THE P-ADIC FIELD CASE OF THE FUNCTIONAL EQUATION $P(f)=Q(g)$

Nguyen Trong Hoa
Daklak Pedagogical College, Buon Ma Thuot, Vietnam
email:ntronghoa@math.ac.vn

Abstract

In this paper, we study the existence of non constant meromorphic solutions f and g of the functional equation $P(f)=Q(g)$, where $P(z)$ and $Q(z)$ are two given nonlinear polynomials with coefficients in the non-Archimedean field \mathbb{K}.

1. Introduction

The Tenth problem of Hilbert is asked to establish an algorithm for finding all integer solutions of $F(x, y)=0$, where $F(x, y)$ is a polynomial with integer coefficients. It is natural to study the analogous of Hilbert's Tenth problem in the field of meromorphic functions. More specifically, we ask what forms of equation $F(x, y)=0$, where $F(x, y)$ is a polynomial with complex coefficients, may or may not have non constant meromorphic functions f and g that satisfy $F(f, g)=0$? Earlier in 1920s, as a simple application of his value distribution theory, Nevanlinna proved that a non constant meromorphic function (in the complex plane) is uniquely determined by the inverse image of five distinct values (including infinity), ignoring multiplicity. Gross [11] extended this study by considering pre-images of a set and posed the question: Is there a finite set A so that an entire (meromorphic) function is uniquely determined by the pre-image of the set A, counting multiplicities? Let f be a non-constant meromorphic

The author is partially supported by the National Basic Research Program of Vietnam
Key words: non-Archimedean field, Hilbert's Tenth problem, meromorphic function, hyperbolicity, genus.
2000 Mathematics Subject Classification:
function and S be a subset of distinct elements. Define

$$
E_{f}(S)=\bigcup_{a \in S}\{(z, m) \mid \quad f(z)=a \text { with multiplicity } m\}
$$

Two functions f and g of the same type are said to share S, counting multiplicity, if $E_{f}(S)=E_{g}(S)$. A subset S is called a unique range set (a $U R S$ in short) for entire (or meromorphic) functions if for any two non-constant entire (or meromorphic) functions f and g such that $E_{f}(S)=E_{g}(S)$, one has $f=g$. Assume that S be a finite set, we set :

$$
P_{S}(z)=\prod_{a \in S}(x-a)
$$

As a connection to the study of the uniqueness problem, Li and Yang [3] introduced the following definition:
Definition 1 A non-constant polynomial $P(z)$ is said to be a unique polynomial for entire (or meromorphic) functions if for two non-constant entire (or meromorphic) functions f and $g, P(f)=P(g)$ implies that $f=g$.
$\mathrm{P}(\mathrm{z})$ is said to be a strong uniqueness polynomial for entire (or meromorphic) functions if for two non-constant entire (or meromorphic) functions f, g and some nonzero constant c , the condition $P(f)=c P(g)$ implies that $c=1$ and $f=g$.

To demonstrate that the finite set S be a URS for entire (or meromorphic) functions, we prove that the polynomial $P_{S}(z)$ is a strong uniqueness polynomial. If P is a strong uniqueness polynomial for entire (or meromorphic) functions, then the set of the zeros of P can be a URS.

Recently, H.H. Khoai and C.C. Yang [1] generalized the above studies by considering a pair of two nonlinear polynomials $P(z)$ and $Q(z)$ such that the only meromorphic solutions f, g satisfying $P(f)=Q(g)$ are constants. This problem is considered in the complex plane \mathbb{C} by H.H. Khoai and C.C. Yang [1] as well as by C.C. Yang and P. Li [2].

In this paper, we find the conditions for the existence of non-constant meromorphic function solutions f and g of the functional equation $P(f)=Q(g)$ in \mathbb{K} with \mathbb{K} being an algebraically closed field, complete for a non-trivial nonArchimedean absolute value. To solve the functional equation, we study the hyperbolicity of the algebraic curve $\{P(x)-Q(y)=0\}$ by estimating its genus. We shall do this by giving sufficiently many linear independent regular 1-forms of Wronskian type on that curve.

2. Main theorems

Theorem 2.1 Let $P(z)$ and $Q(z)$ be two nonlinear polynomials of degrees n and m, respectively, with $n \geq m$. Suppose that $P(\alpha) \neq Q(\beta)$ for all zeros α
of P^{\prime} and β of Q^{\prime}. Then there exist no non-constant meromorphic functions f and g such that $P(f)=Q(g)$, if n and m satisfy the following condition:

$$
n \geq m \geq 2 \text { and } n \geq 3
$$

Theorem 2.2 Let $P(z)$ and $Q(z)$ be two nonlinear polynomials of degrees n and m, respectively. Then there exist no non-constant meromorphic functions f and g such that $P(f)=Q(g)$ provided that P and Q satisfy one of the following conditions:

1. There exists a zero β_{1} of Q^{\prime} with multiplicity m_{1} at least 2 and $P(\alpha) \neq$ $Q\left(\beta_{1}\right)$, for all zeros α of P^{\prime}.
2. There exists two simple zeros β_{1}, β_{2} of Q^{\prime} such that $P(\alpha) \neq Q\left(\beta_{i}\right)$ for all zeros α of P^{\prime} and $i=1,2$.
Definition 2 Let $P(z)$ be a nonlinear polynomial of degree n whose derivative is given by:

$$
P^{\prime}(z)=c\left(z-\alpha_{1}\right)^{n_{1}} \ldots\left(z-\alpha_{k}\right)^{n_{k}}
$$

where $n_{1}+\cdots+n_{k}=n-1$ and $\alpha_{1}, \ldots, \alpha_{k}$ are distinct zeros of P^{\prime}. The number k is called the derivative index of P.

