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Abstract

This note is a short survey consisting of some results on the topic
published by the author in a series of papers during the last fifteen years.
But, in contrast to these papers in which general algebraic systems of
different kinds are investigated independently, the note uses a unified,
relational approach in which these systems are considered and investi-
gated as special relational systems. The results show that diagonality
plays an important role when studying powers (i.e., function spaces) of
general algebraic systems because it ensures well behaviour of the powers.

0 Introduction

Given ordered sets G = (G,≤) and H = (H,≤), the Birkhoff’s direct (i.e.,
cardinal) power of G and H is the ordered set GH = (F,≤) where F is the
set of all homomorphisms of H into G and, for any pair f, g ∈ F , f ≤ g if
and only if f(y) ≤ g(y) for each y ∈ H (see [4]). Direct powers of ordered sets
behave analogously to powers of natural numbers. In particular, they fulfill the
so-called first exponential law

(GH)K ∼= GH×K
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2 Diagonality and powers of general algebraic systems

and the so-called second exponential law
∏
i∈I

GH
i

∼= (
∏
i∈I

Gi)H

where ∼= means an isomorphism and × and
∏

denote direct products.
Now, the following questions arise: Is it possible to extend direct powers,

under the validity of the usual exponential laws, to relational systems which
are more general than ordered sets? And is it possible to introduce such powers
also for partial algebras, hyperalgebras and (total) algebras? In this note we
give positive answers to these questions by describing the corresponding powers.
We will also mention the categorical meaning and possible applications of the
powers investigated.

1 Relational systems

For the proofs of the results of this paragraph see [16], [18] and [28].
Let n be a positive integer. By an n-ary relational system we understand a

pair G = (G, p) where G is a set - the so-called underlying set of G - and p is
an n-ary relation on G, i.e., p ⊆ Gn(= G × G × ...× G︸ ︷︷ ︸

n−times

). If the underlying set

of an n-ary relational system G is not given explicitly, we denote it by |G|.
Let G = (G, p), H = (H, q) be a pair of n-ary relational systems. A map

f : G → H is called a homomorphism of G into H provided that (x1, ..., xn) ∈
p ⇒ (f(x1), ..., f(xn)) ∈ q. If, moreover, f : G → H is a bijection and f−1 is a
homomorphism of H into G, then f is called an isomorphism of G onto H. If
there exists an isomorphism of G onto H, then we write G ∼= H. We denote
by Hom(G, H) the set of all homomorphisms of G into H.

The n-ary relational system G is said to be a relational subsystem of H
provided that G ⊆ H and p = q ∩ Gn.

The direct product of a family Gi = (Gi, pi), i ∈ I, of n-ary relational
systems is the n-ary relational system

∏
i∈I Gi = (

∏
i∈I Gi, q) where, for any

f1, ..., fn ∈ ∏
i∈I Gi, (f1, ..., fn) ∈ q if and only if (f1(i), ..., fn(i)) ∈ pi for

each i ∈ I. If the set I has just two elements, say I = {i1, i2}, then we write
Gi1 × Gi2 instead of

∏
i∈I Gi. If Gi = G for each i ∈ I, then we write GI

instead of
∏

i∈I Gi.
An n-ary relational system (G, p) is said to be reflexive provided that (x1, ...,

xn) ∈ p whenever x1 = x2 = ... = xn ∈ G.

Definition 1.1 Let G = (G, p), H = (H, q) be n-ary relational systems. The
power of G and H is the n-ary relational systems GH = (Hom(H, G), r) where,
for any f1, ..., fn ∈Hom(H, G), (f1, ..., fn) ∈ r if and only if (y1, ..., yn) ∈ q
implies (f1(y1), ..., fn(yn)) ∈ p whenever y1, ..., yn ∈ H . The power GH =
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(Hom(H, G), r) is said to have point-wise structure provided that (f1 , ..., fn) ∈ r
if and only if (f1(y), ..., fn(y)) ∈ p for each y ∈ H .

Clearly, the power GH of a pair of n-ary relational systems G and H has
point-wise structure if and only if it is a relational subsystem of the direct
product G|H|. It is also evident that the power GH is always reflexive. The
map e : |H| × |G||H| → |G| defined by e(y, f) = f(y) is called the evaluation
map for GH.

