A 3-(v, 4, 1) packing construction

Narong Punnim^{*} and Dinesh G. Sarvate^{\dagger}

*Department of Mathematics Srinakharinwirot University Sukhumvit 23, Bangkok 10110, Thailand

> [†]Department of Mathematics College of Charleston, Charleston, SC 29424 ÚSA

Abstract

The packing number D(v, k, t) is the maximum number of blocks for any t-(v, k, 1) packing. A construction for 3-(v, 4, 1) is given, which when applied to $v \equiv 5 \pmod{6}$ produces packings which can improve the packing number for 2v + 1 in certain cases. In some cases, it can achieve the bound e.g. it is shown that D(27, 4, 3) = 702.

1 Introduction

Let $v \geq k \geq t$. A t- (v, k, λ) packing is a pair (X, \mathcal{B}) , where X is a v-set of elements (points) and \mathcal{B} is a collection of k-subsets of X (blocks), such that every t-subset of points occurs in at most λ blocks in \mathcal{B} . The packing number $D_{\lambda}(v, k, t)$ is the maximum number of blocks in any t- (v, k, λ) packing. A t- (v, k, λ) packing (X, \mathcal{B}) is optimal if $|\mathcal{B}| = D_{\lambda}(v, k, t)$. If $\lambda = 1$, we usually write D(v, k, t) for $D_1(v, k, t)$.

Upper bounds for $D_{\lambda}(v, k, t)$ were given by Johnson cited from [1; page 409-410] as stated in the following theorems.

Theorem 1.1. $D_{\lambda}(v, k, t) \leq \lfloor \frac{v \cdot D_{\lambda}(v-1, k-1, t-1)}{k} \rfloor$. Iterating this bound yields $D_{\lambda}(v, k, t) \leq U_{\lambda}(v, k, t)$, where $U_{\lambda}(v, k, t) = \lfloor \frac{v}{k} \lfloor \frac{v-1}{k-1} \cdots \lfloor \frac{\lambda(v-t+1)}{k+t-1} \rfloor \rfloor \rfloor$.

^{*}Supported by The Thailand Research Fund.

[†]This work was carried out while the second author visited Mahidol Wittayanusorn School during Feb-March 2006. The hospitality provided by the school is gratefully acknowledged. **Key words:** packing number, optimal packing construction. 2000 AMS Mathematics Subject Classification: 05C70, 05C85.

Further, if $\lambda(v-1) \equiv 0 \pmod{(k-1)}$ and $\lambda v(v-1) \equiv -1 \pmod{k}$, then $D_{\lambda}(v,k,2) \leq U_{\lambda}(v,k,2) - 1$.

Theorem 1.2. Suppose $d = D_{\lambda}(v, k, t) = qv + r$, where $0 \le r \le v - 1$. Then $q(q-1)v + 2qr \le (t-1)d(d-1)$. From this it follows that $D_{\lambda}(v, k, t) \le \lfloor \frac{v(k+1-t)}{k^2 - v(t-1)} \rfloor$.

This note is motivated by a remark in Stinson ([1]; page 410) that for $v \equiv 5 \pmod{6}$, $v \geq 17$, essentially nothing is known about the number D(v, 4, 3), the packing number for a 3-(v, 4, 1) packing and by the well known construction of SQS(2v) from SQS(v), see for example Lindner and Rodger [2].

For the most part, our notation and terminology follows that of Lindner and Rodger [2].

2 Construction from v to 2v

Observe that the well known 2v construction for SQS to produce SQS(2v) from an SQS(v), can be applied for packing and for any even integer v where a packing exists.

Theorem 2.1. A 3-(v, 4, 1) packing (X, \mathcal{B}) for even v implies the existence of a 3-(2v, 4, 1) packing.

Proof A 3-(v, 4, 1) packing (X, \mathcal{B}) is given. Let $\mathcal{F} = \{F_1, F_2, \dots, F_{v-1}\}$ be a 1-factorization of K_v defined on X. Then the following blocks together produce a 3-(2v, 4, 1) packing on the set of vertices $X \times \{1, 2\}$ and set of blocks \mathcal{B}' , where \mathcal{B}' is defined as follows.