A polynomial $P(z)$ is said to satisfy the condition of separating the roots of P^{\prime} (separation condition) if $P\left(\alpha_{i}\right) \neq P\left(\alpha_{j}\right)$ for all $k \geq i \neq j \geq 1$.

Theorem 2.3 Let $P(z)$ and $Q(z)$ be two polynomials defined by (1) and let P satisfy the separation condition. Suppose that $\beta_{1}, \ldots, \beta_{J}$ are distinct zeros of Q^{\prime} with multiplicity m_{j}, respectively, such that for every $\beta_{j}, j=1,2, \ldots, J$, there exists zeros α_{i} of P^{\prime} with $P\left(\alpha_{i}\right)=Q\left(\beta_{j}\right)$. Then there exist no non-constant meromorphic functions f and g such that $P(f)=Q(g)$ if

$$
m-\sum_{j=1}^{J} m_{j} \geq 3
$$

Remark 2.4 In case $\operatorname{deg} P=\operatorname{deg} Q=2$, the equation $P(f)=Q(g)$ has some non-constant meromorphic functions. Indeed, in this case we can rewrite the equation $P(f)=Q(g)$ in the form:

$$
(f-a)^{2}=(b g-c)^{2}+d
$$

where $a, b, c, d \in \mathbb{K}$ and $b \neq 0$. Hence

$$
(f-b g-a+c)(f+b g-a-c)=d
$$

Assume that h is a non-constant meromorphic function, we set

$$
f=\frac{1}{2}\left(h+\frac{d}{h}\right)+a, \quad g=\frac{1}{2 b}\left(-h+\frac{d}{h}\right)+\frac{c}{b} .
$$

Then f and g are non-constant meromorphic solutions of equation $P(f)=Q(g)$.

3. Lemmas and Proofs

Let \mathbb{K} be an algebraically closed field, complete for a non-trivial non-Archimedean absolute value with characteristic zero. Suppose that $H(X, Y, Z)$ is a homogeneous polynomial of degree n and

$$
C:=\left\{(X, Y, Z) \in \mathbb{P}^{2}(\mathbb{K}) \mid H(X, Y, Z)=0\right\}
$$

Denote

$$
\begin{aligned}
W_{1} & =W(X, Y)
\end{aligned}=\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right| . ~ \begin{array}{cc}
Y & Z \\
W_{2}=W(Y, Z) & =\left|\begin{array}{cc}
Y Y & d Z
\end{array}\right| \\
W_{3}=W(X, Z) & =\left|\begin{array}{cc}
X & Z \\
d X & d Z
\end{array}\right| .
\end{array}
$$

Assume that $R(X, Y, Z)$ and $S(X, Y, Z)$ are two homogeneous polynomials in $\mathbb{P}^{2}(\mathbb{K})$. Let

$$
\omega_{i}=\frac{R(X, Y, Z)}{S(X, Y, Z)} W_{i}
$$

with $i=1,2,3$. If $R(X, Y, Z)$ and $S(X, Y, Z)$ satisfy $\operatorname{deg} S=\operatorname{deg} R+2$, then ω_{i} is a well-defined rational 1-form on $\mathbb{P}^{2}(\mathbb{K})$.
Definition 3 Let C be an algebraic curve in $\mathbb{P}^{2}(\mathbb{K})$. An 1-form ω on C is said to be regular if it is the pull-back of a rational 1 -form on $\mathbb{P}^{2}(\mathbb{K})$ such that the pole set of ω does not intersect C. A well-defined rational regular 1-form on C is said to be an 1-form of Wronskian type.

Notice that to solve the functional equation $P(f)=Q(g)$, is the same as to find meromorphic functions f, g on \mathbb{K} such that $(f(z), g(z))$ in curve $\{P(x)-Q(y)=0\}$. On the other hand, if C is hyperbolic on \mathbb{K} and suppose that f, g be meromorphic functions such that $(f(z), g(z)) \in C$, where $z \in \mathbb{K}$, then f and g are constant (see.[6]). Therefore, to show that this equation has no non-constant solutions, we shall prove the hyperbolicity of $\{P(x)-Q(y)=0\}$. By Picard-Berkovich's theorem in the p-adic case, a curve C in \mathbb{K} is Brody hyperbolic if and only if the genus of the curve C is at least 1 .

