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Abstract

In this paper, we study the existence of non constant meromorphic
solutions f and g of the functional equation P (f) = Q(g), where P (z)
and Q(z) are two given nonlinear polynomials with coefficients in the
non-Archimedean field K.

1. Introduction

The Tenth problem of Hilbert is asked to establish an algorithm for finding
all integer solutions of F (x, y) = 0, where F (x, y) is a polynomial with integer
coefficients. It is natural to study the analogous of Hilbert’s Tenth problem
in the field of meromorphic functions. More specifically, we ask what forms of
equation F (x, y) = 0, where F (x, y) is a polynomial with complex coefficients,
may or may not have non constant meromorphic functions f and g that satisfy
F (f, g) = 0? Earlier in 1920s, as a simple application of his value distribution
theory, Nevanlinna proved that a non constant meromorphic function ( in the
complex plane) is uniquely determined by the inverse image of five distinct val-
ues (including infinity), ignoring multiplicity. Gross [11] extended this study by
considering pre-images of a set and posed the question: Is there a finite set A so
that an entire (meromorphic) function is uniquely determined by the pre-image
of the set A, counting multiplicities? Let f be a non-constant meromorphic

The author is partially supported by the National Basic Research Program of Vietnam
Key words: non-Archimedean field, Hilbert’s Tenth problem, meromorphic function, hy-
perbolicity, genus.
2000 Mathematics Subject Classification:

15



16 The p-adic field case of the functional equation P (f) = Q(g)

function and S be a subset of distinct elements. Define

Ef (S) =
⋃
a∈S

{(z, m)| f(z) = a with multiplicity m}.

Two functions f and g of the same type are said to share S, counting multi-
plicity, if Ef(S) = Eg(S). A subset S is called a unique range set ( a URS in
short) for entire (or meromorphic) functions if for any two non-constant entire
(or meromorphic) functions f and g such that Ef(S) = Eg(S), one has f=g.
Assume that S be a finite set, we set :

PS(z) =
∏
a∈S

(x − a).

As a connection to the study of the uniqueness problem, Li and Yang [3] intro-
duced the following definition:

Definition 1 A non-constant polynomial P (z) is said to be a unique polyno-
mial for entire (or meromorphic) functions if for two non-constant entire (or
meromorphic) functions f and g, P (f) = P (g) implies that f = g.

P(z) is said to be a strong uniqueness polynomial for entire (or meromorphic)
functions if for two non-constant entire (or meromorphic) functions f, g and
some nonzero constant c, the condition P (f) = cP (g) implies that c = 1 and
f = g.

To demonstrate that the finite set S be a URS for entire (or meromorphic)
functions, we prove that the polynomial PS(z) is a strong uniqueness poly-
nomial. If P is a strong uniqueness polynomial for entire (or meromorphic)
functions, then the set of the zeros of P can be a URS.

Recently, H.H. Khoai and C.C. Yang [1] generalized the above studies by
considering a pair of two nonlinear polynomials P (z) and Q(z) such that the
only meromorphic solutions f, g satisfying P (f) = Q(g) are constants. This
problem is considered in the complex plane C by H.H. Khoai and C.C. Yang
[1] as well as by C.C. Yang and P. Li [2].

In this paper, we find the conditions for the existence of non-constant mero-
morphic function solutions f and g of the functional equation P (f) = Q(g) in
K with K being an algebraically closed field, complete for a non-trivial non-
Archimedean absolute value. To solve the functional equation, we study the
hyperbolicity of the algebraic curve {P (x)−Q(y) = 0} by estimating its genus.
We shall do this by giving sufficiently many linear independent regular 1-forms
of Wronskian type on that curve.

2. Main theorems

Theorem 2.1 Let P (z) and Q(z) be two nonlinear polynomials of degrees n
and m, respectively, with n ≥ m. Suppose that P (α) �= Q(β) for all zeros α
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of P ′ and β of Q′. Then there exist no non-constant meromorphic functions f
and g such that P (f) = Q(g), if n and m satisfy the following condition:

n ≥ m ≥ 2 and n ≥ 3.

Theorem 2.2 Let P (z) and Q(z) be two nonlinear polynomials of degrees n
and m, respectively. Then there exist no non-constant meromorphic functions
f and g such that P (f) = Q(g) provided that P and Q satisfy one of the
following conditions:

1.There exists a zero β1 of Q′ with multiplicity m1 at least 2 and P (α) �=
Q(β1), for all zeros α of P ′.