Proposition 1.2 For any pair G, H of n-ary relational systems, the evalua-
tion map for GH is a homomorphism of H ×GH into G.

An arbitrary set G can be considered to be the n-ary relational system
(G, ∅) (for every positive integer n). The power GH of G and H is then the
power of (G, ∅) and (H, ∅), hence the set of all maps of H into G. Given sets
G, H, K, the map f : (GH)K → GH×K given by f(g)(y, z) = g(z)(y) is said to
be canonical.

Powers of relational structures fulfill, among others, the second exponential
law ∏

i∈I

GH
i

∼= (
∏
i∈I

Gi)H

but they in general fail to fulfill the first one

(GH)K ∼= GH×K.

But the first exponential law is very important because it allows many impor-
tant applications of powers. We will therefore give a sufficient condition for the
validity of the first exponential law for n-ary relational systems.

Theorem 1.3 Let G, H, K be n-ary relational systems. If H, K are reflex-
ive, then

(GH)K ∼= GH×K

and the corresponding isomorphism is given by the canonical map.

Definition 1.4 An n-ary relational system (G, p) is said to be diagonal pro-
vided that, whenever (xij) is an n × n-matrix over G, from (xi1, ..., xin) ∈ p
for each i = 1, ..., n and (x1j, ..., xnj) ∈ p for each j = 1, ..., n it follows that
(x11, x22, ..., xnn) ∈ p.

Theorem 1.5 Let G, H be n-ary relational systems. If G is diagonal and H
is reflexive, then the power GH is diagonal and has point-wise structure.
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Example 1.6 It is evident that a binary relational system (G, p) is diagonal
if and only if the binary relation p is transitive. Let G, H be binary relational
systems, G diagonal and H reflexive. Then the power GH is a preordered set
and has point-wise structure. If, moreover, K is a reflexive binary relational
system, then we have

(GH)K ∼= GH×K.

Especially, if G and H are ordered sets, then GH coincides with the Birkhoff’s
direct power (and hence GH is an ordered set too).

2 Partial algebras

Most of the statements of this paragraph immediately follow from results of
[27], [30] and [31].

An n-ary partial algebra is an (n+1)-ary relational system G = (G, p) such
that from (x1, ..., xn, y) ∈ p and (x1, ..., xn, z) ∈ p it follows that y = z. The
(n + 1)-ary relation p on G is then called an n-ary partial operation on G and
we write y = p(x1, ..., xn) instead of (x1, ..., xn, y) ∈ p.

Let G = (G, p), H = (H, q) be a pair of n-ary partial algebras. Then,
clearly, a map f : G → H is a homomorphism of G into H if and only if
p(x1, ..., xn) = x ⇒ q(f(x1), ..., f(xn)) = f(x) whenever x1, ..., xn, x ∈ G.

The n-ary partial algebra G is called a partial subalgebra of H provided
that G ⊆ H and, whenever x1, ..., xn ∈ G and x ∈ H , p(x1, ..., xn) = x ⇔
q(x1, ..., xn) = x (i.e., provided that G is a relational subsystem of H and,
whenever x1, ..., xn ∈ G and x ∈ H , from q(x1, ..., xn) = x it follows that
x ∈ G).

Of course, the direct product
∏

i∈I Gi = (
∏

i∈I Gi, q) of a family (Gi, pi), i ∈
I, of n-ary partial algebras is an n-ary partial algebra (where, for any f1, ..., fn,
f ∈ ∏

i∈I Gi, q(f1, ..., fn) = f if and only if pi(f1(i), ..., fn(i)) = f(i) for each
i ∈ I).

For n-ary partial algebras we use the term idempotent instead of reflexive.
So, an n-ary partial algebra (G, p) is idempotent provided that p(x, ..., x) = x
whenever x ∈ G.

