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Abstract

In this paper, we study the existence of non constant meromorphic
solutions f and g of the functional equation P(f) = Q(g), where P(z)
and Q(z) are two given nonlinear polynomials with coefficients in the
non-Archimedean field K.

1. Introduction

The Tenth problem of Hilbert is asked to establish an algorithm for finding
all integer solutions of F(z,y) = 0, where F(z,y) is a polynomial with integer
coefficients. It is natural to study the analogous of Hilbert’s Tenth problem
in the field of meromorphic functions. More specifically, we ask what forms of
equation F(z,y) = 0, where F(z,y) is a polynomial with complex coefficients,
may or may not have non constant meromorphic functions f and g that satisfy
F(f,g) = 07 Earlier in 1920s, as a simple application of his value distribution
theory, Nevanlinna proved that a non constant meromorphic function ( in the
complex plane) is uniquely determined by the inverse image of five distinct val-
ues (including infinity), ignoring multiplicity. Gross [11] extended this study by
considering pre-images of a set and posed the question: Is there a finite set A so
that an entire (meromorphic) function is uniquely determined by the pre-image
of the set A, counting multiplicities? Let f be a non-constant meromorphic
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16 The p-adic field case of the functional equation P(f) = Q(g)

function and S be a subset of distinct elements. Define

E;(S) = U {(z,m)| f(z) = a with multiplicity m}.
acsS

Two functions f and g of the same type are said to share S, counting multi-
plicity, if Er(S) = E4(S). A subset S is called a unique range set ( a URS in
short) for entire (or meromorphic) functions if for any two non-constant entire
(or meromorphic) functions f and g such that E;(S) = E4(S), one has f=g.
Assume that S be a finite set, we set :

Ps(z) = H (x — a).

a€S

As a connection to the study of the uniqueness problem, Li and Yang [3] intro-
duced the following definition:

Definition 1 A non-constant polynomial P(z) is said to be a unique polyno-
mial for entire (or meromorphic) functions if for two non-constant entire (or
meromorphic) functions f and g, P(f) = P(g) implies that f = g.

P(z) is said to be a strong uniqueness polynomial for entire (or meromorphic)
functions if for two non-constant entire (or meromorphic) functions f, g and
some nonzero constant ¢, the condition P(f) = ¢P(g) implies that ¢ = 1 and
f=g

To demonstrate that the finite set S be a URS for entire (or meromorphic)
functions, we prove that the polynomial Ps(z) is a strong uniqueness poly-
nomial. If P is a strong uniqueness polynomial for entire (or meromorphic)
functions, then the set of the zeros of P can be a URS.

Recently, H.H. Khoai and C.C. Yang [1] generalized the above studies by
considering a pair of two nonlinear polynomials P(z) and Q(z) such that the
only meromorphic solutions f, g satisfying P(f) = Q(g) are constants. This
problem is considered in the complex plane C by H.H. Khoai and C.C. Yang
[1] as well as by C.C. Yang and P. Li [2].

In this paper, we find the conditions for the existence of non-constant mero-
morphic function solutions f and g of the functional equation P(f) = Q(g) in
K with K being an algebraically closed field, complete for a non-trivial non-
Archimedean absolute value. To solve the functional equation, we study the
hyperbolicity of the algebraic curve { P(xz) —Q(y) = 0} by estimating its genus.
We shall do this by giving sufficiently many linear independent regular 1-forms
of Wronskian type on that curve.

2. Main theorems

Theorem 2.1 Let P(z) and Q(z) be two nonlinear polynomials of degrees n
and m, respectively, with n > m. Suppose that P(a) # Q(B) for all zeros «
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of P' and B of Q'. Then there exist no non-constant meromorphic functions f
and g such that P(f) = Q(g), if n and m satisfy the following condition:

n>m2>2and n > 3.