2.There exists two simple zeros β1, β2 of Q′ such that P (α) �= Q(βi) for all
zeros α of P ′ and i = 1, 2.

Definition 2 Let P (z) be a nonlinear polynomial of degree n whose derivative
is given by:

P ′(z) = c(z − α1)n1 . . . (z − αk)nk ,

where n1 + · · · + nk = n − 1 and α1 , . . ., αk are distinct zeros of P ′. The
number k is called the derivative index of P.

A polynomial P (z) is said to satisfy the condition of separating the roots of
P ′ (separation condition) if P (αi) �= P (αj) for all k ≥ i �= j ≥ 1.

Theorem 2.3 Let P (z) and Q(z) be two polynomials defined by (1) and let P
satisfy the separation condition. Suppose that β1 , . . . , βJ are distinct zeros of Q′

with multiplicity mj , respectively, such that for every βj , j = 1, 2, . . . , J, there
exists zeros αi of P ′ with P (αi) = Q(βj). Then there exist no non-constant
meromorphic functions f and g such that P (f) = Q(g) if

m −
J∑

j=1

mj ≥ 3.

Remark 2.4 In case deg P = deg Q = 2, the equation P (f) = Q(g) has some
non-constant meromorphic functions. Indeed, in this case we can rewrite the
equation P (f) = Q(g) in the form:

(f − a)2 = (bg − c)2 + d,

where a, b, c, d ∈ K and b �= 0. Hence

(f − bg − a + c)(f + bg − a − c) = d.

Assume that h is a non-constant meromorphic function, we set

f =
1
2
(h +

d

h
) + a, g =

1
2b

(−h +
d

h
) +

c

b
.

Then f and g are non-constant meromorphic solutions of equation P (f) = Q(g).
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3. Lemmas and Proofs

Let K be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value with characteristic zero. Suppose that H(X, Y, Z) is a homoge-
neous polynomial of degree n and

C := {(X, Y, Z) ∈ P
2(K)|H(X, Y, Z) = 0}.

Denote

W1 = W (X, Y ) =
∣∣∣∣ X Y
dX dY

∣∣∣∣ .

W2 = W (Y, Z) =
∣∣∣∣ Y Z
dY dZ

∣∣∣∣ .

W3 = W (X, Z) =
∣∣∣∣ X Z
dX dZ

∣∣∣∣ .

Assume that R(X, Y, Z) and S(X, Y, Z) are two homogeneous polynomials in
P2(K).Let

ωi =
R(X, Y, Z)
S(X, Y, Z)

Wi,

with i = 1, 2, 3. If R(X, Y, Z) and S(X, Y, Z) satisfy degS = degR + 2, then ωi

is a well-defined rational 1-form on P2(K).
Definition 3 Let C be an algebraic curve in P2(K). An 1-form ω on C is said
to be regular if it is the pull-back of a rational 1-form on P2(K) such that the
pole set of ω does not intersect C. A well-defined rational regular 1-form on C
is said to be an 1-form of Wronskian type.

Notice that to solve the functional equation P (f) = Q(g), is the same
as to find meromorphic functions f, g on K such that (f(z), g(z)) in curve
{P (x) − Q(y) = 0}. On the other hand, if C is hyperbolic on K and suppose
that f, g be meromorphic functions such that (f(z), g(z)) ∈ C, where z ∈ K,
then f and g are constant (see.[6]). Therefore, to show that this equation has no
non-constant solutions, we shall prove the hyperbolicity of {P (x)−Q(y) = 0}.
By Picard-Berkovich’s theorem in the p-adic case, a curve C in K is Brody
hyperbolic if and only if the genus of the curve C is at least 1.

It is well-known that the genus g of a algebraic curve C is equal to the
dimension of the space of regular 1-forms on C. Therefore, to compute the
genus, we have to construct a basis of the space of regular 1-forms on C.

Now, let P and Q be two nonlinear polynomials of degrees n and m in K,
respectively, with

P (x) = anxn + . . . + a1x + a0

Q(y) = bmym + . . . + b1y + b0. (1)

Without loss of generality, we assume that m ≥ n. Set

F1(x, y) := P (x) − Q(y),
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F (X, Y, Z) := Zn

{
P (

X

Z
) − Q(

Y

Z
)
}

. (2)

C := {(X, Y, Z) ∈ P
2(K) |F (X, Y, Z) = 0}. (3)

We conclude

P ′(x) = nanxn−1 + · · ·+ 2a2x + a1 = nan(x − α1)n1 · · · (x − αk)nk , (4)

Q′(y) = mbmym−1 + · · ·+ 2b2y + b1 = mbm(y − β1)m1 · · · (y − βl)ml , (5)

where n1 + . . . + nk = n − 1; m1 + . . . + ml = m − 1, α1, . . ., αk are distinct
zeros of P ′; and β1, . . ., βl are distinct zeros of Q′. Define

P ′(X, Z) := Zn−1P ′(
X

Z
) ; Q′(Y, Z) := Zm−1Q′(

Y

Z
).