It is well-known that the genus g of a algebraic curve C is equal to the dimension of the space of regular 1-forms on C. Therefore, to compute the genus, we have to construct a basis of the space of regular 1-forms on C.

Now, let P and Q be two nonlinear polynomials of degrees n and m in \mathbb{K}, respectively, with

$$
\begin{align*}
& P(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \\
& Q(y)=b_{m} y^{m}+\ldots+b_{1} y+b_{0} \tag{1}
\end{align*}
$$

Without loss of generality, we assume that $m \geq n$. Set

$$
F_{1}(x, y):=P(x)-Q(y),
$$

$$
\begin{gather*}
F(X, Y, Z):=Z^{n}\left\{P\left(\frac{X}{Z}\right)-Q\left(\frac{Y}{Z}\right)\right\} \tag{2}\\
C:=\left\{(X, Y, Z) \in \mathbb{P}^{2}(\mathbb{K}) \mid F(X, Y, Z)=0\right\} \tag{3}
\end{gather*}
$$

We conclude

$$
\begin{align*}
& P^{\prime}(x)=n a_{n} x^{n-1}+\cdots+2 a_{2} x+a_{1}=n a_{n}\left(x-\alpha_{1}\right)^{n_{1}} \cdots\left(x-\alpha_{k}\right)^{n_{k}} \tag{4}\\
& Q^{\prime}(y)=m b_{m} y^{m-1}+\cdots+2 b_{2} y+b_{1}=m b_{m}\left(y-\beta_{1}\right)^{m_{1}} \cdots\left(y-\beta_{l}\right)^{m_{l}} \tag{5}
\end{align*}
$$

where $n_{1}+\ldots+n_{k}=n-1 ; m_{1}+\ldots+m_{l}=m-1, \alpha_{1}, \ldots, \alpha_{k}$ are distinct zeros of P^{\prime}; and $\beta_{1}, \ldots, \beta_{l}$ are distinct zeros of Q^{\prime}. Define

$$
P^{\prime}(X, Z):=Z^{n-1} P^{\prime}\left(\frac{X}{Z}\right) ; Q^{\prime}(Y, Z):=Z^{m-1} Q^{\prime}\left(\frac{Y}{Z}\right)
$$

Then

$$
\begin{aligned}
& \frac{\partial F}{\partial X}=P^{\prime}(X, Z) \\
& \frac{\partial F}{\partial Y}=-Z^{n-m} Q^{\prime}(Y, Z) \\
& \frac{\partial F}{\partial Z}=\sum_{i=0}^{n-1}(n-i) a_{i} X^{i} Z^{n-1-i}-\sum_{j=0}^{m^{\prime}}(n-j) b_{j} Y^{j} Z^{n-1-j}
\end{aligned}
$$

where

$$
m^{\prime}=\left\{\begin{array}{lll}
n-1 & \text { if } & n=m \\
m & \text { if } & n>m
\end{array}\right.
$$

Then, by Euler's theorem, for all points $(X, Y, Z) \in C$, we have

$$
\begin{equation*}
\frac{\partial F}{\partial X} X+\frac{\partial F}{\partial Y} Y+\frac{\partial F}{\partial Z} Z=0 \tag{6}
\end{equation*}
$$

The equation of the tangent space of C at the point $(X, Y, Z) \in C$ is defined by

$$
\begin{equation*}
\frac{\partial F}{\partial X} d X+\frac{\partial F}{\partial Y} d Y+\frac{\partial F}{\partial Z} d Z=0 \tag{7}
\end{equation*}
$$

From (6) and (7), we obtain

$$
\begin{aligned}
& \frac{\partial F}{\partial X}=\frac{\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|}{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|} \frac{\partial F}{\partial Z} \\
& \frac{\partial F}{\partial Y}=\frac{\left|\begin{array}{cc}
Z & X \\
d Z & d X
\end{array}\right|}{\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|} \frac{\partial F}{\partial Z}
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\frac{W(Y, Z)}{\frac{\partial F}{\partial X}}=\frac{W(Z, X)}{\frac{\partial F}{\partial Y}}=\frac{W(X, Y)}{\frac{\partial F}{\partial Z}} \tag{8}
\end{equation*}
$$

Set

$$
\eta:=\frac{W(Y, Z)}{\frac{\partial F}{\partial X}}=\frac{W(Z, X)}{\frac{\partial F}{\partial Y}}=\frac{W(X, Y)}{\frac{\partial F}{\partial Z}}
$$

we obtain

$$
\begin{align*}
\eta & =\frac{W(Y, Z)}{P^{\prime}(X, Z)}=\frac{W(X, Z)}{Z^{n-m} Q^{\prime}(Y, Z)} \\
& =\frac{W(X, Y)}{\sum_{i=0}^{n-1}(n-i) a_{i} X^{i} Z^{n-1-i}-\sum_{j=0}^{m^{\prime}}(n-j) b_{j} Y^{j} Z^{n-1-j}} . \tag{9}
\end{align*}
$$

In order to prove the main results, we need the following lemmas.

