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Abstract
The packing number D(v, k, t) is the maximum number of blocks

for any t-(v, k, 1) packing. A construction for 3-(v, 4, 1) is given, which
when applied to v ≡ 5(mod 6) produces packings which can improve the
packing number for 2v + 1 in certain cases. In some cases, it can achieve
the bound e.g. it is shown that D(27, 4, 3) = 702.

1 Introduction

Let v ≥ k ≥ t. A t-(v, k, λ) packing is a pair (X,B), where X is a v-set of
elements (points) and B is a collection of k-subsets of X (blocks), such that
every t-subset of points occurs in at most λ blocks in B. The packing number
Dλ(v, k, t) is the maximum number of blocks in any t-(v, k, λ) packing. A t-
(v, k, λ) packing (X,B) is optimal if |B| = Dλ(v, k, t). If λ = 1, we usually write
D(v, k, t) for D1(v, k, t).

Upper bounds for Dλ(v, k, t) were given by Johnson cited from [1; page
409-410] as stated in the following theorems.

Theorem 1.1. Dλ(v, k, t) ≤ �v·Dλ(v−1,k−1,t−1)
k �. Iterating this bound yields

Dλ(v, k, t) ≤ Uλ(v, k, t), where Uλ(v, k, t) = �v
k�v−1

k−1 · · · �λ(v−t+1)
k+t−1 ���.
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Further, if λ(v − 1) ≡ 0(mod (k − 1)) and λv(v − 1) ≡ −1(mod k), then
Dλ(v, k, 2) ≤ Uλ(v, k, 2) − 1.

Theorem 1.2. Suppose d = Dλ(v, k, t) = qv + r, where 0 ≤ r ≤ v − 1. Then
q(q − 1)v + 2qr ≤ (t − 1)d(d − 1). From this it follows that Dλ(v, k, t) ≤
� v(k+1−t

k2−v(t−1)�.

This note is motivated by a remark in Stinson ([1]; page 410) that for
v ≡ 5(mod 6), v ≥ 17, essentially nothing is known about the number D(v, 4, 3),
the packing number for a 3-(v, 4, 1) packing and by the well known construction
of SQS(2v) from SQS(v), see for example Lindner and Rodger [2].

For the most part, our notation and terminology follows that of Lindner
and Rodger [2].

2 Construction from v to 2v

Observe that the well known 2v construction for SQS to produce SQS(2v)
from an SQS(v), can be applied for packing and for any even integer v where
a packing exists.

Theorem 2.1. A 3-(v, 4, 1) packing (X,B) for even v implies the existence of
a 3-(2v, 4, 1) packing.

Proof A 3-(v, 4, 1) packing (X,B) is given. Let F = {F1, F2, · · · , Fv−1}
be a 1-factorization of Kv defined on X. Then the following blocks together
produce a 3-(2v, 4, 1) packing on the set of vertices X×{1, 2} and set of blocks
B′, where B′ is defined as follows.

1. For each block B ∈ B, B × {1}, B × {2} ∈ B′.

2. For each Fj ∈ F , {(a, 1), (b, 1), (c, 2), (d, 2)} ∈ B′ if and only if {a, b} ∈ Fj

and {c, d} ∈ Fj.

Corollary 2.2. The construction produces optimal packing for v ≡ 0(mod 6)

Proof Let v = 6t. Then D(6t, 4, 3) = �18t3−9t2−3t
2

� = 18t3−9t2−3t
2

. On the
other hand the construction produces B′ with |B′| = 2 · 18t3−9t2−3t

2 +(3t) · (3t) ·
(6t − 1) = 72t3 − 18t2 − 3t, the exact number needed for optimal packing for
3-(v, 4, 1), i.e, D(12t, 4, 3) is achieved. This means, the construction produces
an optimal 3-(2v, 4, 1) packing, just like in the case of SQS(v).

For example, when v = 6, the packing number D(6, 4, 3) is 3. Let F =
{F1, F2, · · · , F5} be a set of 1-factorization of K6. For each Fj ∈ F , Fi

contains 3 independent edges. Therefore we get a packing for 2v = 12 with
3 + 3 + 3 · 3 · 5 = 51 blocks. Note that D(12, 4, 3) is 51.
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3 Construction from v to 2v + 1

A slight modification of above construction is very useful as it can be used to
get 3-(v, 4, 1) packing for v ≡ 5(mod 6).

Theorem 3.1. Packings 3-(v, 4, 1) and 3-(v + 1, 4, 1) implies the existence of
a 3-(2v + 1, 4, 1) packing.

Proof Let v be an odd integer. Suppose a packing 3-(v, 4, 1) and a pack-
ing 3-(v + 1, 4, 1) with sets of blocks B1 and B2, respectively, are given. Let
F = {F1, F2, · · · , Fv} be a 1-factorization of Kv+1. Then the following blocks
together produce a 3-(2v + 1, 4, 1) packing on the set of vertices {(i, 1) : i =
1, 2, · · · , v} ∪ {(i, 2) : i = 1, 2, · · · , v + 1} with set of blocks B′ according to the
following rules.