Then

∂F

∂X
= P ′(X, Z),

∂F

∂Y
= −Zn−mQ′(Y, Z),

∂F

∂Z
=

n−1∑
i=0

(n − i)aiX
iZn−1−i −

m′∑
j=0

(n − j)bjY
jZn−1−j,

where

m′ =

{
n − 1 if n = m

m if n > m.

Then, by Euler’s theorem, for all points (X, Y, Z) ∈ C, we have

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = 0. (6)

The equation of the tangent space of C at the point (X, Y, Z) ∈ C is defined
by

∂F

∂X
dX +

∂F

∂Y
dY +

∂F

∂Z
dZ = 0. (7)

From (6) and (7), we obtain

∂F

∂X
=

∣∣∣∣ Y Z
dY dZ

∣∣∣∣∣∣∣∣ X Y
dX dY

∣∣∣∣
∂F

∂Z
,

∂F

∂Y
=

∣∣∣∣ Z X
dZ dX

∣∣∣∣∣∣∣∣ X Y
dX dY

∣∣∣∣
∂F

∂Z
.
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Hence, we have
W (Y, Z)

∂F

∂X

=
W (Z, X)

∂F

∂Y

=
W (X, Y )

∂F

∂Z

. (8)

Set
η :=

W (Y, Z)
∂F

∂X

=
W (Z, X)

∂F

∂Y

=
W (X, Y )

∂F

∂Z

,

we obtain

η =
W (Y, Z)
P ′(X, Z)

=
W (X, Z)

Zn−mQ′(Y, Z)

=
W (X, Y )∑n−1

i=0 (n − i)aiXiZn−1−i − ∑m′
j=0(n − j)bjY jZn−1−j

. (9)

In order to prove the main results, we need the following lemmas.

Lemma 3.1 Let P and Q be two nonlinear polynomials of degrees n and
m,respectively, (defined by (1)) with n ≥ m, and let C be a projective curve
defined by (3). If P (αi) �= Q(βj) for all zeros αi of P ′ and βj of Q′, (defined
by (4),(5)), then we have the following assertions:

1. If n = m or n = m + 1, then C is non-singular in P2(K).
2. If n − m ≥ 2, then the point (0, 1, 0) is a unique singular point of C in

P2(K).

Proof By the hypothesis of the lemma, P (αi) �= Q(βj) for all zeros αi of P ′

and βj of Q′,we conclude that C is non-singular in P2(K) \ {Z = 0}. Now we
consider the singularity of C in {Z = 0}.Assume that (X, Y, 0) is a singular
point of C. We obtain

∂F

∂X
(X, Y, O) = 0;

∂F

∂Y
(X, Y, O) = 0;

∂F

∂Z
(X, Y, O) = 0 and F (X, Y, 0) = 0.

We consider the following three cases:
If n = m, then

nanXn−1 = 0

nbnY n−1 = 0

an−1X
n−1 − bn−1Y

n−1 = 0
anXn − bnY n = 0,

has no root in P
2(K). If n = m + 1, then

nanXn−1 = 0

anXn − bn−1Y
n−1 = 0

anXn = 0,
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has no root in P2(K).
If n − m ≥ 2, then

nanXn−1 = 0

an−1X
n−1 = 0

anXn = 0,

has a unique root (0, 1, 0) in P
2(K) and C is singular with a unique singular

point at (0, 1, 0).
Thus, if n = m or n = m +1, then C is a smooth curve. If n−m ≥ 2, then

C is singular with a unique singular point at (0, 1, 0). �
Proposition 3.2 If n = m or n = m + 1 and the hypotheses of Lemma 3.1
are satisfied, then C is Brody hyperbolic on K for all n ≥ 3.

