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Abstract

Generalizing the concept of an essential variable in a term with respect
to an algebra or a variety, we define essential operation symbols in a
term with respect to an algebra or with respect to a variety of algebras.
Using the concept of a unitary Menger algebra of rank n we define so-
called operator terms and prove that essential operation symbols in terms
with respect to an algebra correspond to essential variables in operator
terms with respect to the Menger algebra of all n-ary term operations
of this algebra. After proving some elementary propositions, we extend
our definition to essential operation symbols in hypersubstitutions and
determine some monoids consisting of hypersubstitutions which contain
the same essential operation symbols.

Using the isomorphism between the monoid of all endomorphisms of
the unitary Menger algebra of all n-ary terms of type τ and the monoid of
all hypersubstitutions, we obtain an equivalence between essential vari-
ables in operator terms with respect to the Menger algebra n − cloneV
and essential operation symbols in terms with respect to the variety V .
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1 Introduction

The study of essential and strongly essential variables in functions defined on
finite sets is a part of k-valued Logic (see e.g. [1], [2], [3], [8]) and plays
an important role in Computer Science. Let A be an arbitrary non-empty
set. The unary function f : A → A depends essentially on its input x if it
takes on at least two values, i.e. if f is not constant. The n-ary function
f : An → A depends essentially on its i-th input xi if there are elements
a1, . . . , ai−1, ai+1, . . . , an ∈ A such that the unary function defined by

xi �→ f(a1, . . . , ai−1, xi, ai+1, . . . , an)

is not constant on A. In [11] the concept of an essential variable in a function
was extended to terms. This allows to use concepts and results from Universal
Algebra. At first we recall some basic facts on terms and term operations.

Let τ = (ni)i∈I be an arbitrary type and let Wτ (Xn) be the set of all n−ary
terms of type τ built up by the ni - ary operation symbols fi, i ∈ I, and by
variables from an alphabet Xn = {x1, . . . , xn}. Let Wτ (X) :=

⋃∞
n=1 Wτ(Xn)

be the set of all terms of type τ where X = {x1, . . . , xn, . . .} is an arbitrary
countably infinite alphabet. These two sets are the universes of two absolutely
free algebras,

Fτ(X) := (Wτ (X); (fi)i∈I) and Fτ(Xn) := (Wτ (Xn); (fi)i∈I),
respectively. Here the operations fi are defined by setting

fi(t1, . . . , tni) := fi(t1, . . . , tni).

Another operation on sets of terms is the composition or superposition of terms
which plays an important role in Universal Algebra, Clone Theory and Theo-
retical Computer Science. For each pair of natural numbers m and n greater
than zero, the superposition operation Sn

m maps one n-ary term and n m-ary
terms to an m-ary term, so that

Sn
m : Wτ (Xn) × Wτ (Xm)n → Wτ (Xm).

The operation Sn
m is defined inductively, by setting

Sn
m(xj , t1, . . . , tn) := tj for any variable xj ∈ Xn, and

Sn
m(fr(s1, . . . , snr), t1, . . . , tn) := fr(Sn

m(s1, t1, . . . , tn), . . . , Sn
m(snr , t1, . . . , tn)).

Using these operations, we form the heterogeneous or multi-based algebra

cloneτ := ( (Wτ (Xn))n>0; (Sn
m)n,m>0, (xi)0<i≤n ).

It is well-known and easy to check that this algebra satisfies the clone axioms
(C1) Sp

m(Z̃, Sn
m(Ỹ1, X̃1, . . . , X̃n), . . . , Sn

m(Ỹp, X̃1, . . . , X̃n))
≈ Sn

m(Sp
n(Z̃, Ỹ1, . . . , Ỹp), X̃1, . . . , X̃n)), for m, n, p = 1, 2, 3, . . .,

(C2) Sn
m(λj , X̃1, . . . , X̃n) ≈ X̃j , for 1 ≤ j ≤ n and m, n = 1, 2, 3, . . .,
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(C3) Sm
m (X̃j , λ1, . . . , λm) ≈ λj , for 1 ≤ j ≤ m and m = 1, 2, 3, . . .,

where Sp
m, Sn

m and Sp
n are operation symbols corresponding to the operations

Sp
m, Sn

m and Sp
n of clone τ , where λ1, . . . , λm are nullary operation symbols

and where Z̃, Ỹ1, . . . , Ỹp, X̃1, . . . , X̃m are variables. The algebra cloneτ is also
called clone of terms of type τ .