Let G = (G, p), H = (H, q) be n-ary partial algebras and let H be idem-
potent. Then GH = (Hom(H, G), r) is an n-ary partial algebra where, for
any f1, ..., fn, f ∈Hom(H, G), r(f1, ..., fn) = f if and only if q(y1, ..., yn) = y
implies p(f1(y1), ..., fn(yn)) = f(y) whenever y1, ..., yn, y ∈ H . It is evident
that GH is idempotent. It is also clear that the power GH = (Hom(H, G), r)
has point-wise structure if and only if, for any f1, ..., fn, f ∈Hom(H, G), the
condition r(f1, ..., fn) = f is equivalent to p(f1(y), ..., fn(y)) = f(y) for each
y ∈ H .

Theorem 1.3 immediately results in
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Theorem 2.1 Let G, H, K be n-ary partial algebras. If H, K are idempo-
tent, then

(GH)K ∼= GH×K.

By Definition 1.4, an n-ary partial algebra (G, p) is diagonal provided that,
whenever (xij) is an n× n-matrix over G and x ∈ G, from p(p(x11, ..., x1n), ...,
p(xn1, ..., xnn)) = p(p(x11, ..., xn1), ..., p(xn1, ..., xnn)) = x it follows that
p(x11, x22, ..., xnn) = x.

Theorem 1.5 immediately results in

Theorem 2.2 Let G, H be n-ary partial algebras. If G is diagonal and H is
idempotent, then the power GH is diagonal and has point-wise structure.

Of course, if G, H are n-ary partial algebras, G diagonal and H idempotent,
then the n-ary partial algebra GH is a relational subsystem but not necessarily
a partial subalgebra of the direct product G|H|. We will find a condition under
which GH is a partial subalgebra of G|H|.

Definition 2.3 An n-ary partial algebra (G, p) is called medial provided that,
whenever (xij) is an n×n-matrix over G and x, x1, ..., xn ∈ G, from p(p(x11, ...,
x1n), ..., p(xn1, ..., xnn)) = x and p(x1j, ..., xnj) = xj for each j = 1, ..., n it
follows that p(x1, ..., xn) = x.

Theorem 2.4 Let G, H be n-ary partial algebras and let G be medial. Then
there exists a partial subalgebra K of the direct product G|H| such that |K| =
Hom(H, G).

Corollary 2.5 Let G, H be n-ary partial algebras. If G is both diagonal and
medial and H is idempotent, then the power GH is a medial n-ary partial
subalgebra of the direct product G|H|.

Example 2.6 (1) Let (G, r) be a binary relational system and (G, p) be the
binary partial algebra defined by

p(x, y) = z ⇔ (x, y) ∈ r and z = x

whenever x, y, z ∈ G. Then we have:
a) (G, p) is idempotent if and only if (G, r) is reflexive,
b) (G, p) is diagonal if and only if (G, r) is transitive,
c) (G, p) is medial.

(2) Let (X × Y, p) be a partial rectangular band, i.e., a partial binary al-
gebra where X, Y are sets and, whenever (x1, x2), (y1, y2), (z1, z2) ∈ X × Y ,
p((x1, y1), (x2, y2)) = (z1 , z2) if and only if x1 = z1, x2 = y1 and y2 = z2. Then
(X × Y, p) is diagonal and medial.
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3 Hyperalgebras

This paragraph is a summary of [29].
An n-ary hyperalgebra is an (n + 1)-ary relational system G = (G, p) such

that for each (x1, ..., xn) ∈ G there exists y ∈ G with (x1, ..., xn, y) ∈ p. The
(n + 1)-ary relation p on G is then called an n-ary hyperoperation on G and
we put p(x1, ..., xn) = {y ∈ G; (x1, ..., xn, y) ∈ p}. Further, if (G, p) is an
n-ary hyperalgebra and A1, ...An are subsets of G, we put p(A1, ..., An) =⋃{p(x1, ..., xn); xi ∈ Ai for each i = 1, ..., n}.

Let G = (G, p), H = (H, q) be a pair of n-ary hyperalgebras. Then,
clearly, a map f : G → H is a homomorphism of G into H if and only if
f(p(x1 , ..., xn)) ⊆ q(f(x1), ..., f(xn)) whenever x1, ..., xn ∈ G.

The n-ary hyperalgebra G is called a subhyperalgebra of H provided that
G ⊆ H and, whenever x1, ..., xn ∈ G, p(x1, ..., xn) = q(x1, ..., xn) (i.e., pro-
vided that G is a relational subsystem of H and q(x1, ..., xn) ⊆ G whenever
x1, ..., xn ∈ G).