Proof Consider the 1-form defined by (9). Since C is smooth, then by Lemma
3.1, if one of the expressions of η is regular, we can conclude that the other
expressions are also regular. Let

π : K
3 \ {(0, 0, 0)} =⇒ P

2(K)
(X, Y, Z) �−→ [X : Y : Z],

where [X : Y : Z] := { (λX, λY, λZ) | λ ∈ K∗ = K \ {0}}. Note that η is
regular on π−1(C). Then the 1-form

ω :=
W (X, Z)

Zn−mQ′(Y, Z)
Zn−3 = Zn−3η,

is a well-defined rational regular 1-form on C if n ≥ 3. Thus, if n ≥ 4, then
for any homogeneous polynomial R(X, Y, Z) of degree n − 3, the 1-form ω :=
R(X, Y, Z)η, is regular on C and vanishes along {(X, Y, Z)|R(X, Y, Z) = 0}.
Note that the set of monomials of degree n − 3 in X, Y, Z is a basis of the
vector space of homogeneous polynomials of degree n − 3. This basis only has
(n−1)(n−2)

2 vectors. Hence, the genus of C is

g =
(n − 1)(n − 2)

2
,

Therefore, C is Brody hyperbolic if n ≥ 3. �

Remark 3.3 We also require that the 1-form defined by (9) is non trivial when
it restricts to a component of π−1(C). This is equivalent to the condition that
the nominators are not identically zero when they restrict to a component of
π−1(C), i.e. the Wronskians Wi, (with i = 1, 2, 3) are not identically zero. It
means that the homogeneous polynomial defining C has no linear factor of the
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form aX − bY, aY − bZ or aX − bZ, with a, b ∈ K. Indeed, we assume on
the contrary that, for example, aX − bZ is a factor of curve C defined by (3).
Without loss of generality, we can take a �= 0. Since aX − bZ is a factor of
F (X, Y, Z), we have

0 = F (
b

a
Z, Y, Z) = Zn{P (

b
aZ

Z
) − Q(

Y

Z
)} = Zn{P (

b

a
) − Q(

Y

Z
)},

and then we obtain P ( b
a ) ≡ Q(Y

Z ) for all Y, Z. It is impossible.

Proposition 3.4 If n ≥ m + 2 and the hypotheses of Lemma 3.1 are satisfied,
then C is Brody hyperbolic on K for all m ≥ 3.

Proof Since n ≥ m + 2 by Lemma 3.1, we conclude that C is singular with a
unique singular point at (0, 1, 0). Considering the 1-form defined by (9)

η =
W (Y, Z)
P ′(X, Z)

=
W (X, Z)

Zn−mQ′(Y, Z)

=
W (X, Y )∑n−1

i=0 (n − i)aiXiZn−1−i − ∑m′
j=0(n − j)bjY jZn−1−j

.

Due to Remark 3.3, we deduce that η is not identically zero when it restricts
to a component of π−1(C) and it is not regular on C. We take

ξ :=
Zn−mW (Y, Z)

P ′(X, Z)
=

W (X, Z)
Q′(Y, Z)

=
Zn−mW (X, Y )∑n−1

i=0 (n − i)aiXiZn−1−i − ∑m′
j=0(n − j)bjY jZn−1−j

= Zn−mη.

Then, ξ is regular on π−1(C) because the denominators of ξ have no common
zeros. Therefore

ω :=
W (X, Z)
Q′(Y, Z)

Zm−3 = Zm−3ξ,

is well-defined on C, regular and vanishing along (n − 3){Z = 0}. This implies
that, if m ≥ 3, then ω is a 1-form of Wronskian type on C.

If m = 3 then ω = ξ is a linear independent regular 1-form of Wronskian
type on the curve C.

If m ≥ 4, we take R1, R2, . . . , R (m−2)(m−1)
2

as a basis of monomials of degree
m − 3 in {X, Y, Z}, then

{Riω|i = 1, 2, . . . ,
(m − 2)(m − 1)

2
},
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are linearly independent and global regular 1-forms of Wronskian type on the
curve C. Thus, the genus gC of C is

gC ≥ (m− 2)(m − 1)
2

.

Therefore, C is Brody hyperbolic if m ≥ 3. �
Next, we recall some notations. Let C be a curve on K defined by a homo-

geneous polynomial F (X, Y, Z) = 0 and let ρ be a point of C. A holomorphic
map

φ = (φ1, φ2, φ3) : 	ε = {t ∈ K||t| < ε} −→ C,

with φ(0) = ρ, is referred to a holomorphic parameterization of C at ρ. Local
holomorphic parameterization always exists for sufficiently small ε. If φ is a
local holomorphic parameterization of C at ρ, then the Laurent expansion of
F ◦ φ(t) at ρ has the form

F ◦ φ(t) =
q∑

i=p

cit
i, cp �= 0, p < q < ∞.