Theorem 2.2 Let P(z) and Q(z) be two nonlinear polynomials of degrees n
and m, respectively. Then there exrist no non-constant meromorphic functions
f and g such that P(f) = Q(g) provided that P and Q satisfy one of the
following conditions:

1.There exists a zero 31 of Q' with multiplicity my at least 2 and P(a) #
Q(B1), for all zeros o of P'.

2. There exists two simple zeros 31, B2 of Q' such that P(a) # Q(5;) for all
zeros o of P! and i =1,2.

Definition 2 Let P(z) be a nonlinear polynomial of degree n whose derivative
is given by:
P(z)=clz—a))™...(z — a)",
where ny + -+ ng = n—1and a; , ..., ag are distinct zeros of P’. The
number k is called the derivative index of P.
A polynomial P(z) is said to satisfy the condition of separating the roots of
P’ (separation condition) if P(a;) # P(oy) for all k> i # j > 1.

Theorem 2.3 Let P(z) and Q(z) be two polynomials defined by (1) and let P
satisfy the separation condition. Suppose that 31, ..., 3 are distinct zeros of Q'
with multiplicity m;, respectively, such that for every B;, j=1,2,...,J, there
exists zeros oy of P’ with P(a;) = Q(B;). Then there exist no non-constant
meromorphic functions f and g such that P(f) = Q(g) if

J
m—ij > 3.
j=1

Remark 2.4 In case deg P = deg @ = 2, the equation P(f) = Q(g) has some
non-constant meromorphic functions. Indeed, in this case we can rewrite the
equation P(f) = Q(g) in the form:

(f —a)? = (bg — ¢)* +d,
where a,b,c,d € K and b # 0. Hence
(f—bg—a+c)(f+bg—a—c)=d.
Assume that h is a non-constant meromorphic function, we set

1 d 1 d c

Then f and g are non-constant meromorphic solutions of equation P(f) = Q(g).
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3. Lemmas and Proofs

Let K be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value with characteristic zero. Suppose that H(X,Y, Z) is a homoge-
neous polynomial of degree n and

C:={(X,Y,2) e P*(K)|H(X,Y,Z) = 0}.

Denote
X Y
Wy =W(X,Y) = AX dY"
Y Z
WQ:W(Y,Z):’dY dZ"
X Z
Wy =W(X,Z) = AX dZ"

Assume that R(X,Y, Z) and S(X,Y, Z) are two homogeneous polynomials in
P2(K).Let

R(X,Y,7)
S(X,Y.2)

with ¢ =1,2,3. If R(X,Y, Z) and S(X,Y, Z) satisfy degS = degR + 2, then w;
is a well-defined rational 1-form on P?(K).
Definition 3 Let C be an algebraic curve in P?(K). An 1-form w on C is said
to be regular if it is the pull-back of a rational 1-form on P?(KK) such that the
pole set of w does not intersect C. A well-defined rational regular 1-form on C
is said to be an I-form of Wronskian type.

Notice that to solve the functional equation P(f) = Q(g), is the same
as to find meromorphic functions f,g on K such that (f(z),g(z)) in curve
{P(z) — Q(y) = 0}. On the other hand, if C' is hyperbolic on K and suppose
that f, g be meromorphic functions such that (f(2),g(z)) € C, where z € K,
then f and g are constant (see.[6]). Therefore, to show that this equation has no
non-constant solutions, we shall prove the hyperbolicity of {P(z) — Q(y) = 0}.
By Picard-Berkovich’s theorem in the p-adic case, a curve C in K is Brody
hyperbolic if and only if the genus of the curve C' is at least 1.

It is well-known that the genus g of a algebraic curve C is equal to the
dimension of the space of regular 1-forms on C. Therefore, to compute the
genus, we have to construct a basis of the space of regular 1-forms on C.

