider the case where w′ �= w, g = e and u = (e, 1, ε). Then it follows

that u′ = (e, 1, ε) when g′ = v′m′m−1v−1, with v, v′ ∈ Wx. By a similar way
as in [11, Lemma 1.9 (ii)], we can prove that the map Φw′

g′ ◦ (Φw
e ) is analytic in

the set
Ωw(ε) = Nσ × M(σ)/(M(σ) ∩ ω−1Hω) × R

Δ
ε ,

where R
Δ
ε = {t ∈ R

Δ | sgn tγ = εγ if εγ �= 0}.
Now we consider the general case. Put g1 = (no mo a(to))−1, g2 =

g−1
3 g−1

4 gg−1
1 , where g3 = v′m′m−1v−1, g4 = n′

o mo a(t′o) and consider the
maps

Φ1 = (Φw
e )−1◦Φw

g1
, Φ2 = (Φw

e )−1◦Φw
g2

, Φ3 = (Φw′
g3

)−1◦(Φw
e ), Φ4 = (Φw′

e )−1◦Φw′
g4

.

Then we have
(Φw′

e )−1 ◦ Φw
g = Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1.

Since Φ1(u) = (e, 1, sgn x) and g2 ∈ P (x), it follows from what we have
proved that the maps Φ1, Φ2, Φ3 and Φ4 are analytic in a neighborhood of
u = (no, mo, to). This implies that the map (Φw′

e )−1 ◦Φw
g is analytic in a neigh-

borhood of u and we have the Lemma. � Lemma 3.4 and Lemma 3.5

assures that we can define an analytic structure on X̂ through the maps Φw
g

so that they define analytic diffeomorphisms onto open subsets Ωw
g of X̂ and

the action of G on X̂ is analytic. On the other hand X̂ is Hausdorff because
Φw

g is homeomorphic and Nσ × M(σ)/(M(σ) ∩ ω−1Hω) × R
Δ is Hausdorff.

Combining this with Proposition 3.3 we get

Theorem 3.6. (i) X̂ is a compact connected real analytic manifold and⋃
w∈W,g∈G

Ωw
g is an open covering of X̂ such that the maps Φw

g are real ana-

lytic diffeomorphisms.
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(ii) The action of G on X̂ is analytic and the orbit Gπ(x) for a point x in
X̂ is isomorphic to G/P (x).

(iii) There are just 2|Δ| open orbits that are isomorphic to G/H and the
number of compact orbits in X̂ equal that of the elements of the coset WK∩H\W.

Remark 3.7. (i) By a similar way, we can construct the compactification of
the corresponding Riemannian symmetric spaces X+ = G+/K ∩ H.

(ii) For the special case H = K, i.e., for the case of Riemannian symmet-
ric spaces of non-compact type, we obtain the corresponding compactification
indicated in [5].

Acknowledgment: The authors would like to thanks Professor van den
Ban, Professor Do Ngoc Diep and Professor Toshio Oshima for many helpful
discussions.
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