Since the set Wτ (Xn) of all n-ary terms of type τ is closed under the super-
position operation Sn := Sn

n , there is a homogeneous analogue of this structure.
The algebra (Wτ (Xn); Sn, x1, . . . , xn) is an algebra of type (n + 1, 0, . . . , 0),
which still satisfies the clone axioms above for the case that p = m = n. Such
an algebra is called a unitary Menger algebra of rank n (see [12] or [6]). Another
example of a unitary Menger algebra of rank n can be obtained as follows:
We define a superposition operation Sn,A on the set O(n)(A) of all n−ary oper-
ations fA : An → A defined on A. The operation Sn,A : O(n)(A)n+1 → O(n)(A)
is defined by

Sn,A(fA
0 , fA

1 , . . . , fA
n )(a1, . . . , an) := fA

0 (fA
1 (a1, . . . , an), . . . , fA

n (a1, . . . , an))

for all a1, . . . , an ∈ A. Then it is not difficult to check that (C1), (C2), (C3)
are satisfied and thus O(n)(A) := (O(n)(A); Sn,A, en,A

1 , . . . , en,A
n ) is a unitary

Menger algebra of rank n.

To every term t ∈ Wτ (Xn) and every algebra A of type τ there belongs an
induced n − ary term operation which is inductively defined by
xA

i := en,A
i where en,A

i : An → A and en,A
i (a1, . . . , an) = ai is the n − ary

projection on the i-th component, for 1 ≤ i ≤ n.
For compound terms fi(s1 , . . . , sni) we define
(fi(s1, . . . , sni))A := Sni,A(fA

i , sA1 , . . . , sAni
).

Let Wτ (Xn)A be the set of all n-ary term operations of A. This set is closed
under the superposition operation Sn,A and contains by definition all n-ary
projections. Therefore n−cloneA := (Wτ (Xn)A; Sn,A, en,A

1 , . . . , en,A
n ) is a sub-

algebra of O(n)(A) := (O(n)(A); Sn,A, en,A
1 , . . . , en,A

n ).

Let s, t be n-ary terms of type τ . The algebra A satisfies s ≈ t, written as
A |= s ≈ t, if sA = tA. If V is a variety of algebras of type τ , then V |= s ≈ t
means A |= s ≈ t for all algebras A ∈ V . Let IdV be the set of all identities
satisfied in the variety V and let IdnV := IdV ∩ Wτ (Xn)2 be the set of all
n-ary identities of V . It turns out that IdnV is a congruence on the Menger
algebra n− cloneτ (see e.g. [7]). Therefore the quotient algebra n− cloneV :=
n − cloneτ/IdnV is also a unitary Menger algebra of rank n. Moreover, for a
single algebra A of type τ we have n − cloneA := n − cloneτ/IdnA.

Essential variables in terms with respect to an algebra of the same type are
defined as follows.
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Definition 1.1 ([11]) Let t ∈ Wτ (Xm) be an m-ary term and let A be a non-
trivial algebra of type τ . Then the variable xi, 1 ≤ i ≤ n, is called essential
in t with respect to the algebra A if the term operation tA : Am → A induced
by t on the algebra A depends essentially on its i-th input xi. By Ess(t,A)
we denote the set of all variables which are essential in t with respect to the
algebra A.

Remark 1.2 1. The variable xi is essential in the term xi with respect to
the non-trivial algebra A = (A; (fA

i )i∈I ), iff |A| > 1.

2. Let var(t) be the set of all variables occurring in t. If the variable xi does
not occur in the term t then xi is not essential in t with respect to any
algebra since Ess(t,A) ⊆ var(t).

In [11] the following characterization for essential variables in a term was
given.

Lemma 1.3 ([11]) A variable xi is essential in the m-ary term t with respect
to a non-trivial algebra A = (A; (fA

i )i∈I ), iff

A 	|= t ≈ h̄(t),

where h : Xm → Wτ (Xm+1) is a mapping defined by h(xi) = xm+1 and
h(xj) = xj for all j 	= i, j ∈ {1, . . . , m} and where h̄ is the extension of h
to a mapping defined on terms, i.e.

h̄ : Wτ (Xm) → Wτ (Xm+1).

Another characterization is given by:

Lemma 1.4 A variable xi for 1 ≤ i ≤ m is essential in the m-ary term t with
respect to a non-trivial algebra A = (A; (fA

i )i∈I ), iff there exists a mapping
β : Xm → Wτ (X) with β(xj) = xj for all j 	= i and β(xi) = t′ with t′ ∈ Wτ (X)
and A 	|= xi ≈ t′ and such that A 	|= β̄(t) ≈ t.