Now, let P and @ be two nonlinear polynomials of degrees n and m in K,
respectively, with

Wi,

Wi =

Px)=anx" +...+ a12 + ao
Q) =bmy™ + ...+ b1y + bo. (1)

Without loss of generality, we assume that m > n. Set

Fi(z,y) :== P(z) — Q(y),
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X Y
FX,Y,Z2):=Z"<P(=)—-Q(=) ¢. 2
vz)=2{P) -y} @
C = {(X,Y, 2) € P(K) |F(X,Y, Z) = 0}. (3)
We conclude

P'(z) = na "' + - 4+ 2027 + a1 = nay (v —a)™ - (x — o)™, (4)
Q'(y) = mbuy™ ! 4+ 2byy + by = mbi(y — B1)™ - (y = /)™, (5)
where ny +...+np=n—1, mi+...+m; =m—1,ay, ..., o) are distinct

zeros of P’; and f31, ..., B are distinct zeros of @QQ’. Define

PX,2):= 2" P(5) s QY. 2) = 27 Q ()

Then
OF
— =P(X,Z
19,4 (X 2),
OF e
v -7 "mQ(Y, Z),
OF ' . ion—1—i s . i n—1—j
7= Z(n—z)aiX Z —Z(n—])ijJZ 7,
i=0 =0
where
, n—1 if n=m
m =
m if n>m.

Then, by Euler’s theorem, for all points (X,Y, Z) € C, we have

OF oF oF

The equation of the tangent space of C' at the point (X,Y, Z) € C is defined

by
OF OF OF
8—XdX+ 8—YdY+8—ZdZ:O. (7)

From (6) and (7), we obtain

Y Z
oOF dY dZ| oF

X " |X Y|z’
dX dy

zZ X
oF dZ dX|oF
oy X Yoz
dX dYy
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Hence, we have
W(Y,2) W(ZX) W(XY)

oF ~— ~ 9F ~—  9F (8)
0X oy EA
Set
WY, Z)  W(Z,X)  W(X,Y)
T=ToF T T oF T T OF
X oy EA
we obtain
W,z WX, 2)
"TP(X.7)” 77mQY, 2)
XY
S— X o)

Yo (n—d)ai XiZn1mi = Y (= )by YIZn 1

In order to prove the main results, we need the following lemmas.

Lemma 3.1 Let P and @ be two nonlinear polynomials of degrees n and
m,respectively, (defined by (1)) with n > m, and let C be a projective curve
defined by (3). If P(a;) # Q(B;) for all zeros oy of P' and B; of Q', (defined
by (4),(5)), then we have the following assertions:

1. If n=m orn=m+ 1, then C is non-singular in P?(K).

2. If n —m > 2, then the point (0,1,0) is a unique singular point of C in
P%(K).
Proof By the hypothesis of the lemma, P(«a;) # Q(8;) for all zeros «; of P’
and 3; of Q',we conclude that C' is non-singular in P?(K) \ {Z = 0}. Now we
consider the singularity of C' in {Z = 0}.Assume that (X,Y,0) is a singular
point of C. We obtain

O (x.v.0)=0: 2 (x,v,0) = 0: 20 (x,v.0) = 0 amd F(X,Y.0) =0,
We consider the following three cases:

If n = m, then

na, X" =0
nb, Y"1 =0
1 X" P —b, Y"1 =0
a, X" — b, Y™ =0,
has no root in P?(K). If n = m + 1, then
na, X" 1 =0
anX™ —b, Y"1 =0
a, X" =0,
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has no root in P?(K).
If n — m > 2, then

na, X" =0
a1 X" 1=0

a, X" =0,

has a unique root (0,1,0) in P?(K) and C is singular with a unique singular
point at (0,1,0).

Thus, if n = m or n = m+1, then C' is a smooth curve. If n —m > 2, then
C' is singular with a unique singular point at (0, 1,0). O

Proposition 3.2 If n = m or n=m+1 and the hypotheses of Lemma 3.1
are satisfied, then C' is Brody hyperbolic on K for all n > 3.