Of course, the direct product
∏

i∈I Gi = (
∏

i∈I Gi, q) of a family (Gi, pi), i ∈
I, of n-ary hyperalgebras is an n-ary hyperalgebra (where, for any f1, ..., fn ∈∏

i∈I Gi, q(f1 , ..., fn) =
∏

i∈I pi(f1(i), ..., fn(i)).
Similarly to partial algebras, also for hyperalgebra we use the term idem-

potent instead of reflexive. So, an n-ary hyperalgebra (G, p) is idempotent
provided that x ∈ p(x, ..., x) whenever x ∈ G.

Unfortunately, given n-ary hyperalgebras G = (G, p) and H = (H, q), the
power GH need not be an n-ary hyperalgebra even if H is idempotent. We
will find conditions under which this power is an n-ary hyperalgebra (and a
subhyperalgebra of the direct product G|H|).

By Definition 1.4, an n-ary hyperalgebra (G, p) is diagonal provided that,
whenever (xij) is an n×n-matrix over G and x ∈ G, from x ∈ p(p(x11, ..., x1n),
..., p(xn1, ..., xnn)) and x ∈ p(p(x11, ..., xn1), ..., p(xn1, ..., xnn)) it follows that
x ∈ p(x11, x22, ..., xnn).

Definition 3.1 An n-ary hyperalgebra (G, p) is called medial provided that,
whenever (xij) is an n×n-matrix over G and y1, ..., yn, z1, ..., zn ∈ G, from yi ∈
p(xi1, ..., xin) for each i = 1, ..., n and zj ∈ p(x1j, ..., xnj) for each j = 1, ..., n it
follows that p(y1, ..., yn) = p(z1, ..., zn).

Theorem 3.2 Let G, H be n-ary hyperalgebras and let G be medial. Then
there exists a subhyperalgebra K of the direct product G|H| such that |K| =
Hom(H, G).

Theorem 3.3 Let G, H be n-ary hyperalgebras. If G is both diagonal and me-
dial and H is idempotent, then the power GH is a medial n-ary subhyperalgebra
of the direct product G|H|.
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Of course, the power from the previous Theorem is also idempotent and
diagonal.

Corollary 3.4 Let G, H, K be n-ary hyperalgebras and let G be medial and
diagonal and H, K be idempotent. Then GH, (GH)K and GH×K are n-ary
hyperalgebras and we have

(GH)K ∼= GH×K.

The following statement gives a useful criterion of diagonality for medial
hyperalgebras:

Proposition 3.5 Let G = (G, p) be a medial n-ary hyperalgebra. Then G is
diagonal if and only if p(p(x11, ..., x1n), ..., p(xn1, ..., xnn)) ⊆ p(x11, x22, ..., xnn)
for each n × n-matrix (xij) over G.

Example 3.6 (1) Let (G,≤) be an ordered set wit a least element 0 and let
A be the set of all atoms of (G,≤). For any x, y ∈ G put x ∗ y = {z ∈ A; z <
x, z < y} ∪ {0}. Then (G, ∗) is a hypergroupoid (i.e., a binary hyperalgebra)
which is medial and diagonal.

(2) For any point (x0, y0) of the real plane R × R put (x0, y0)¬ = {(x, y) ∈
R × R; x ≤ x0, y ≤ y0} (i.e., (x0, y0)¬ is the left lower quarter of R × R with
the vertex (x0, y0)). Further, for any pair (x1, y1), (x2, y2) of points of R × R
put (x1, y1)∗ (x2, y2) = (x1, y2)¬. Then (R×R, ∗) is a diagonal hypergroupoid.

4 Total algebras

The results of this paragraph are taken from [19], [21], [23], [24] and [26].
An n-ary (total) algebra is an (n+1)-ary relational system G = (G, p) which

is both an n-ary partial algebra and an n-ary hyperalgebra or, equivalently,
which has the property that p is an n-ary operation on G (i.e., a map p :
Gn → G). Then p(x1, ..., xn) = y is written instead of (x1, ..., xn, y) ∈ p, which
coincides with the denotation introduced for partial algebras (and, if we do
not distinguish between y and {y}, also with the denotation introduced for
hyperalgebras).