Lemma 3.1 Let P and Q be two nonlinear polynomials of degrees n and m,respectively, (defined by (1)) with $n \geq m$, and let C be a projective curve defined by (3). If $P\left(\alpha_{i}\right) \neq Q\left(\beta_{j}\right)$ for all zeros α_{i} of P^{\prime} and β_{j} of Q^{\prime}, (defined by (4),(5)), then we have the following assertions:

1. If $n=m$ or $n=m+1$, then C is non-singular in $\mathbb{P}^{2}(\mathbb{K})$.
2. If $n-m \geq 2$, then the point $(0,1,0)$ is a unique singular point of C in $\mathbb{P}^{2}(\mathbb{K})$.

Proof By the hypothesis of the lemma, $P\left(\alpha_{i}\right) \neq Q\left(\beta_{j}\right)$ for all zeros α_{i} of P^{\prime} and β_{j} of Q^{\prime}, we conclude that C is non-singular in $\mathbb{P}^{2}(\mathbb{K}) \backslash\{Z=0\}$. Now we consider the singularity of C in $\{Z=0\}$.Assume that $(X, Y, 0)$ is a singular point of C. We obtain

$$
\frac{\partial F}{\partial X}(X, Y, O)=0 ; \frac{\partial F}{\partial Y}(X, Y, O)=0 ; \frac{\partial F}{\partial Z}(X, Y, O)=0 \text { and } F(X, Y, 0)=0
$$

We consider the following three cases:
If $n=m$, then

$$
\begin{aligned}
n a_{n} X^{n-1} & =0 \\
n b_{n} Y^{n-1} & =0 \\
a_{n-1} X^{n-1}-b_{n-1} Y^{n-1} & =0 \\
a_{n} X^{n}-b_{n} Y^{n} & =0
\end{aligned}
$$

has no root in $\mathbb{P}^{2}(\mathbb{K})$. If $n=m+1$, then

$$
\begin{aligned}
n a_{n} X^{n-1} & =0 \\
a_{n} X^{n}-b_{n-1} Y^{n-1} & =0 \\
a_{n} X^{n} & =0,
\end{aligned}
$$

has no root in $\mathbb{P}^{2}(\mathbb{K})$.
If $n-m \geq 2$, then

$$
\begin{aligned}
n a_{n} X^{n-1} & =0 \\
a_{n-1} X^{n-1} & =0 \\
a_{n} X^{n} & =0
\end{aligned}
$$

has a unique root $(0,1,0)$ in $\mathbb{P}^{2}(\mathbb{K})$ and C is singular with a unique singular point at $(0,1,0)$.

Thus, if $n=m$ or $n=m+1$, then C is a smooth curve. If $n-m \geq 2$, then C is singular with a unique singular point at $(0,1,0)$.

Proposition 3.2 If $n=m$ or $n=m+1$ and the hypotheses of Lemma 3.1 are satisfied, then C is Brody hyperbolic on \mathbb{K} for all $n \geq 3$.

Proof Consider the 1 -form defined by (9). Since C is smooth, then by Lemma 3.1, if one of the expressions of η is regular, we can conclude that the other expressions are also regular. Let

$$
\begin{aligned}
\pi: \mathbb{K}^{3} \backslash\{(0,0,0)\} & \Longrightarrow \mathbb{P}^{2}(\mathbb{K}) \\
(X, Y, Z) & \longmapsto[X: Y: Z]
\end{aligned}
$$

where $[X: Y: Z]:=\left\{(\lambda X, \lambda Y, \lambda Z) \mid \lambda \in \mathbb{K}^{*}=\mathbb{K} \backslash\{0\}\right\}$. Note that η is regular on $\pi^{-1}(C)$. Then the 1-form

$$
\omega:=\frac{W(X, Z)}{Z^{n-m} Q^{\prime}(Y, Z)} Z^{n-3}=Z^{n-3} \eta
$$

is a well-defined rational regular 1 -form on C if $n \geq 3$. Thus, if $n \geq 4$, then for any homogeneous polynomial $R(X, Y, Z)$ of degree $n-3$, the 1-form $\omega:=$ $R(X, Y, Z) \eta$, is regular on C and vanishes along $\{(X, Y, Z) \mid R(X, Y, Z)=0\}$. Note that the set of monomials of degree $n-3$ in X, Y, Z is a basis of the vector space of homogeneous polynomials of degree $n-3$. This basis only has $\frac{(n-1)(n-2)}{2}$ vectors. Hence, the genus of C is

$$
g=\frac{(n-1)(n-2)}{2}
$$

Therefore, C is Brody hyperbolic if $n \geq 3$.
Remark 3.3 We also require that the 1-form defined by (9) is non trivial when it restricts to a component of $\pi^{-1}(C)$. This is equivalent to the condition that the nominators are not identically zero when they restrict to a component of $\pi^{-1}(C)$, i.e. the Wronskians W_{i}, (with $i=1,2,3$) are not identically zero. It means that the homogeneous polynomial defining C has no linear factor of the
form $a X-b Y, a Y-b Z$ or $a X-b Z$, with $a, b \in \mathbb{K}$. Indeed, we assume on the contrary that, for example, $a X-b Z$ is a factor of curve C defined by (3). Without loss of generality, we can take $a \neq 0$. Since $a X-b Z$ is a factor of $F(X, Y, Z)$, we have