Proof Consider the 1-form defined by (9). Since C' is smooth, then by Lemma
3.1, if one of the expressions of 7 is regular, we can conclude that the other
expressions are also regular. Let

7: K3\ {(0,0,0)} = P?(K)
(X,Y,Z2)— [X:Y : Z],

where [X :Y : Z]:={ (AX,A\Y,;\Z) | A € K* = K\ {0}}. Note that 7 is
regular on 7~1(C). Then the 1-form

W(X,2)

= Zn—3 — Zn—B
YT Qv 7) "

is a well-defined rational regular 1-form on C if n > 3. Thus, if n > 4, then
for any homogeneous polynomial R(X,Y, Z) of degree n — 3, the 1-form w :=
R(X,Y,Z)n, is regular on C and vanishes along {(X,Y, Z)|R(X,Y,Z) = 0}.
Note that the set of monomials of degree n — 3 in X,Y, Z is a basis of the
vector space of homogeneous polynomials of degree n — 3. This basis only has
w vectors. Hence, the genus of C' is

(n—1)(n-2)
nga

Therefore, C' is Brody hyperbolic if n > 3. O

Remark 3.3 We also require that the 1-form defined by (9) is non trivial when
it restricts to a component of 7=1(C). This is equivalent to the condition that
the nominators are not identically zero when they restrict to a component of
7-1C), i.e. the Wronskians W;, (with i = 1,2,3) are not identically zero. It
means that the homogeneous polynomial defining C' has no linear factor of the
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form aX — bY, aY — bZ or aX — bZ, with a,b € K. Indeed, we assume on
the contrary that, for example, aX — bZ is a factor of curve C defined by (3).
Without loss of generality, we can take a # 0. Since aX — bZ is a factor of
F(X,Y,Z), we have

b
0=rlzv.z)=2(P(20) - oy = zp) - oLy,

and then we obtain P(g) =Q( %) for all Y, Z. It is impossible.

Proposition 3.4 If n > m+ 2 and the hypotheses of Lemma 3.1 are satisfied,
then C is Brody hyperbolic on K for all m > 3.

Proof Since n > m + 2 by Lemma 3.1, we conclude that C' is singular with a
unique singular point at (0, 1,0). Considering the 1-form defined by (9)

W2 | WX, 2)
TS P(X,2) T 77mQ(Y, 2)
W(X,Y)

S (n—i)a; X1 Zn 1=t — S (n— )b Y I Zn—1md

Due to Remark 3.3, we deduce that 7 is not identically zero when it restricts
to a component of 771(C) and it is not regular on C. We take

ZTW(Y,Z)  W(X,2)

STTPX2) T QM)
_ ZnmW(X,Y)
Yo (n—i)a; X1 Zn=1= = S (0 — j)b; YT Zn =10
=Z"""y.

Then, ¢ is regular on 71 (C) because the denominators of ¢& have no common
zeros. Therefore
X, Z
W= W( ) )Zm—:} — Zm—Bé-,
QY. 2)
is well-defined on C, regular and vanishing along (n — 3){Z = 0}. This implies
that, if m > 3, then w is a 1-form of Wronskian type on C.
If m = 3 then w = £ is a linear independent regular 1-form of Wronskian
type on the curve C.
If m > 4, we take Ry, R, ..., R(m_2)tm-1) as a basis of monomials of degree
2

m —3in {X,Y, Z}, then

(m—2)(m—1)

{Rwli=1,2,..., 5 1,
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are linearly independent and global regular 1-forms of Wronskian type on the
curve C. Thus, the genus g of C' is

m—2)(m-—1
Therefore, C' is Brody hyperbolic if m > 3. O

Next, we recall some notations. Let C' be a curve on K defined by a homo-
geneous polynomial F(X,Y,;Z) = 0 and let p be a point of C. A holomorphic
map

¢ = (01,02, 93) : Ae = {t € K[t| < e} — C,

with ¢(0) = p, is referred to a holomorphic parameterization of C' at p. Local
holomorphic parameterization always exists for sufficiently small €. If ¢ is a
local holomorphic parameterization of C' at p, then the Laurent expansion of
F o ¢(t) at p has the form

q
Fog(t) =) cit', ¢, #0, p<q<oc.
i=p

The order of F at p, (it is also the order of F o ¢(t) at ¢ = 0) is defined by p
and denoted by

p:=ord, oF = ordi=o F(¢(t)).