- 1. For each block $B \in \mathcal{B}$, $B \times \{1\}$, $B \times \{2\} \in \mathcal{B}'$.
- 2. For each $F_j \in \mathcal{F}$, $\{(a, 1), (b, 1), (c, 2), (d, 2)\} \in \mathcal{B}'$ if and only if $\{a, b\} \in F_j$ and $\{c, d\} \in F_j$.

Corollary 2.2. The construction produces optimal packing for $v \equiv 0 \pmod{6}$

Proof Let v = 6t. Then $D(6t, 4, 3) = \lfloor \frac{18t^3 - 9t^2 - 3t}{2} \rfloor = \frac{18t^3 - 9t^2 - 3t}{2}$. On the other hand the construction produces \mathcal{B}' with $|\mathcal{B}'| = 2 \cdot \frac{18t^3 - 9t^2 - 3t}{2} + (3t) \cdot (3t) \cdot (6t - 1) = 72t^3 - 18t^2 - 3t$, the exact number needed for optimal packing for $3 \cdot (v, 4, 1)$, i.e. D(12t, 4, 3) is achieved. This means, the construction produces an optimal $3 \cdot (2v, 4, 1)$ packing, just like in the case of SQS(v).

For example, when v = 6, the packing number D(6, 4, 3) is 3. Let $\mathcal{F} = \{F_1, F_2, \dots, F_5\}$ be a set of 1-factorization of K_6 . For each $F_j \in \mathcal{F}$, F_i contains 3 independent edges. Therefore we get a packing for 2v = 12 with $3 + 3 + 3 \cdot 3 \cdot 5 = 51$ blocks. Note that D(12, 4, 3) is 51.

200

NARONG PUNNIM and DINESH G. SARVATE

3 Construction from v to 2v + 1

A slight modification of above construction is very useful as it can be used to get 3-(v, 4, 1) packing for $v \equiv 5 \pmod{6}$.

Theorem 3.1. Packings 3(v, 4, 1) and 3(v + 1, 4, 1) implies the existence of a 3(2v + 1, 4, 1) packing.

Proof Let v be an odd integer. Suppose a packing 3-(v, 4, 1) and a packing 3-(v + 1, 4, 1) with sets of blocks \mathcal{B}_1 and \mathcal{B}_2 , respectively, are given. Let $\mathcal{F} = \{F_1, F_2, \dots, F_v\}$ be a 1-factorization of K_{v+1} . Then the following blocks together produce a 3-(2v + 1, 4, 1) packing on the set of vertices $\{(i, 1) : i = 1, 2, \dots, v\} \cup \{(i, 2) : i = 1, 2, \dots, v+1\}$ with set of blocks \mathcal{B}' according to the following rules.

- 1. For each block $B \in \mathcal{B}_1$, $B \times \{1\} \in \mathcal{B}'$.
- 2. For each block $B \in \mathcal{B}_2$, $B \times \{2\} \in \mathcal{B}'$.
- 3. For each $F_j \in \mathcal{F}$, $\{(a, 1), (b, 1), (c, 2), (d, 2)\} \in \mathcal{B}'$ if and only if $\{a, b\} \in F_j$ and $\{c, d\} \in F_j$.

The construction produces $|\mathcal{B}_1| + |\mathcal{B}_2| + \frac{v-1}{2} \cdot \frac{v+1}{2} \cdot v$ blocks. Moreover the construction gives blocks with more structure than the packing obtained from deleting an element from a 3-(2v + 2, 4, 1) and it can produce optimal packing. For example, when v = 7, we get $7 + 14 + 3 \cdot 4 \cdot 7 = 105$ blocks, which gives an optimal packing as D(15, 4, 1) = 105.