$$
0=F\left(\frac{b}{a} Z, Y, Z\right)=Z^{n}\left\{P\left(\frac{\frac{b}{a} Z}{Z}\right)-Q\left(\frac{Y}{Z}\right)\right\}=Z^{n}\left\{P\left(\frac{b}{a}\right)-Q\left(\frac{Y}{Z}\right)\right\}
$$

and then we obtain $P\left(\frac{b}{a}\right) \equiv Q\left(\frac{Y}{Z}\right)$ for all Y, Z. It is impossible.
Proposition 3.4 If $n \geq m+2$ and the hypotheses of Lemma 3.1 are satisfied, then C is Brody hyperbolic on \mathbb{K} for all $m \geq 3$.
Proof Since $n \geq m+2$ by Lemma 3.1, we conclude that C is singular with a unique singular point at ($0,1,0$). Considering the 1 -form defined by (9)

$$
\begin{aligned}
\eta & =\frac{W(Y, Z)}{P^{\prime}(X, Z)}=\frac{W(X, Z)}{Z^{n-m} Q^{\prime}(Y, Z)} \\
& =\frac{W(X, Y)}{\sum_{i=0}^{n-1}(n-i) a_{i} X^{i} Z^{n-1-i}-\sum_{j=0}^{m^{\prime}}(n-j) b_{j} Y^{j} Z^{n-1-j}} .
\end{aligned}
$$

Due to Remark 3.3, we deduce that η is not identically zero when it restricts to a component of $\pi^{-1}(C)$ and it is not regular on C. We take

$$
\begin{aligned}
\xi & :=\frac{Z^{n-m} W(Y, Z)}{P^{\prime}(X, Z)}=\frac{W(X, Z)}{Q^{\prime}(Y, Z)} \\
& =\frac{Z^{n-m} W(X, Y)}{\sum_{i=0}^{n-1}(n-i) a_{i} X^{i} Z^{n-1-i}-\sum_{j=0}^{m^{\prime}}(n-j) b_{j} Y^{j} Z^{n-1-j}} \\
& =Z^{n-m} \eta .
\end{aligned}
$$

Then, ξ is regular on $\pi^{-1}(C)$ because the denominators of ξ have no common zeros. Therefore

$$
\omega:=\frac{W(X, Z)}{Q^{\prime}(Y, Z)} Z^{m-3}=Z^{m-3} \xi
$$

is well-defined on C, regular and vanishing along $(n-3)\{Z=0\}$. This implies that, if $m \geq 3$, then ω is a 1-form of Wronskian type on C.

If $m=3$ then $\omega=\xi$ is a linear independent regular 1-form of Wronskian type on the curve C.

If $m \geq 4$, we take $R_{1}, R_{2}, \ldots, R_{\frac{(m-2)(m-1)}{2}}$ as a basis of monomials of degree $m-3$ in $\{X, Y, Z\}$, then

$$
\left\{R_{i} \omega \mid i=1,2, \ldots, \frac{(m-2)(m-1)}{2}\right\}
$$

are linearly independent and global regular 1-forms of Wronskian type on the curve C. Thus, the genus g_{C} of C is

$$
g_{C} \geq \frac{(m-2)(m-1)}{2}
$$

Therefore, C is Brody hyperbolic if $\quad m \geq 3$.
Next, we recall some notations. Let C be a curve on \mathbb{K} defined by a homogeneous polynomial $F(X, Y, Z)=0$ and let ρ be a point of C. A holomorphic map

$$
\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right): \triangle_{\epsilon}=\{t \in \mathbb{K}| | t \mid<\epsilon\} \longrightarrow C
$$

with $\phi(0)=\rho$, is referred to a holomorphic parameterization of C at ρ. Local holomorphic parameterization always exists for sufficiently small ϵ. If ϕ is a local holomorphic parameterization of C at ρ, then the Laurent expansion of $F \circ \phi(t)$ at ρ has the form

$$
F \circ \phi(t)=\sum_{i=p}^{q} c_{i} t^{i}, \quad c_{p} \neq 0, \quad p<q<\infty
$$

The order of F at ρ, (it is also the order of $F \circ \phi(t)$ at $t=0$) is defined by p and denoted by

$$
p:=\operatorname{ord}_{\rho, \phi} F=\operatorname{ord}_{t=0} F(\phi(t)) .
$$

Assume that $\varphi(x, y)$ is an analytic function in x, y and it is singular at $\rho=(a, b)$. The Puiseux expansion of $\varphi(x, y)$ at ρ is given by

$$
\begin{gathered}
x-a=\sum_{i=0}^{\infty} a_{\alpha+i} t^{\alpha+i}, \quad y-b=\sum_{j=0}^{\infty} b_{\beta+j} t^{\beta+j} \\
\varphi\left(a+\sum_{i=0}^{\infty} a_{\alpha+i} t^{\alpha+i}, b+\sum_{j=0}^{\infty} b_{\beta+j} t^{\beta+j}\right)=0
\end{gathered}
$$