Proof We prove the equivalence to the condition in Lemma 1.3. If xi is
essential in t with respect to A, then there is a mapping h : Xm → Wτ(Xm+1)
which is defined by h(xi) = xm+1 and h(xj) = xj for all j 	= i, j ∈ {1, . . . , m}
such that

h̄ : Wτ (Xm) → Wτ (Xm+1)

satisfies A 	|= h̄(t) ≈ t. If we choose β = h and t′ = xm+1 , then A 	|= xi ≈ t′

since A is not trivial and A 	|= β̄(t) ≈ t.
If conversely A |= t ≈ h̄(t) for the mapping h from Lemma 1.3 was satisfied,
then by substitution of t′ for xm+1 we obtain A |= β̄(t) ≈ t, a contradiction.
The contradiction shows that xi is essential in t with respect to A. �
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We notice that because of the freeness of the algebras Fτ(Xm) and Fτ (X)
the extensions h̄ and β̄ exist and are uniquely determined. As a consequence,
the variable xi is essential in the m-ary term t with respect to an algebra
A = (A; (fA

i )i∈I), iff xi is essential in t with respect to any V (A)- free algebra
with at least n + 1 free generators. One more corollary is:

Corollary 1.5 ([11]) Let s, t ∈ Wτ (Xm), n ≥ 1, m ≥ 1, and assume that A is
an algebra of type τ . If s ≈ t is an identity in A then Ess(s,A) = Ess(t,A).

Considering Lemma 1.3 it is quite natural to define variables which are
essential in a term of a given type with respect to a variety of the same type.

Definition 1.6 Let V be a variety of type τ , let t ∈ Wτ (Xm). Then a variable
xi ∈ Xm is called essential in t with respect to the variety V if it is essential
in t with respect to the free algebra FV (X) with X = {x1, . . . , xn, . . .} as set
of free generators. The set of all variables in t which are essential with respect
to the variety V is denoted by Ess(t, V ).

Clearly, Corollary 1.5 is also satisfied for varieties instead of algebras. The
following proposition is obvious.

Proposition 1.7 ([11]) If xi ∈ Xm is essential in the m-ary term t of type τ
with respect to the variety V of type τ and if V is a subvariety of W then xi is
essential in t with respect to W .

2 Essential Variables in Operator Terms with

respect to Menger Algebras

Terms over unitary Menger algebras of rank n are also called operator terms
and are defined in the usual way, i.e. as terms of the type τ ′ = (n + 1, 0, . . . , 0)
with an (n + 1) − ary operation symbol S̃n and n nullary operation symbols
λ1, . . . , λn. We also need a new alphabet of variables, X := {X̃1 . . . , X̃n, . . .},
or Xn := {X̃1 . . . , X̃n} if finitely many variables are enough.

(i) X̃i is a term of type τ ′ for all variables X̃i.

(ii) λ1, . . . , λn are terms of type τ ′.

(iii) If T, T1, . . . , Tn are terms and if S̃n is (n+1)−ary, then S̃n(T, T1, . . . , Tn)
is a term of type τ ′.

By Wτ′ (Xn) we denote the set of all n − ary terms of type τ ′ and let Wτ′ (X )
be the set of all terms of type τ ′.
The set Wτ′ (X ) is the universe of the absolutely free algebra of type τ ′ =
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(n + 1, 0, . . . , 0). If we factorize this algebra by the fully invariant congruence
(equational theory) 〈{(C1), (C2), (C3)}〉 generated by the equations (C1), (C2),
(C3), we obtain a free unitary Menger algebra of rank n, freely generated by
the alphabet X . With a free generating system XI := {X̃i | i ∈ I} we get
a free unitary Menger algebra of rank n which is isomorphic to the algebra
n − cloneτ . The elements of this free algebra are blocks with respect to the
equational theory generated by (C1), (C2), (C3), but instead of |T | we will only
use the representative T . Further we consider a type τn where every operation
symbol fi has the same arity n. Then we have a bijection η̄ between the set
of all terms over the variety of unitary Menger algebras of rank n and the set
Wτn(Xn) which can be defined inductively as follows: If η : ({X̃i | i ∈ I} ∪
{λ1, . . . , λn})/〈{(C1), (C2), (C3)}〉 → {fi(x1, . . . , xn) | i ∈ I} ∪ {x1, . . . , xn} is
a bijection with η(X̃i) = fi(x1, . . . , xn) and η(λi) = xi, then η can be extended
to a bijection between Wτ′ (XI)/〈{(C1), (C2), (C3)}〉 and Wτn(Xn). Indeed, if
we define η̄ : Wτ′ (XI)/〈{(C1), (C2), (C3)}〉→ Wτn(Xn) by