Let G = (G, p), H = (H, q) be a pair of n-ary algebras. Clearly, a map
f : G → H is a homomorphism of G into H if and only if f(p(x1, ..., xn)) =
q(f(x1), ..., f(xn)) whenever x1, ..., xn ∈ G.

The n-ary algebra G is called a subalgebra of H provided that G is a
partial subalgebra of H (or, equivalently, provided that G is a subhyper-
algebra of H). Thus, G is a subalgebra of H if and only if G ⊆ H and
p(x1, ..., xn) = q(x1, ..., xn) whenever x1, ..., xn ∈ G (i.e., if and only if G is a
relational subsystem of H such that q(x1, ..., xn) ∈ G whenever x1, ..., xn ∈ G).
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Of course, the direct product
∏

i∈I Gi = (
∏

i∈I Gi, q) of a family (Gi, pi), i ∈
I, of n-ary algebras is an n-ary algebra (where, for any f1, ..., fn, f ∈ ∏

i∈I Gi,
q(f1 , ..., fn) = f ⇔ pi(f1(i), ..., fn(i)) = f(i) for each i ∈ I).

To follow the convention introduced for partial algebras and hyperalgebras,
also for algebras the term idempotent is used instead of reflexive. So, an n-ary
algebra (G, p) is idempotent provided that x = p(x, ..., x) whenever x ∈ G.

Given n-ary algebras G = (G, p) and H = (H, q), the power GH need not
be an n-ary algebra because, by the previous paragraph, it need not be an
n-ary hyperalgebra. We will find conditions under which this power is an n-ary
algebra (and subalgebra of the direct product G|H|).

An n-ary algebra is said to be diagonal (resp. medial) provided that it is
diagonal (resp. medial) as an n-ary partial algebra or, equivalently, as an n-ary
hyperalgebra. Thus, an n-ary algebra (G, p) is

a) diagonal provided that, whenever (xij) is an n×n-matrix over G and x ∈
G, from p(p(x11, ..., x1n), ..., p(xn1, ..., xnn)) = p(p(x11, ..., xn1), ..., p(x1n, ...,
xnn)) = x it follows that p(x11, x22, ..., xnn) = x,

b) medial provided that, whenever (xij) is an n×n-matrix over G, we have
p(p(x11, ..., x1n), ..., p(xn1, ..., xnn)) = p(p(x11, ..., xn1), ..., p(x1n, ..., xnn)).

Theorem 4.1 Let G, H be n-ary algebras and let G be medial. Then there
exists a subalgebra K of the direct product G|H| such that |K| = Hom(H, G).

Theorem 4.2 Let G, H be n-ary algebras. If G is both diagonal and medial
and H is idempotent, then the power GH is a medial n-ary subalgebra of the
direct product G|H|.

Of course, the power from the previous Theorem is also idempotent and
diagonal.

Corollary 4.3 Let G, H, K be n-ary algebras and let G be medial and diago-
nal and H, K be idempotent. Then GH, (GH)K and GH×K are n-ary algebras
and we have

(GH)K ∼= GH×K.

The following statement gives useful criterions of diagonality and mediality
for algebras:

Proposition 4.4 Let G = (G, p) be an n-ary algebra. Then the following
conditions are equivalent:

(1) G is diagonal and medial,
(2) p(p(x11, ..., x1n), ..., p(xn1, ..., xnn)) = p(x11, x22, ..., xnn) for each n×n-

matrix (xij) over G,
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(3) p(p(x11, ..., x1n), x22, ..., xnn) = p(x11, p(x21, ..., x2n), x33, ..., xnn) = ... =
p(x11, ..., xn−1,n−1, p(xn1, ..., xnn)) = p(x11, x22, ..., xnn) for each n × n-matrix
(xij) over G.