The order of F at ρ, (it is also the order of F ◦ φ(t) at t = 0) is defined by p
and denoted by

p := ordρ,φF = ordt=0F (φ(t)).

Assume that ϕ(x, y) is an analytic function in x, y and it is singular at ρ = (a, b).
The Puiseux expansion of ϕ(x, y) at ρ is given by

x − a =
∞∑

i=0

aα+it
α+i, y − b =

∞∑
j=0

bβ+jt
β+j ,

ϕ

(
a +

∞∑
i=0

aα+it
α+i, b +

∞∑
j=0

bβ+jt
β+j

)
= 0.

The α (respectively, β) is the order (also the multiplicity number) of x at ρ,
(respectively, the order of y at ρ) for ϕ and is denoted by

α := ordρ,ϕx (respectively, β := ordρ,ϕy).

We now have the following result

Proposition 3.5 Let P be a nonlinear polynomial of degree n ≥ 4 and Q =
b2y

2 +b1y+b0,whereb2 �= 0 and C a projective curve defined by (3). If P (αi) �=
Q(β) for all zeros αi of P ′ and β of Q′ defined by (4), then C is Brody hyperbolic
on K for all n ≥ 4.
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Proof Since n ≥ 4 and m = 2, by Lemma 3.1, we conclude that C is singular
with a unique singular point at (0, 1, 0). Considering polynomial

H(X, Z) := F (X, 1, Z) =
n∑

i=0

an−iX
n−iZi−Zn−2(b2 + b1Z + b0Z

2), with an, b2 �= 0.

Since polynomial H(X, Z) is singular at (0, 0), by the Newton diagram of the
Puiseux expansion of H at (0, 0), we have

ord0,HX =
n − 2

d
, ord0,HZ =

n

d
,

where d is the greatest common divisor of n and n − 2.
It follows from (9) that

η =
W (Y, Z)
P ′(X, Z)

=
W (X, Z)

Zn−2(2b2Y + b1)

=
W (X, Y ){∑n−1

i=0 (n − i)aiXiZn−1−i

}
− Zn−3(b2Y 2 + b1Y Z + b0Z2)

.

By Remark 3.3, η is non trivial on C. The η is regular on π−1(C\{Z = 0})
because the denominators of η have no common zeros for Z �= 0. Let

ω := Zn−3η =
W (X, Z)

Z(2b2Y + b1)
.

By the proof above, ω is regular on π−1(C\{Z = 0}). In C
⋂{Z = 0},

the denominators of ω only vanish at ρ = (0, 1, 0). Note that at this point
H(X, Z) = F (X, 1, Z) is singular, and therefore

ordt=0ω = ordt=0W (X, Z) − ord0,HZ

= ordt=0(XdZ − ZdX) − ord0,HZ

=
n − 2 − d

d
.

Since d = (n, n − 2), it follows that either d = 1 or d = 2. If d = 1, then
ordt=0ω = n − 3. If d = 2, then ordt=0ω = n−4

2
.

Consequently, if n ≥ 4, then ω is a non trivial well-defined regular 1-form
of Wronskian type on C and the curve C is Brody hyperbolic. �

We now consider the case when the curve C is singular in P2(K)\{Z = 0}.
From Lemma 3.1, the curve C is only singular in P2(K)\{Z = 0} at

(αi, βj, 1), with α1, . . . , αk are distinct zeros of P ′ and β1 , . . . , βl are distinct
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zeros of Q′. By (4),(5), the distinct zeros α1, . . ., αk of P ′ have multiplicities
n1, . . . , nk and the distinct zeros β1 , . . ., βl of Q′ have multiplicities m1, . . . ,
ml . Let

Γ := {(αi, βj, 1) be singular points of C},
Δ := {αi|(αi, βj , 1)be singular points of C}

and
Λ := {βj |(αi, βj , 1)be singular points of C}.

Setting I = #Δ, J = #Λ, then we have k ≥ I and l ≥ J. Without loss of
generality, we can take

Δ = {α1, . . . , αI}, Λ = {β1, . . . , βJ}.

Assume that P satisfies the separation condition. Then, we conclude J ≥ I and
for every j, j = 1, 2, . . . , J, there exists a unique value ij such that (αij , βj, 1)
is a singular point of C (these αij can be equal to each other). Hence,

Γ = {(αij , βj, 1)|j = 1, 2, . . . , J}, with l ≥ J. (10)

Let
Hj = a(X − αijZ) + b(Y − βjZ), with a, b �= 0.