η̄(X̃i) := fi(x1, . . . , xn) for all i ∈ I

η̄(λi) := xi for all i = 1, 2, . . . , n

η̄(S̃n(T0, T1, . . . , Tn)) := Sn(η̄(T0), η̄(T1), . . . , η̄(Tn)),
then we show that η̄ is bijective. Given t ∈ Wτn(Xn). To prove that there
exists a term T ∈ Wτ′ (XI)/〈{(C1), (C2), (C3)}〉 such that η̄(T ) = t, we pro-
ceed by induction on the complexity of the term t. If t = xi for some i ∈
{1, 2, . . . , n}, then there exists a λi ∈ Wτ′ (XI)/〈{(C1), (C2), (C3)}〉 such that
η̄(λi) := xi. If t = fi(t1, . . . , tn) and assume that there exist T1, T2, . . . , Tn ∈
Wτ′ (XI)/〈{(C1), (C2), (C3)}〉 such that η̄(T1) = t1, . . . , η̄(Tn) = tn, then we
have η̄(S̃n(X̃i, T1, . . . , Tn)) ∈ Wτ′ (XI)/〈{(C1), (C2), (C3)}〉 such that

η̄(S̃n(X̃i, T1, . . . , Tn)) = Sn(η̄(X̃i), η̄(T1), . . . , η̄(Tn)) = fi(t1, . . . , tn).

This shows that η̄ is surjective.

Let T, T ′ ∈ Wτ′ (XI)/〈{(C1), (C2), (C3)}〉 with η̄(T ) = η̄(T ′). We want to
prove that T = T ′ and proceed by induction on the complexity of the term T .
If T = X̃i, then η̄(X̃i) = fi(x1, . . . , xn) = η̄(T ′) and so we get T ′ = X̃i (using
the freeness of the algebra Fτn(Xn)).
If T = λi, then η̄(λi) = xi = η̄(T ′) and so we get T ′ = λi.

Assume that T = S̃n(T0, T1, . . . , Tn), T ′ = S̃n(T ′
0, T

′
1, . . . , T

′
n) and η̄(T ) =

η̄(T ′). Further we assume that η̄(Tj) = η̄(T ′
j) implies Tj = T ′

j for all j =
0, 1, . . .n. By definition we have
Sn(η̄(T0), η̄(T1), . . . , η̄(Tn)) = Sn(η̄(T ′

0), η̄(T ′
1), . . . , η̄(T ′

n)).
Since the absolutely free algebra Fτn(Xn) satisfies no identities, there follows
η̄(Tj) = η̄(T ′

j) for all j = 0, 1, . . .n and then Tj = T ′
j for all j = 0, 1, . . .n by

our hypothesis. Therefore T = T ′, this means η̄ is injective. Altogether, η̄ is
bijective.
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Now we apply the definition of essential variables in terms to essential variables
in operator terms.

Let A be a non-trivial algebra of type τ and let T ∈ Wτ′ (X ). Then by definition,
X̃i, 1 ≤ i ≤ m, is essential in T with respect to n − cloneA iff

n − cloneA 	|= β̄(T ) = T,

where β : Xm → Wτ′ (Xm+1) is a mapping defined by

β(X̃j) = X̃j for all j 	= i and β(X̃i) = X̃m+1

and where β̄ is the extension of β to a mapping defined on terms, i.e.
β̄ : Wτ′ (Xm) → Wτ′ (Xm+1).

3 Essential Operation Symbols in Terms

To extend the definiton of essential variables in terms to essential operation
symbols in terms, we need the concept of a hypersubstitution (see e.g. [4], [7],
[5]).

Hypersubstitutions of type τ are mappings which assign to each ni − ary
operation symbol of type τ an ni − ary term of the same type. If σ : {fi | i ∈
I} → Wτ (X) is a hypersubstitution of type τ then its extension σ̂ : Wτ (Xn) →
Wτ (Xn) is defined inductively by the following steps:

(i) If t = xi for some 1 ≤ i ≤ n, then σ̂[t] = xi.

(ii) If t = fi(t1, . . . , tni) for the ni−ary operation symbol fi and some ni−ary
terms tj, then σ̂[t] = Sni

n (σ(fi), σ̂[t1], . . . , σ̂[tni]).

Let Hyp(τ ) be the set of all hypersubstitutions of type τ . Together with
the identity hypersubstitution σid mapping fj to fj(x1, . . . , xnj) for all j ∈ I
we get a monoid (Hyp(τ ); ◦h, σid), where ◦h is defined by σ1 ◦h σ2 := σ̂1 ◦ σ2.

An identity s ≈ t of terms of type τ is called a hyperidentity of a variety V
if for every substitution of ni − ary terms of V for the operation symbols fi in
s ≈ t the resulting identity holds in V (i ∈ I), i.e. if V |= σ̂[s] ≈ σ̂[t] for every
σ ∈ Hpy(τ ). If s ≈ t is a hyperidentity in V , we will also write V |=

hyp
s ≈ t.