The α (respectively, β) is the order (also the multiplicity number) of x at ρ, (respectively, the order of y at ρ) for φ and is denoted by

$$
\alpha:=\operatorname{ord}_{\rho, \varphi} x \quad\left(\text { respectively, } \beta:=\operatorname{ord}_{\rho, \varphi} y\right)
$$

We now have the following result
Proposition 3.5 Let P be a nonlinear polynomial of degree $n \geq 4$ and $Q=$ $b_{2} y^{2}+b_{1} y+b_{0}, w h e r e b_{2} \neq 0$ and C a projective curve defined by (3). If $P\left(\alpha_{i}\right) \neq$ $Q(\beta)$ for all zeros α_{i} of P^{\prime} and β of Q^{\prime} defined by (4), then C is Brody hyperbolic on \mathbb{K} for all $n \geq 4$.

Proof Since $n \geq 4$ and $m=2$, by Lemma 3.1, we conclude that C is singular with a unique singular point at $(0,1,0)$. Considering polynomial
$H(X, Z):=F(X, 1, Z)=\sum_{i=0}^{n} a_{n-i} X^{n-i} Z^{i}-Z^{n-2}\left(b_{2}+b_{1} Z+b_{0} Z^{2}\right)$, with $a_{n}, b_{2} \neq 0$.
Since polynomial $H(X, Z)$ is singular at $(0,0)$, by the Newton diagram of the Puiseux expansion of H at $(0,0)$, we have

$$
\operatorname{ord}_{0, H} X=\frac{n-2}{d}, \quad \operatorname{ord}_{0, H} Z=\frac{n}{d},
$$

where d is the greatest common divisor of n and $n-2$.
It follows from (9) that

$$
\begin{aligned}
\eta & =\frac{W(Y, Z)}{P^{\prime}(X, Z)} \\
& =\frac{W(X, Z)}{Z^{n-2}\left(2 b_{2} Y+b_{1}\right)} \\
& =\frac{W(X, Y)}{\left\{\sum_{i=0}^{n-1}(n-i) a_{i} X^{i} Z^{n-1-i}\right\}-Z^{n-3}\left(b_{2} Y^{2}+b_{1} Y Z+b_{0} Z^{2}\right)} .
\end{aligned}
$$

By Remark 3.3, η is non trivial on C. The η is regular on $\pi^{-1}(C \backslash\{Z=0\})$ because the denominators of η have no common zeros for $Z \neq 0$. Let

$$
\omega:=Z^{n-3} \eta=\frac{W(X, Z)}{Z\left(2 b_{2} Y+b_{1}\right)}
$$

By the proof above, ω is regular on $\pi^{-1}(C \backslash\{Z=0\})$. In $C \bigcap\{Z=0\}$, the denominators of ω only vanish at $\rho=(0,1,0)$. Note that at this point $H(X, Z)=F(X, 1, Z)$ is singular, and therefore

$$
\begin{aligned}
\operatorname{ord}_{t=0} \omega & =\operatorname{ord}_{t=0} W(X, Z)-\operatorname{ord}_{0, H} Z \\
& =\operatorname{ord}_{t=0}(X d Z-Z d X)-\operatorname{ord}_{0, H} Z \\
& =\frac{n-2-d}{d}
\end{aligned}
$$

Since $d=(n, n-2)$, it follows that either $d=1$ or $d=2$. If $d=1$, then $\operatorname{ord}_{t=0} \omega=n-3$. If $d=2$, then $\operatorname{ord}_{t=0} \omega=\frac{n-4}{2}$.

Consequently, if $n \geq 4$, then ω is a non trivial well-defined regular 1-form of Wronskian type on C and the curve C is Brody hyperbolic.

We now consider the case when the curve C is singular in $\mathbb{P}^{2}(\mathbb{K}) \backslash\{Z=0\}$.
From Lemma 3.1, the curve C is only singular in $\mathbb{P}^{2}(\mathbb{K}) \backslash\{Z=0\}$ at $\left(\alpha_{i}, \beta_{j}, 1\right)$, with $\alpha_{1}, \ldots, \alpha_{k}$ are distinct zeros of P^{\prime} and $\beta_{1}, \ldots, \beta_{l}$ are distinct
zeros of Q^{\prime}. By (4),(5), the distinct zeros $\alpha_{1}, \ldots, \alpha_{k}$ of P^{\prime} have multiplicities n_{1}, \ldots, n_{k} and the distinct zeros $\beta_{1}, \ldots, \beta_{l}$ of Q^{\prime} have multiplicities m_{1}, \ldots, m_{l}. Let

$$
\begin{aligned}
\Gamma & :=\left\{\left(\alpha_{i}, \beta_{j}, 1\right) \text { be singular points of } C\right\} \\
\Delta & :=\left\{\alpha_{i} \mid\left(\alpha_{i}, \beta_{j}, 1\right) \text { be singular points of } C\right\}
\end{aligned}
$$

and

$$
\Lambda:=\left\{\beta_{j} \mid\left(\alpha_{i}, \beta_{j}, 1\right) \text { be singular points of } C\right\}
$$