We obtain Hj(αij , βj, 1) = 0. Putting

ξ :=
H

sj

j

(Y − βjZ)mj
W (X, Z), for sj = max{nij , mj},

it follows that ξ is regular on C. Therefore, from (9) we obtain

ξ =
mbmZn−mH

sj

j

∏l
j �=t (Y − βtZ)mt

nan

∏k
ν=1 (X − ανZ)nν

W (Y, Z).

Note that P satisfies the separation condition, then (αν, βj , 1) /∈ C with ν �= ij .

On the other hand, ordρ,φH
sj

j = sj ≥ nij , mj and hence ordρ,φ
H

sj
j

(X−αij
Z)

nij
≥

0, for ρ = (αij , βj, 1).
Now, we set

ζ :=

∏J
j=1 H

sj

j

Q′(Y, Z)
W (X, Z).

Then ζ is regular on C. Let

ω := {
J∏

j=1

H
sj

j }Zn−∑ J
j=1 sj−3η = Zm−∑ J

j=1 sj−3ζ,
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we can easily see that ω is a non trivial, well-defined regular 1-form of Wron-
skian type on C and the curve C is Brody hyperbolic if m − ∑J

j=1 sj ≥ 3.
We can summarize these facts in the following result.

Proposition 3.6 Let P (z) and Q(z) (defined by (1)) be two nonlinear polyno-
mials of degrees n, m, respectively, with n ≥ m, and let P satisfy the separation
condition. Suppose that Γ = {(αij , βj , 1)|j = 1, 2, . . . , J} (defined by (10))
is the set of singular points of C . Then the curve C is Brody hyperbolic if
m − ∑I

j=1 sj ≥ 3, with sj = max(nij , mj), j = 1, 2, . . . , J.

Lemma 3.7 Let P (z) and Q(z) be two polynomials defined by (1) and P satisfy
the separation condition. Let Γ := {(αi, βj , 1)|j = 1, 2, . . . , J} be the set of
singular points of C. If mj − ni ≥ 2 at all points ρij = (αi, βj, 1), then C is
Brody hyperbolic.

Proof The condition of Lemma 3.7 implies that the curve C is singular at any
point ρij and mj ≥ 3. Let

ζ :=
(X − αiZ)mj−2

(Y − βjZ)mj
W (X, Z)

be a well-defined rational 1-form on C. It follows from (9) that

ζ =
mbmZn−m(X − αiZ)mj−2 ∏l

1=t �=j (Y − βtZ)mt

nan

∏k
ν=1 (X − ανZ)nν

W (Y, Z)

=
mbmZn−m(X − αiZ)mj−ni−2

nan

∏k
i �=ν=1 (X − ανZ)nν

nan

∏k
i �=ν=1 (X − ανZ)nν

W (Y, Z).

The first expression implies that all poles of ζ must belong to C
⋂{Y = βj}.

The second expression implies that all poles of ζ must belong to C
⋂{X = αν}

for all ν �= i. Since P satisfies the separation condition, we can conclude that
Q(βj) = P (αi) �= P (αν) for all ν �= i. This shows that ζ is regular on C if
mj − ni ≥ 2. The proof of the lemma is now complete. �
Proof of Theorem 2.1 It follows immediately from Proposition 3.2, 3.4 and
3.5. �
Proof of Theorem 2.2 By (9), we see that

η =
W (Y, Z)

nan

∏k
ν=1 (X − ανZ)nν

=
W (X, Z)

mbmZn−m
∏l

t=1 (Y − βtZ)mt
.

Set

θ :=
W (X, Z)

(Y − β1Z)2
.
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We then have

θ =
mbmZn−m(Y − β1Z)m1−2 ∏l

t=2 (Y − βtZ)mt

nan

∏k
ν=1 (X − ανZ)nν

W (Y, Z).

Since (αi, β1, 1) /∈ C with for all αi, we see that θ is a well-defined regular
1-form of Wronskian type on C, proving the first assertion of the theorem.

Similary, let

ξ :=
W (X, Z)

(Y − β1Z)(Y − β2Z)
.

Then ξ is a well-defined regular 1-form of Wronskian type on C and therefore
the second assertion of theorem is proved. �

Proof of Theorem 2.3 By applying Proposition 3.6 and Lemma 3.7, the
Theorem is followed. �
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