Definition 3.1 Let t ∈ Wτ (Xn) be an n − ary term of type τ , let A be an
algebra of type τ and let ops(t) be the set of all operation symbols occurring in
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the term t. An operation symbol fi of arity ni is essential in t with respect to
A if there is a hypersubstitution σ of type τ and an ni−ary term t′ ∈ Wτ (Xni )
such that σ(fj) = fj(x1, . . . , xnj) for every j 	= i, j ∈ I and σ(fi) = t′ with
fi(x1, . . . , xni) ≈ t′ is not an identity in A and A 	|= σ̂[t] ≈ t. In the opposite
case, fi is called fictitious in t with respect to A. Let Hypess(t,A) be the set
of all essential operation symbols in t with respect to A.

This definition corresponds to Lemma 1.4. We have the following simple
consequences.

Corollary 3.2 Let s, t ∈ Wτ (Xn) and let A be an algebra of type τ . Then

A |=
hyp

s ≈ t =⇒ Hypess(s,A) = Hypess(t,A).

Proof Assume that fi ∈ Hypess(t,A). Then there exists a hypersubstitution
σ ∈ Hyp(τ ) and an ni − ary term t′ such that σ(fj) = fj(x1, . . . , xnj) for
every j 	= i, j ∈ I and σ(fi) = t′ with A 	|= fi(x1, . . . , xni) ≈ t′ and A 	|= σ̂[t] ≈
t.
If A |= σ̂[s] ≈ s then together with A |= σ̂[s] ≈ σ̂[t] we would haveA |= σ̂[t] ≈ t,
a contradiction. Therefore A 	|= σ̂[s] ≈ s and fi ∈ Hypess(s,A). This shows

Hypess(t,A) ⊆ Hypess(s,A)

and similarly,
Hypess(s,A) ⊆ Hypess(t,A).

�

For the set of all operation symbols occurring in the term t, fi /∈ ops(t) implies
fi /∈ Hypess(t,A). Further, for variables xi we have Hypess(xi,A) = ∅.

One more consequence of the definition is:

Proposition 3.3 Let A be an algebra of type τ and assume that the type con-
tains one at least binary operation symbol fi. Further we assume that A does
not satisfy fi(x1, . . . , xni) ≈ xi for 1 ≤ i ≤ ni. Then A is trivial iff for every
t ∈ Wτ (X) we have Hypess(t,A) = ∅.
Proof The trivial algebra satisfies σ̂[t] ≈ t for every hypersubstitution σ and
for every term t. Therefore, there is no essential operation symbol in t with
respect to the trivial algebra A.

Conversely, assume that for every term t ∈ Wτ (X) we have Hypess(t,A) =
∅. That means, for every hypersubstitution σ ∈ Hyp(τ ) and for every i ∈ I
with σ(fi) = t′ where fi(x1, . . . , xni) ≈ t′ is not an identity in A and σ(fj) =
fj(x1, . . . , xnj) if j 	= i we have A |= σ̂[t] ≈ t. Consider the hypersubstitutions
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σ1 with σ1(fi) = x1 and σ1(fj) = fj(x1, . . . , xni) if j 	= i and σ2(fi) = x2

and σ2(fj) = fj(x1, . . . , xni) if j 	= i. Since fi is at least binary, we get
x1 	= x2. Let t be an arbitrary term containing at least one operation symbol
such that the first variable occurring in t is x1 and the last one is x2. Then
σ̂1[t] = x1 ≈ t ∈ IdA and σ̂2[t] = x2 ≈ t ∈ IdA and therefore x1 ≈ x2 ∈ IdA
and A is trivial. �

As in the case of essential variables in terms with respect to algebras we
may extend our definition to varieties.

Definition 3.4 Let V be a variety of type τ and assume that t ∈ Wτ (Xn).
Then fi is called essential in t with respect to the variety V if fi is essential
in t with respect to the free algebra FV (X). Let Hypess(t, V ) be the set of all
operation symbols which are essential in t with respect to V .

An easy consequence of this definition is

Corollary 3.5 If V is a subvariety of W, then Hypess(t, V ) ⊆ Hypess(t, W ).

Proof If V ⊆ W , we get IdW ⊆ IdV for the sets of all identities satisfied
in W and in V respectively. Assume that fi /∈ Hypess(t, W ). Then for every
σ ∈ Hyp(τ ) such that σ(fi) = t′ ≈ fi(x1, . . . , xni) is not an identity in A where
t′ is an ni -ary term of type τ and σ(fj) = fj(x1, . . . , xnj) if j 	= i, we have
W |= σ̂[t] ≈ t. But then V |= σ̂[t] ≈ t and fi /∈ Hypess(t, V ). �

The definition of an essential operation symbol in a term can be generalized
to that of an essential operation symbol in a hypersubstitution of type τ .

Definition 3.6 Let V be a variety of type τ and let σ ∈ Hyp(τ ). Then fi is
essential in σ with respect to V iff fi is essential in the term σ(fi) with respect
to V , for all i ∈ I.