Remark 4.5 a) Medial groupoids (i.e., binary algebras) are studied in [9].
b) In [13] there are studied n-ary idempotent, diagonal and medial algebras

(called briefly diagonal algebras) and it is shown that they are, up to isomor-
phisms, the n-ary algebras (X1 × ...×Xn, p) where X1, ..., Xn are sets and the
operation p is defined by p((x1

1, ..., x
1
n), ..., (xn

1 , ..., x
n
n)) = (x1

1, x
2
2, ..., x

n
n). These

algebras are special cases of the rectangular algebras discussed in [14]. Idem-
potent, diagonal and medial groupoids are usually called rectangular bands (cf.
[6]).

Example 4.6 1. Let G = (G, ·) be a groupoid. Then, by Proposition 4.4, G
is diagonal and medial if and only if x(yz) = (xy)z = xz whenever x, y, z ∈ G.
In other words, G is diagonal and medial if and only if it is a semigroup with
xyz = xz whenever x, y, z ∈ G. We have:

a) If card G = 2, then G is diagonal and medial if and only if p : G2 → G
is a constant map or a projection.

b) If G = {1, 2, 3}, then G is diagonal and medial if and only if p : G2 → G
is one of the following operations: the three constant maps, the two projections,
the six binary operations given by the following tables

p 1 2 3 p 1 2 3 p 1 2 3
1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 3 3 3 2 2 2 2
3 2 2 2 3 3 3 3 3 1 1 1

p 1 2 3 p 1 2 3 p 1 2 3
1 1 1 1 1 2 2 2 1 3 3 3
2 1 1 1 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3

and the six dual operations.
c) If G = {1, 2, 3, 4}, then G is idempotent, diagonal and medial if and only

if p : G2 → G is one of the following eight operations: the two projections, the
three binary operations given by the following tables
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p 1 2 3 4 p 1 2 3 4 p 1 2 3 4
1 1 2 1 2 1 1 2 2 1 1 1 3 3 1
2 1 2 1 2 2 1 2 2 1 2 4 2 2 4
3 3 4 3 4 3 4 3 3 4 3 1 3 3 1
4 3 4 3 4 4 4 3 3 4 4 4 2 2 4

and the three dual operations.
d) If G = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and p is given by the following

table

p 1 2 3 4 5 6 7 8 9 10 11 12
1 6 4 5 4 5 6 6 6 4 5 4 5
2 7 9 10 9 10 7 7 7 9 10 9 10
3 8 11 12 11 12 8 8 8 11 12 11 12
4 6 4 5 4 5 6 6 6 4 5 4 5
5 6 4 5 4 5 6 6 6 4 5 4 5
6 6 4 5 4 5 6 6 6 4 5 4 5
7 7 9 10 9 10 7 7 7 9 10 9 10
8 8 11 12 11 12 8 8 8 11 12 11 12
9 7 9 10 9 10 7 7 7 9 10 9 10
10 7 9 10 9 10 7 7 7 9 10 9 10
11 8 11 12 11 12 8 8 8 11 12 11 12
12 8 11 12 11 12 8 8 8 11 12 11 12,

then G is diagonal and medial.
2. Recall that a groupoid with a neutral element is called a loop provided

that it satisfies both the left and right unique division laws. A loop G is medial
if and only if it has the so-called Hamiltonian property, i.e., if and only if each
subloop of G is a block of a congruence on G.

Remark 4.7 All the previous considerations and results can be naturally ex-
tended from n-ary algebraic systems, i.e., systems of type 〈n〉, to universal alge-
braic systems of an arbitrary type 〈nk; k ∈ K〉, i.e., systems G = (G, (pk; k ∈
K)) where (G, pk) is an nk-ary relational system (or an nk-ary partial alge-
bra or an nk-ary hyperalgebra or an nk-ary algebra, respectively) for each
k ∈ K. (Homomorphisms and isomorphisms of universal algebraic systems are
defined component-wise). To do so, it suffices only to consider the reflexivity
(resp. idempotency) and diagonality component-wise and to replace the medi-
ality with the so-called interchange law. For example, for a universal algebra
G = (G, (pk; k ∈ K)) the interchange law has the form

pk(pl(x11, ..., x1nl), ..., pl(xnk1, ..., xnknl)) =
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pl(pk(x11, ..., xnk1), ..., p(x1nl, ..., xnknl))

whenever k, l ∈ K and (xij) is an nk × nl-matrix over G. (Universal algebras
fulfilling the interchange law are also called commutative in the literature - see
e.g. [10],[11]).