Setting $\mathrm{I}=\# \Delta, \mathrm{~J}=\# \Lambda$, then we have $k \geq I$ and $l \geq J$. Without loss of generality, we can take

$$
\Delta=\left\{\alpha_{1}, \ldots, \alpha_{I}\right\}, \Lambda=\left\{\beta_{1}, \ldots, \beta_{J}\right\}
$$

Assume that P satisfies the separation condition. Then, we conclude $J \geq I$ and for every $j, j=1,2, \ldots, J$, there exists a unique value i_{j} such that $\left(\alpha_{i_{j}}, \beta_{j}, 1\right)$ is a singular point of C (these $\alpha_{i_{j}}$ can be equal to each other). Hence,

$$
\begin{equation*}
\Gamma=\left\{\left(\alpha_{i_{j}}, \beta_{j}, 1\right) \mid j=1,2, \ldots, J\right\}, \text { with } l \geq J \tag{10}
\end{equation*}
$$

Let

$$
H_{j}=a\left(X-\alpha_{i_{j}} Z\right)+b\left(Y-\beta_{j} Z\right), \text { with } a, b \neq 0
$$

We obtain $H_{j}\left(\alpha_{i_{j}}, \beta_{j}, 1\right)=0$. Putting

$$
\xi:=\frac{H_{j}^{s_{j}}}{\left(Y-\beta_{j} Z\right)^{m_{j}}} W(X, Z), \text { for } s_{j}=\max \left\{n_{i_{j}}, m_{j}\right\}
$$

it follows that ξ is regular on C. Therefore, from (9) we obtain

$$
\xi=\frac{m b_{m} Z^{n-m} H_{j}^{s_{j}} \prod_{j \neq t}^{l}\left(Y-\beta_{t} Z\right)^{m_{t}}}{n a_{n} \prod_{\nu=1}^{k}\left(X-\alpha_{\nu} Z\right)^{n_{\nu}}} W(Y, Z)
$$

Note that P satisfies the separation condition, then $\left(\alpha_{\nu}, \beta_{j}, 1\right) \notin C$ with $\nu \neq i_{j}$. On the other hand, $\operatorname{ord}_{\rho, \phi} H_{j}^{s_{j}}=s_{j} \geq n_{i_{j}}, m_{j}$ and hence $\operatorname{ord}_{\rho, \phi} \frac{H_{j}^{s_{j}}}{\left(X-\alpha_{i_{j}} Z\right)^{n_{i_{j}}}} \geq$ 0 , for $\rho=\left(\alpha_{i_{j}}, \beta_{j}, 1\right)$.

Now, we set

$$
\zeta:=\frac{\prod_{j=1}^{J} H_{j}^{s_{j}}}{Q^{\prime}(Y, Z)} W(X, Z)
$$

Then ζ is regular on C. Let

$$
\omega:=\left\{\prod_{j=1}^{J} H_{j}^{s_{j}}\right\} Z^{n-\sum_{j=1}^{J} s_{j}-3} \eta=Z^{m-\sum_{j=1}^{J} s_{j}-3} \zeta
$$

we can easily see that ω is a non trivial, well-defined regular 1-form of Wronskian type on C and the curve C is Brody hyperbolic if $m-\sum_{j=1}^{J} s_{j} \geq 3$.

We can summarize these facts in the following result.

Proposition 3.6 Let $P(z)$ and $Q(z)$ (defined by (1)) be two nonlinear polynomials of degrees n, m, respectively, with $n \geq m$, and let P satisfy the separation condition. Suppose that $\Gamma=\left\{\left(\alpha_{i_{j}}, \beta_{j}, 1\right) \mid j=1,2, \ldots, J\right\} \quad$ (defined by (10)) is the set of singular points of C. Then the curve C is Brody hyperbolic if $m-\sum_{j=1}^{I} s_{j} \geq 3$, with $s_{j}=\max \left(n_{i_{j}}, m_{j}\right), j=1,2, \ldots, J$.

Lemma 3.7 Let $P(z)$ and $Q(z)$ be two polynomials defined by (1) and P satisfy the separation condition. Let $\Gamma:=\left\{\left(\alpha_{i}, \beta_{j}, 1\right) \mid j=1,2, \ldots, J\right\}$ be the set of singular points of C. If $m_{j}-n_{i} \geq 2$ at all points $\rho_{i j}=\left(\alpha_{i}, \beta_{j}, 1\right)$, then C is Brody hyperbolic.