For the type τ = (n), n ≥ 2, and the n − ary operation symbol f , the
operation symbol f is essential in σ with respect to V iff f is essential in σ(f)
with respect to V .

Now we consider the set of all hypersubstitutions σ for which f is essential in
σ with respect to V , i.e.

M(V ) := {σ | f ∈ Hypess(σ(f), V )}.

Since f is not essential in a variable xi, the hypersubstitution which maps f to
xi, for some 1 ≤ i ≤ n, does not belong to M(V ).
Let Pre(n) := Hyp(n)\{σxi | 1 ≤ i ≤ n}. The set Pre(n) forms a submonoid
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of Hyp(n). The set M(V ) is included in Pre(n). We ask whether M(V ) is a
submonoid of Pre(n).

To answer to this question we need the following well-known auxiliary result
(for type τ = (2) see e.g [9] or [10]).

Lemma 3.7 Let Vi = Mod{f(x1, . . . , xn) ≈ xi}. Then Vi is a minimal variety.

Proof Let V be a variety such that V ⊆ Vi and V 	= Vi. We have to prove
that V is trivial. We will use the fact that s ≈ t ∈ IdVi iff there exists a variable
xj which occurs in s and in t such that s ≈ xj ∈ IdVi and t ≈ xj ∈ IdVi. Since
V ⊆ Vi and V 	= Vi, there are terms s, t ∈ W(n)(Xn) such that s ≈ t ∈ IdV
and s ≈ t 	∈ IdVi. Then there exist variables xj, xk, with j 	= k such that
s ≈ xj ∈ IdVi and t ≈ xk ∈ IdVi. Therefore s ≈ xj ∈ IdV and t ≈ xk ∈ IdV
and then xj ≈ xk ∈ IdV since s ≈ t ∈ IdV . That is, V is trivial. �

Proposition 3.8 Let τ = (n), n ≥ 2, and let V be a non-trivial variety of
type (n) with V 	= Vi = Mod{f(x1, . . . , xn) ≈ xi}, 1 ≤ i ≤ n. Then
M(V ) = {σ | f ∈ Hypess(σ(f), V )} is a submonoid of Pre(n).

Proof Since V 	= Vi and since every variety W with W ⊂ Vi is trivial, the hy-
persubstitution σ ∈ Hyp(n) with σ(f) = xi satisfies V 	|= σ(f) ≈ f(x1, . . . , xn)
this means V 	|= σ̂[f(x1, . . . , xn)] ≈ f(x1 , . . . , xn) and then V 	|= σ̂[σid(f)] ≈
σid(f). Therefore f ∈ Hypess(σid(f), V ) and we get σid ∈ M(V ).

Let σ1, σ2 ∈ M(V ). Then f ∈ Hypess(σ1(f), V ) and f ∈ Hypess(σ2(f), V )
with σ1(f) 	= xi, σ2(f) 	= xi for all i = 1, 2, . . . , n and there are hypersubsti-
tutions σ, σ′ ∈ Hyp(n) with σ(f) = t, σ′(f) = t′ where t, t′ ∈ W(n)(Xn) such
that V 	|= t ≈ f(x1, . . . , xn), V 	|= t′ ≈ f(x1, . . . , xn), V 	|= σ̂[σ1(f)] ≈ σ1(f)
and V 	|= σ̂′[σ2(f)] ≈ σ2(f).
Let (σ1◦hσ2)(f) = σ̂1[σ2(f)] = w where w is an n−ary term with w 	= xi for all
i = 1, 2, . . . , n. Therefore, the hypersubstitution σ′′ ∈ Hyp(n) with σ′′(f) = xl

satisfies V 	|= σ(f) ≈ f(x1, . . . , xn) and V 	|= σ̂′′[w] ≈ w since V 	= Vi and w is
not a variable, but σ̂[w] is a variable. This means, f is essential in (σ1 ◦h σ2)(f)
with respect to V and so we have σ1 ◦h σ2 ∈ M(V ). �
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4 Essential Operation Symbols in Terms and

Essential Variables in Operator terms

Let η be the bijection between the set ({X̃i | i ∈ I} ∪ {λ1, . . . , λn})/C with
C := 〈{(C1), (C2), (C3)}〉 and the set {fi(x1, . . . , xn) | i ∈ I} ∪ {x1, . . . , xn},
let η̄ be the extension of η introduced in section 2 and let α be the bijection
which maps each fi to fi(x1, . . . , xn), (i ∈ I). Since we are interested in essen-
tial variables in terms T ∈ Wτ′ (X ) with respect to n−cloneA for an algebra A
of type τn, we consider a mapping β and its extension β̄ defined as in Lemma
1.4. Further we assume in addition that our type τn is finite that means, we
have only m operation symbols. More precisely,
β : (Xm∪{λ1, . . . , λn})/C → Wτ′ (Xm)/C is a mapping defined by β(X̃j) = X̃j

for all j 	= i and β(X̃i) = T ′ with T ′ ∈ Wτ′ (Xm)/C and n− cloneA 	|= X̃i ≈ T ′

and β(λi) = λi for all i = 1 . . . , n and where β̄ is the extension of β to a map-
ping defined on terms, i.e. β̄ : Wτ′ (Xm)/C → Wτ′ (Xm)/C.