Note that if $v \equiv 5 \pmod{6}$, then $2v + 1 \equiv 5 \pmod{6}$. Let us first consider in the case when v = 5. It is known that D(5, 4, 3) = 1 and D(6, 4, 3) = 3. Thus by the above construction, we get $D(11, 4, 3) \ge 1 + 3 + 2 \cdot 3 \cdot 5 = 34$. It is also known that D(11, 4, 3) = 35. So, the construction achieves one block less than an optimal packing in this case. Now consider when v = 11. It is known that D(11, 4, 3) = 35 and D(12, 4, 3) = 51. Thus by the above construction, we get $D(23, 4, 3) \ge 35 + 51 + 5 \cdot 6 \cdot 11 = 416$. It is known that $D(23, 4, 3) \le \lfloor \frac{23}{4} \lfloor \frac{22}{3} \lfloor \frac{21}{2} \rfloor \rfloor \rfloor = 419$. Thus $416 \le D(23, 4, 3) \le 419$. For v = 17, we know that $D(35, 4, 3) \le 1583$ and by the construction gives that $D(35, 4, 3) \ge 1579$. Finally, it is known that D(27, 4, 3) = 702, and the construction of 3-(27, 4, 1) above produces $65 + 91 + 6 \cdot 7 \cdot 13 = 702$ blocks. In fact, we have the following corollary.

Corollary 3.2. If $v \equiv 1 \pmod{12}$, say v = 12s + 1, $D(24s + 3, 4, 3) = (24s + 2)(24s + 3)s = 576s^3 + 120s^2 + 6s$ and the construction also produces the same number of blocks required to give optimal packing.

4 Generalization of v to 2v construction from SQS(v) to (2t-1)-(v, 2t, 1) packing for any t

Suppose large set exists for (v, t), in other words assume that all *t*-subsets of *v*-set can be partitioned to BIBD(v, t, 1). Note that the set of all 2*t*-subsets of a *v*-set is a $(v, {v \choose t}, {v \choose t-1}, t, {v \choose t-1})$. So there are $s = {v \choose t-1} \cdot (\frac{t-1}{v-1})$ BIBD $(v, t, (\lambda = 1)$ -designs. Call them F_1, F_2, \cdots, F_s . We have the following construction.

Theorem 4.1. Suppose there exists a (2t-1)-(v, 2t, 1) packing with M blocks, then there exists a (2t-1)-(2v, 2t, 1) packing with $2M + [\frac{t-1}{v-1} \cdot {v \choose t-1}]^2 \cdot [\frac{{v \choose t}}{{v \choose t-1}}]$.

Proof As usual let $V = \{1, 2, \dots, v\}$ and the blocks of (2t - 1)-(v, 2t, 1) packing be \mathcal{B} . The blocks of (2t - 1)-(2v, 2t, 1) are in \mathcal{B}' on the set $V \times \{1, 2\}$, according to the following rules.

- 1. If $B \in \mathcal{B}$, then $B \times \{1\}$ and $B \times \{2\}$ are in \mathcal{B}' .
- 2. For each F_j , if $\{a_1, a_2, \dots, a_t\}$ and $\{b_1, b_2, \dots, b_t\}$ are any two not necessary distinct blocks in F_j , then $\{(a_1, 1), (a_2, 1), \dots, (a_t, 1), (b_1, 2), (b_2, 2), \dots, (b_t, 2)\}$ is in \mathcal{B}' .

Note that two blocks of size t in F_j intersect in only 1 point. Therefore the intersection between any two distinct blocks directly obtained from \mathcal{B} and from F_j is at most t and the intersection between the blocks from \mathcal{B} can be (2t - 1). Intersection of blocks obtained from the same F_j can be at most (t + 1). Intersection of blocks obtained from different F_j can be at most 2(t-1) = 2t-2.

For example, let v = 7, we have D(7, 6, 1) = 1. Since $\binom{7}{3} = 35$, there is a partition of all subsets of size 3 into 5 2-(7, 3, 1). So there exists 5-(14, 6, 1) packing with $1 + 1 + 5 \times 7 \times 7 = 247$ blocks. The bound for 5-(14, 6, 1) is $\lfloor \frac{14}{6} \lfloor \frac{13}{5} \lfloor \frac{12}{4} \lfloor \frac{11}{3} \lfloor \frac{10}{2} \rfloor \rfloor \rfloor \rfloor = 326$. The construction does not provide close enough number of blocks but notice that block intersections are much lower than 2t - 2 for many pairs.

References

- D. Stinson, *Packings*, The CRC Handbook of Combinatorial Designs, editors C. J. Colbourn and J. H. Dinitz, CRC Press, Boca Raton, Fl. 1996, 409-413.
- [2] C. C. Lindner and C. A. Rodger, Design Theory, CRC Press, 1997.