All considerations can also be generalized to the cases when the arities of
relations (or partial algebras or hyperalgebras or algebras, respectively) are
arbitrary sets, not only positive integers - this is the case of most of the papers
[15]-[21]. Let us note also that there are several modifications of the diagonality
of n-ary relational systems (resp. partial algebras) which give analogical results
as the diagonality - see e.g. [28] (resp. [30]).

5 Categorical point of view and applications

For the categorical terminology used in this paragraph see [1] and [2].
Recall that a category K with finite products is said to be cartesian closed

provided that, for any K-object H, the functor H × − : K → K has a right
adjoint −H, i.e., for each K-object G there exist a K-object GH and a K-
morphism e : H × GH → G such that, whenever K is a K-object and f :
H × K → G a K-morphism, there exists a unique K-morphism f∗ : K → GH

such that e ◦ (idH × f∗) = f .
Let us consider the following seven categories the morphisms in which are

given by homomorphisms:
IReln - the category of reflexive n-ary relational systems,
IDReln - the category of reflexive and diagonal n-ary relational systems,
IPaln - the category of idempotent n-ary partial algebras,
IDPaln - the category of idempotent and diagonal n-ary partial algebras,
IDMPaln - the category of idempotent, diagonal and medial n-ary partial
algebras,
IDMHypn - the category of idempotent, diagonal and medial n-ary hyperal-
gebras,
IDMAlgn - the category of idempotent, diagonal and medial n-ary algebras.

By the previous results, all the categories are cartesian closed: the roles of
e and f∗ are played by the evaluation map and ϕ−1(f), respectively, where
ϕ is the canonical map. Cartesian closed categories have many applications
because they posses well-behaved powers. For example, in logic, categories are
interpreted as deductive systems: objects are considered to be formulas and
morphisms to be deductions. Cartesian closed categories then represent special
cases of the so-called positive intuitionistic propositional calculus: products
A×B are identified with conjunctions A∧B and powers AB with implications
B ⇒ A. The first exponential law gives an equivalence between the formulas
C ⇒ (B ⇒ A) and (B ∧ C) ⇒ A called the deduction law. It is also known
that cartesian closed categories are models of the so-called typed λ-calculi (a
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typed λ-calculus is an abstract programming language). So, we get a bridge
between intuitionistic logic and λ-calculus.

Let K be a construct, i.e., a category whose objects are structured sets
and whose morphisms are structure-compatible maps. For any K-object G,
we denote by |G| its underlying set. Given K-objects G, H, K, a map f :
|G| × |H| → |K| is called a bimorphism if for each x ∈ |G| the map f(x,−) :
|H| → |K| is a K-morphism of H into K, and for each y ∈ |H| the map
f(−, y) : |G| → |K| is a K-morphism of G into K. A tensor product of
K-objects G and H is a K-object G ⊗ H together with a bimorphism f :
|G|×|H| → |G⊗H| such that, whenever K is a K-object and g : |G|×|H| → |K|
a bimorphism, there exists a unique K-morphism g∗ : G ⊗ H → K such that
g = g∗ ◦ f . By the previous results, in the four (cartesian closed) categories
IDReln , IDMPaln, IDMHypn and IDMAlgn powers GH are subobjects of
the direct products G|H|. This fact together with some further properties of
these categories (semifinal completeness and the existence of unit objects - see
[1]) imply that in each of the four categories tensor products coincide with
direct products - cf. [26]. For example, in IDMAlgn it means that, whenever
G, H ∈ IDMAlgn , G×H is isomorphic to the factor n-ary algebra of the free
idempotent, diagonal and medial n-ary algebra K over the set |G| × |H| with
respect to the least congruence on K.
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Př́ır. Věd. 93/1, Academia, Prague, 1983.

[10] L. Klukovits, On commutative universal algebras, Acta Sci. Math.
(Szeged) 34 (1973), 171–174.
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and O.Lüders (eds.), General Algebra and Applications in Discrete Mathe-
matics, Proceedings of Conference on General Algebra and Discrete Math-
ematics, Potsdam, 1996, Shaker Verlag, Aachen, 1997 .
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