Then we define a hypersubstitution σ by σ = η̄ ◦ β ◦ η−1 ◦ α and have

σ(fi) = (η̄ ◦ β ◦ η−1 ◦ α)(fi) = η̄ ◦ β ◦ η−1(α(fi))
= η̄ ◦ β ◦ η−1(fi(x1, . . . , xn))
= η̄ ◦ β(η−1(fi(x1, . . . , xn)))
= η̄(β(X̃i)) = η̄(T ′)

and for all j 	= i, σ(fj ) = (η̄ ◦ β ◦ η−1 ◦ α)(fj) = η̄ ◦ β ◦ η−1(α(fj))
= η̄ ◦ β ◦ η−1(fj(x1, . . . , xn))
= η̄ ◦ β(η−1(fj(x1, . . . , xn)))
= η̄(β(X̃j)) = η̄(X̃j)
= fj(x1, . . . , xn).

To prove the main theorem, we need two auxiliary results.

Lemma 4.1 If σ = η̄ ◦ β ◦ η−1 ◦ α, then σ̂ = η̄ ◦ β̄ ◦ η−1.

Proof Let t ∈ Wτn(Xn). It is easy to check by induction on the complexity
of the term t that σ̂[t] = (η̄ ◦ β̄ ◦ η−1)(t).

Indeed, if t = xi, then σ̂[xi] = xi and (η̄ ◦ β̄ ◦ η−1)(xi) = (η̄ ◦ β̄)(η−1(xi)) =
η̄(β̄(λi)) = η̄(λi) = xi and so we get σ̂[xi] = (η̄ ◦ β̄ ◦ η−1)(xi).

If t = fi(t1, . . . , tn) and assume that σ̂[t1] = (η̄ ◦ β̄ ◦ η−1)(t1), . . . , σ̂[tn] =
(η̄ ◦ β̄ ◦ η−1)(tn), then

σ̂[t] = σ̂[fi(t1, . . . , tn)] = Sn(σ(fi), σ̂[t1], . . . , σ̂[tn])
= Sn((η̄ ◦ β ◦ η−1 ◦ α)(fi), (η̄ ◦ β̄ ◦ η−1)(t1), . . . , (η̄ ◦ β̄ ◦ η−1)(tn))



40 Essential Operation Symbols in Terms

= Sn(η̄((β ◦ η−1 ◦ α)(fi)), η̄((β̄ ◦ η−1)(t1)), . . . , η̄((β̄ ◦ η−1)(tn)))
= η̄(Sn((β ◦ η−1 ◦α)(fi), (β̄ ◦ η−1)(t1), . . . , (β̄ ◦ η−1)(tn))) by section 2
= η̄(Sn((β ◦ η−1)(α(fi)), β̄(η−1(t1)), . . . , β̄(η−1(tn))))
= η̄(Sn((β ◦ η−1)(fi(x1, . . . , xn)), β̄(η−1(t1)), . . . , β̄(η−1(tn))))
= η̄(Sn(β(η−1(fi(x1, . . . , xn))), β̄(η−1(t1)), . . . , β̄(η−1(tn))))
= η̄(Sn(β(X̃i), β̄(η−1(t1)), . . . , β̄(η−1(tn))))
= η̄(Sn(β̄(X̃i), β̄(η−1(t1)), . . . , β̄(η−1(tn)))
= (η̄ ◦ β̄)(Sn(η−1(fi(x1, . . . , xn)), η−1(t1), . . . , η−1(tn)))

because of the freeness of Fτ′(X )/C
= (η̄ ◦ β̄)(η−1(Sn(fi(x1, . . . , xn), t1, . . . , tn)))
= (η̄ ◦ β̄ ◦ η−1)(fi(t1, . . . , tn)) = (η̄ ◦ β̄ ◦ η−1)(t).

Therefore σ̂ = η̄ ◦ β̄ ◦ η−1. �

Lemma 4.2 Let A be be a non-trivial algebra of type τn, let T ∈ Wτ′ (Xm)/C
and let η̄(β(X̃i)) ≈ fi(x1, . . . , xn) /∈ IdA. Then

β̄(T )n−cloneA 	= Tn−cloneA ⇐⇒ η̄(β̄(T ))A 	= η̄(T )A.