Assume that ¢(z, y) is an analytic function in z, y and it is singular at p = (a, b).
The Puiseux expansion of ¢(z,y) at p is given by

o0 o0
z—a=Y aapt"", y—b=> bayt",
i=0 i=0

o0 o0
¥ (CL + Z Aot T b+ Z bgﬂtﬂﬂ) =0.
§=0

i=0
The « (respectively, () is the order (also the multiplicity number) of z at p,
(respectively, the order of y at p) for ¢ and is denoted by

a:=ord,,x (respectively, 8 :=ord, ,y).

We now have the following result

Proposition 3.5 Let P be a nonlinear polynomial of degree n > 4 and Q =
bay? + b1y +bo, whereby # 0 and C a projective curve defined by (3). If P(a;) #
Q(B) for all zeros a; of P’ and 8 of Q' defined by (4), then C is Brody hyperbolic
on K for alln > 4.
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Proof Since n > 4 and m = 2, by Lemma 3.1, we conclude that C' is singular
with a unique singular point at (0, 1,0). Considering polynomial

H(X,Z):=F(X,1,2) = an_i X" " Z'=Z"2(by + b1 Z + by Z?), with a,, by # 0.
1=0

Since polynomial H (X, Z) is singular at (0,0), by the Newton diagram of the
Puiseux expansion of H at (0,0), we have

n—2
d )

0rd07HX = Ord07HZ =

3

al3

where d is the greatest common divisor of n and n — 2.
It follows from (9) that

W(Y, Z)

P/(X,Z)
W(X,Z)

Z7=2(2byY + by)

W(X,Y)

{ Z:L:_Ol(?’l — ’L')CLl'XiZn_l_i} — Zn—3(b2Y2 + b1YZ + b0Z2)

By Remark 3.3, 1 is non trivial on C. The 7 is regular on 7= 1(C\{Z = 0})
because the denominators of 77 have no common zeros for Z # 0. Let

_ W (X, Z)
="y = —
@ 1T Z@bY 1 by)

By the proof above, w is regular on 7= 1(C\{Z = 0}). In C{Z = 0},
the denominators of w only vanish at p = (0,1,0). Note that at this point
H(X,Z) = F(X,1, Z) is singular, and therefore

ord;—ow = ord;=W (X, Z) — ordy g Z
= ordy=o(XdZ — ZdX) — ordo,u Z
n—2—d
-

Since d = (n,n — 2), it follows that either d = 1 or d = 2. If d = 1, then
ordi—ow = n — 3. If d = 2, then ord;—ow = 252
Consequently, if n > 4, then w is a non trivial well-defined regular 1-form
of Wronskian type on C' and the curve C is Brody hyperbolic. O
We now consider the case when the curve C is singular in P?(K)\{Z = 0}.
From Lemma 3.1, the curve C is only singular in P2(K)\{Z = 0} at

(e, B5,1), with aq, ..., oy are distinct zeros of P’ and f1, ..., §; are distinct
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zeros of Q'. By (4),(5), the distinct zeros aj, ..., aj of P’ have multiplicities
ni, ..., ng and the distinct zeros 3 , ..., §; of Q' have multiplicities myq, ...,
m;. Let

I := {(a, B5, 1) be singular points of C'},
A = {a;|(as, B, 1)be singular points of C'}

and
A :={5;|(as, B;, 1)be singular points of C'}.

Setting I = #A, J = #A, then we have £k > I and | > J. Without loss of
generality, we can take

A:{Oél,---,a[},A:{61,---,6J}-

Assume that P satisfies the separation condition. Then, we conclude J > I and
for every j, j =1,2,...,J, there exists a unique value i; such that (a,, 3;,1)
is a singular point of C' (these «;; can be equal to each other). Hence,

T = {(a,, 35, 1)]j =1,2,...,J}, with 1 >J. (10)

Let
Hj =a(X — i, 2) +b(Y — 3;Z), with a,b#0.