1. For each block B ∈ B1, B × {1} ∈ B′.

2. For each block B ∈ B2, B × {2} ∈ B′.

3. For each Fj ∈ F , {(a, 1), (b, 1), (c, 2), (d, 2)} ∈ B′ if and only if {a, b} ∈ Fj

and {c, d} ∈ Fj.

The construction produces |B1| + |B2| + v−1
2

· v+1
2

· v blocks. Moreover the
construction gives blocks with more structure than the packing obtained from
deleting an element from a 3-(2v + 2, 4, 1) and it can produce optimal packing.
For example, when v = 7, we get 7 + 14 + 3 · 4 · 7 = 105 blocks, which gives an
optimal packing as D(15, 4, 1) = 105.

Note that if v ≡ 5(mod 6), then 2v + 1 ≡ 5(mod 6). Let us first consider in
the case when v = 5. It is known that D(5, 4, 3) = 1 and D(6, 4, 3) = 3. Thus
by the above construction, we get D(11, 4, 3) ≥ 1 + 3 + 2 · 3 · 5 = 34. It is
also known that D(11, 4, 3) = 35. So, the construction achieves one block less
than an optimal packing in this case. Now consider when v = 11. It is known
that D(11, 4, 3) = 35 and D(12, 4, 3) = 51. Thus by the above construction,
we get D(23, 4, 3) ≥ 35 + 51 + 5 · 6 · 11 = 416. It is known that D(23, 4, 3) ≤
�23

4 �22
3 �21

2 ��� = 419. Thus 416 ≤ D(23, 4, 3) ≤ 419. For v = 17, we know
that D(35, 4, 3) ≤ 1583 and by the construction gives that D(35, 4, 3) ≥ 1579.
Finally, it is known that D(27, 4, 3) = 702, and the construction of 3-(27, 4, 1)
above produces 65 + 91 + 6 · 7 · 13 = 702 blocks. In fact, we have the following
corollary.

Corollary 3.2. If v ≡ 1(mod 12), say v = 12s + 1, D(24s + 3, 4, 3) = (24s +
2)(24s + 3)s = 576s3 + 120s2 + 6s and the construction also produces the same
number of blocks required to give optimal packing.
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4 Generalization of v to 2v construction from

SQS(v) to (2t − 1)-(v, 2t, 1) packing for any t

Suppose large set exists for (v, t), in other words assume that all t-subsets of
v-set can be partitioned to BIBD(v, t, 1). Note that the set of all 2t-subsets
of a v-set is a (v,

(
v
t

)
,
(

v
t−1

)
, t,

(
v

t−1

) · ( t−1
v−1

)). So there are s =
(

v
t−1

) · ( t−1
v−1

)
BIBD(v, t, (λ = 1)-designs. Call them F1, F2, · · · , Fs. We have the following
construction.

Theorem 4.1. Suppose there exists a (2t−1)-(v, 2t, 1) packing with M blocks,

then there exists a (2t−1)-(2v, 2t, 1) packing with 2M+[ t−1
v−1 ·

(
v

t−1

)
]2 ·[ (v

t)
( v

t−1)· t−1
v−1

].

Proof As usual let V = {1, 2, · · · , v} and the blocks of (2t − 1)-(v, 2t, 1)
packing be B. The blocks of (2t − 1)-(2v, 2t, 1) are in B′ on the set V × {1, 2},
according to the following rules.

1. If B ∈ B, then B × {1} and B × {2} are in B′.

2. For each Fj, if {a1, a2, · · · , at} and {b1, b2, · · · , bt} are any two not nec-
essary distinct blocks in Fj, then {(a1, 1), (a2, 1), · · · , (at, 1), (b1, 2),
(b2, 2), · · · , (bt, 2)} is in B′.

Note that two blocks of size t in Fj intersect in only 1 point. Therefore the
intersection between any two distinct blocks directly obtained from B and from
Fj is at most t and the intersection between the blocks from B can be (2t −
1). Intersection of blocks obtained from the same Fj can be at most (t + 1).
Intersection of blocks obtained from different Fj can be at most 2(t−1) = 2t−2.

For example, let v = 7, we have D(7, 6, 1) = 1. Since
(
7
3

)
= 35, there is a

partition of all subsets of size 3 into 5 2-(7, 3, 1). So there exists 5-(14, 6, 1)
packing with 1 + 1 + 5 × 7 × 7 = 247 blocks. The bound for 5-(14, 6, 1) is
�14

6
�13

5
�12

4
�11

3
�10

2
����� = 326. The construction does not provide close enough

number of blocks but notice that block intersections are much lower than 2t−2
for many pairs.
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