Proof Let T ∈ Wτ′ (Xm)/C. We proceed by induction on the complexity on
the term T .

Assume that T = X̃i, for i 	= j, because of our assumption we have η̄(β(X̃i)) ≈
fi(x1, . . . , xn) /∈ IdA and using η we have β̄(X̃i)n−cloneA 	= (X̃i)n−cloneA.
By n − cloneA 	|= X̃i ≈ T ′ we have n − cloneA 	|= X̃i ≈ β̄(X̃i). This means,
η̄(β̄(X̃i))A 	= η̄(X̃i)A.

Because of the definition of β̄(X̃i) we may assume that β̄(X̃i) in not a variable.
Assume that T = S̃n(T0, T1, . . . , Tn) and let β̄(T ) = T ′ = S̃n(T ′

0, T
′
1, . . . , T

′
n)

and suppose that η̄(T ′
j)

A = η̄(Tj)A for all j = 1, 2, . . . , n iff (T ′
j)

n−cloneA

= (Tj)n−cloneA for all j = 1, 2, . . . , n. Then we have η̄(β̄(T ))A

= Sn,A(η̄(T ′
0)A, η̄(T ′

1)A, . . . , η̄(T ′
n)A)

= η̄(T )A

= Sn,A(η̄(T0)A, η̄(T1)A, . . . , η̄(Tn)A)
iff β̄(T )n−cloneA

= Sn,n−cloneA((T ′
0)n−cloneA, . . . , (T ′

n)n−cloneA)
= Sn,n−cloneA((T0)n−cloneA, . . . , (Tn)n−cloneA)
= Tn−cloneA

and the desired result follows. �

Now we want to prove that essential variables in operator terms with respect
to the n − ary clone of an algebra A and essential operation symbols in terms
with respect to the algebra A are equivalent.
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Theorem 4.3 Let A be a non-trivial algebra of type τn and let T ∈ Wτ′ (X )/C.
Then

X̃i ∈ Ess(T, n − cloneA) ⇐⇒ fi ∈ Hypess(η̄(T ),A).

Proof Let T ∈ Wτ′ (X )/C and assume that X̃i ∈ Ess(T, n − cloneA). Then
there is a natural number m such that T ∈ Wτ′ (Xm)/C and we have T 	= X̃j

and T 	= λi for all j = 1, 2, . . . , m and for all i = 1, 2, . . . , n. Then there
is a mapping β : Xm/C → Wτ′ (Xm)/C with β(X̃j ) = X̃j for all j 	= i and
β(X̃i) = T ′ with T ′ ∈ Wτ′ (Xm)/C such that n − cloneA 	|= X̃i ≈ T ′ and
n − cloneA 	|= β̄(T ) ≈ T .
We want to prove that fi ∈ Hypess(η̄(T ),A). Since X̃i ∈ var(T ), we have
fi ∈ ops(η̄(T )). Now we define a hypersubstitution σ of type τn with σ =
η̄ ◦ β ◦ η−1 ◦ α such that σ(fj) = fj(x1, . . . , xn) if j 	= i and σ(fi) = η̄(T ′). By
Lemma 4.2 we get A 	|= fi(x1, . . . , xn) ≈ η̄(T ′) and A 	|= η̄(β̄(T )) ≈ η̄(T ) and
then A 	|= σ̂[η̄(T )] ≈ η̄(T ). This means, fi ∈ Hypess(η̄(T ),A).

Conversely, assume that fi ∈ Hypess(η̄(T ),A). Then there exists a hypersub-
stitution σ of type τn with σ(fj) = fj(x1, . . . , xn) for every j 	= i, j ∈ I and
σ(fi) = t′ with t′ ∈ Wτ′ (Xn) such that fi(x1, . . . , xn) ≈ t′ is not an identity
in A and A 	|= σ̂[η̄(T )] ≈ η̄(T ). We show that X̃i ∈ Ess(T, n − cloneA). Since
η̄(T ) 	= xi for all i = 1, . . . , n and fi ∈ ops(η̄), we have X̃i ∈ var(T ). Now we
define a mapping β : Xm/C → Wτ′ (Xm)/C with β(X̃j ) = X̃j for all j 	= i

and β(X̃i) = η−1(t′). By Lemma 4.2 we have n − cloneA 	|= X̃i ≈ β̄(X̃i) and
n − cloneA 	|= β̄(T ) ≈ T. This means, X̃i ∈ Ess(T, n − cloneA). �

Remark 4.4 If V is a variety of a finite type τn, then we may consider n −
cloneV consisting of classes of terms of type τn with respect to IdV . Then we
have

X̃i ∈ Ess(T, n − cloneV ) ⇐⇒ fi ∈ Hypess(η̄(T ), V ).
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