We obtain H; (Oél'j,ﬁj, 1) = 0. Putting

H97
Ei=—2——W(X,Z2), for s; =maz{n;,,m;},
it follows that £ is regular on C. Therefore, from (9) we obtain
n—m [ySi l me
_ mby Z" " H Y [T, (Y — B Z)
NGy, H];:1 (X —a, Z2)™

W(Y, 2).

Note that P satisfies the separation condition, then (v, 5;,1) ¢ C with v # ;.
. Hsj
On the other hand, ord, ¢ H;” = s; > n;;,m; and hence ord :

pd (X_Oli.j Z)"ij Z
Oa for p= (ai]‘aﬁja 1)
Now, we set

J Sj
o 5
HJ—#{/{/(X, 7).

=R 2)

Then ( is regular on C. Let

J
W= {H H;7}Zn—z;]:1 5_7—37,] _ erL—Z_;]:1 3_7—3<,
j=1
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we can easily see that w is a non trivial, well-defined regular 1-form of Wron-
skian type on C and the curve C' is Brody hyperbolic if m — ijl 55 > 3.
We can summarize these facts in the following result.

Proposition 3.6 Let P(z) and Q(z) (defined by (1)) be two nonlinear polyno-
mials of degrees n, m, respectively, with n > m, and let P satisfy the separation
condition. Suppose that T' = {(ay,;, 8;,1)|j = 1,2,...,J} (defined by (10))
is the set of singular points of C' . Then the curve C is Brody hyperbolic if
m— Z§:1 55 > 3, with s; = max (n;;, m;),j =1,2,...,J.

Lemma 3.7 Let P(z) and Q(z) be two polynomials defined by (1) and P satisfy
the separation condition. Let T' := {(ay, 8;,1)|j = 1,2,...,J} be the set of
singular points of C. If m; —n; > 2 at all points p;; = (e, B4,1), then C is
Brody hyperbolic.

Proof The condition of Lemma 3.7 implies that the curve C' is singular at any
point p;; and m; > 3. Let

(X — a;Z)mi—2

“=Tw =g VY

be a well-defined rational 1-form on C. It follows from (9) that

mbyn 27X — 0, Z)™ P Ty (Y = B 2)™
- nan H];:1 (X —a,2)™

Mby 2™ X — ;. Z)™ " *nay, Hi;u:l (X —a,2)™
- nan [y (X — 0, 2)™

W(Y, Z)

W(Y, Z).

The first expression implies that all poles of ¢ must belong to C({Y = g;}.
The second expression implies that all poles of ¢ must belong to C({X = «a,}
for all v # i. Since P satisfies the separation condition, we can conclude that
Q(B;) = P(oy) # P(ay) for all v # i. This shows that ¢ is regular on C' if
m; —n; > 2. The proof of the lemma is now complete. O

Proof of Theorem 2.1 It follows immediately from Proposition 3.2, 3.4 and
3.5. O

Proof of Theorem 2.2 By (9), we see that

W(Y, Z) W(X,Z)
n= — = —.
nan [l (X =, )™ mbp Z7="[\_, (Y — 3,2)

Set
W(X,Z)

S
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We then have
Mby Z"(Y = B Z)™ P, (Y — 8:2)™
nan, Hﬁ:l (X —a,Z2)™

0= WY, Z).
Since (;,01,1) ¢ C with for all «;, we see that 6 is a well-defined regular
1-form of Wronskian type on C, proving the first assertion of the theorem.

Similary, let
£ e W(X,2)

(Y =82)(Y - B2)

Then € is a well-defined regular 1-form of Wronskian type on C' and therefore
the second assertion of theorem is proved. ([

Proof of Theorem 2.3 By applying Proposition 3.6 and Lemma 3.7, the
Theorem is followed. U
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