Proof The condition of Lemma 3.7 implies that the curve C is singular at any point $\rho_{i j}$ and $m_{j} \geq 3$. Let

$$
\zeta:=\frac{\left(X-\alpha_{i} Z\right)^{m_{j}-2}}{\left(Y-\beta_{j} Z\right)^{m_{j}}} W(X, Z)
$$

be a well-defined rational 1-form on C. It follows from (9) that

$$
\begin{aligned}
\zeta & =\frac{m b_{m} Z^{n-m}\left(X-\alpha_{i} Z\right)^{m_{j}-2} \prod_{1=t \neq j}^{l}\left(Y-\beta_{t} Z\right)^{m_{t}}}{n a_{n} \prod_{\nu=1}^{k}\left(X-\alpha_{\nu} Z\right)^{n_{\nu}}} W(Y, Z) \\
& =\frac{m b_{m} Z^{n-m}\left(X-\alpha_{i} Z\right)^{m_{j}-n_{i}-2} n a_{n} \prod_{i \neq \nu=1}^{k}\left(X-\alpha_{\nu} Z\right)^{n_{\nu}}}{n a_{n} \prod_{i \neq \nu=1}^{k}\left(X-\alpha_{\nu} Z\right)^{n_{\nu}}} W(Y, Z) .
\end{aligned}
$$

The first expression implies that all poles of ζ must belong to $C \bigcap\left\{Y=\beta_{j}\right\}$. The second expression implies that all poles of ζ must belong to $C \bigcap\left\{X=\alpha_{\nu}\right\}$ for all $\nu \neq i$. Since P satisfies the separation condition, we can conclude that $Q\left(\beta_{j}\right)=P\left(\alpha_{i}\right) \neq P\left(\alpha_{\nu}\right)$ for all $\nu \neq i$. This shows that ζ is regular on C if $m_{j}-n_{i} \geq 2$. The proof of the lemma is now complete.

Proof of Theorem 2.1 It follows immediately from Proposition 3.2, 3.4 and 3.5.

Proof of Theorem 2.2 By (9), we see that

$$
\eta=\frac{W(Y, Z)}{n a_{n} \prod_{\nu=1}^{k}\left(X-\alpha_{\nu} Z\right)^{n_{\nu}}}=\frac{W(X, Z)}{m b_{m} Z^{n-m} \prod_{t=1}^{l}\left(Y-\beta_{t} Z\right)^{m_{t}}} .
$$

Set

$$
\theta:=\frac{W(X, Z)}{\left(Y-\beta_{1} Z\right)^{2}} .
$$

We then have

$$
\theta=\frac{m b_{m} Z^{n-m}\left(Y-\beta_{1} Z\right)^{m_{1}-2} \prod_{t=2}^{l}\left(Y-\beta_{t} Z\right)^{m_{t}}}{n a_{n} \prod_{\nu=1}^{k}\left(X-\alpha_{\nu} Z\right)^{n_{\nu}}} W(Y, Z)
$$

Since $\left(\alpha_{i}, \beta_{1}, 1\right) \notin C$ with for all α_{i}, we see that θ is a well-defined regular 1-form of Wronskian type on C, proving the first assertion of the theorem.

Similary, let

$$
\xi:=\frac{W(X, Z)}{\left(Y-\beta_{1} Z\right)\left(Y-\beta_{2} Z\right)} .
$$

Then ξ is a well-defined regular 1-form of Wronskian type on C and therefore the second assertion of theorem is proved.

Proof of Theorem 2.3 By applying Proposition 3.6 and Lemma 3.7, the Theorem is followed.

References

[1] H.H. Khoai and C.C. Yang, On the functional equation $P(f)=Q(g)$, Value Distribution Theory, Kluwer Academic Publishers (2004), 201-207.
[2] C.C. Yang and P. Li, Some further results on the functional equation $P(f)=Q(g)$, Value distribution theory and its trends, ACAA, Kluwer Academic Publisher (2004).
[3] C.C.Yang and P.Li, On the unique range sets of meromorphic functions, Proc. Amer. Math. Soc., 124(1996), 177-195.
[4] A.Escassut and C.C.Yang, The functional equation $P(f)=Q(g)$ in a padic field, J. Number Theory, 105(2004) No.2, 344-360.
[5] F. Gross and C.C. Yang, On pre-images and range sets of meromorphic functions, Proc. Japan Acad., 58(1982), 17-20.
[6] P.C. Hu and C.C. Yang, "Meromorphic functions over non-Archimedean field", Kluwer Academic Publisher, (2000).
[7] H. Fujimoto, On uniqueness of meromorphic functions sharing finite sets, Amer. J. Math., 122(2000), 1175-1203.
[8] B. Shiffman, Uniqueness of entire and meromorphic functions sharing finite sets, Complex Variables, vol.4, (2001), 433-450.
[9] T.T.H.An, J.T-Y.Wang and P-M. Wong, Strong uniqueness polynomials: The complex case, Complex Var. Theory and Appl. 49 (2004), N.1, 25-54.
[10] F. Gross,Factorization of meromorphic functions and some open problems, Complex analysis (Proc. Conf., Univ. Kentucki, Lexington, Ky.,1976), Lecture Notes in Math., Vol.599, Springer, Berlin (1977) 51-67.
[11] A. Boutabaa and A. Escassut, Applications of the p-adic Nevanlinna theory to functional equations, Annale de l' Institut Fourie', T50 (3) (2000), 751766.

