
East-West J. of Mathematics: Vol. 7, No 2 (2005) pp. 187-197

A SMALLER COVER FOR CONVEX UNIT

ARCS

Wacharin Wichiramala

Department of Mathematics, Faculty of Science
Chulalongkorn University

Bangkok, Thailand

Abstract

The Moser’s worm problem asks for the smallest set on the plane that
can cover every unit arc. The smallest cover known is by Norwood and
Poole of which the area is 0.260437. An interesting variant of this problem
is to find the smallest cover for every convex unit arc. Thirty years ago,
Wetzel proved that the isosceles right triangle with unit hypotenuse and
area 0.25 is such a cover. Recently, Johnson and Poole found a convex
cover of area 0.2466. In this work, we establish a smaller cover of area
0.2464 obtained from clipping the triangle at height 0.44.

1 Introduction

In 1966, Leo Moser set a well-recognized geometry problem on the plane called
the Moser’s worm problem [7]. The problem is to find the smallest set that
can cover every unit arc. Naturally we measure a set by its area. The disk of
radius 1

2
is clearly capable of covering all unit arcs. It has area 0.78540. In

1971, Wetzel published the proof by Meir that a semidisk of radius 1
2
, whose

area is 0.39270, is also such a cover and added a family of sectorial covers of
which the smallest one has area 0.34501 [13]. He also conjectured that the
30-degree sector of unit radius (area 0.26180) is a cover. Many questions arised
concerning necessary conditions of covers for unit arcs. One is to find good
lower bounds of the width of these covers. An answer came from the discovery
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188 A smaller cover for convex unit arcs

Figure 2.1: A smaller cover for convex unit arcs of area 0.2464.

of the unit broadworm [11]. It is the unique unit arc with the maximum
width of b0 = 0.438925. This leads to a lower bound of the area of convex
covers b0/2 = 0.21946 [12] [1]. Later, Gerriets found a cover of area 0.3214
composing of a semiellipse and a triangle glued together [2]. Later in 1972,
Gerriets and Poole showed that a rhombus of unit major axis (area 0.2887)
can cover unit arcs [4]. The rhombus can be clipped to get a smaller cover of
area 0.28610 [5]. In 1989, Norwood, Poole and Laidacker rounded up a corner
of the rhombus to get a smaller cover of area 0.27524 [10]. Recently, in 2002,
Norwood and Poole established the current record with a nonconvex cover of
area 0.260437 and also provided a smaller convex cover of area 0.2738086 [9].
One challenging problem is to prove that the sector conjectured by Wetzel can
cover all unit arcs. Currently, it is the smallest convex contender.

One interesting variant of the Moser’s worm problem is to find the smallest
set that can cover all convex unit arcs. In 1970’s, Wetzel noted that an isosceles
right triangle T with unit hypotenuse (area 0.25) can cover every convex unit
arc [6]. He showed that a convex unit arc can be placed inside the triangle T
in its “natural standing orientation” as shown in Figure 3.1. In addition, he
showed that a smaller cover can be obtained from clipping the right angle of
T to give a cover with area approximately 0.2492. At the time he conjectured
that the triangle T clipped at the minimum width of b0 is also a cover. In
2002, Johnson, Poole and Wetzel found a sophisticated way to prune T near its
right angle by 2 symmetric parabolas to form a cover with area about 0.2466
[6]. Wetzel proved that many other arcs can also be covered by these covers
for convex arcs [8].

Our proof. Our proof is based on simple comparisons using translations
and then numerical minimizations by Mathematica (version 5 or later). The
minimizations are called convex programming as we minimize convex functions
on convex domains of which the convergences are confirmed theoretically.
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2 The cover

Let T be the clipped triangle T in Figure 2.1 where its height is h0 = 0.44.
The top edge has length 1 − 2h0 and each side edge has length

√
2h0. It has

area 0.2464. We will show later that it can cover every convex unit arc.

3 The proof

In the proof of the main theorem, we will use the following 3 lemmas. We state
the first lemma without proof.

Lemma 3.1. On the plane, let l be a line and P and Q be 2 distinct points
on the same side of l. Then there is only one point R on l that minimizes the
sum of the distances PR +RQ. Furthermore, R is the only point for which the
segments PR and RQ make the same angle with l.

This lemma is also true when P and Q are not on the same side of l. When
P and Q are on l, the set of all minimum points are the segment PQ. When
P and Q are on opposite sides of l or when either P or Q is on l, the minimum
point is the intersection of l and PQ.

At each point on a closed convex arc, there is a tangent line that the arc
lies on only one of its sides. In many cases, there are many choices of such
lines. When a convex arc is not closed, it has 2 endpoints. Each convex arc is
on one side of the line L through its endpoints. Consider the 2 lines through
the 2 endpoints perpendicular to L. These 2 lines are parallel. A drape [6] is
a convex arc that stays in between the 2 perpendicular lines. The next lemma
tells us that if a convex set can cover every unit drape, then it can cover every
convex unit arc.

Lemma 3.2. [6] A convex unit arc can be covered by the convex hull of a unit
drape.

In 1970’s, Wetzel proved that

Lemma 3.3. [6] The triangle T can cover every convex unit arc in its standing
orientation as shown in Figure 3.2.

Now we are ready to prove the main theorem.

Theorem 3.4. The clipped triangle T is a cover for every convex unit arc.

Proof By Lemma 3.2, it suffices to show that T can cover every unit drape.
Suppose for a contradiction that γ is a unit drape that cannot be covered by T .
We will show that its length is greater than one. Throughout the proof, we fix
the orientation of γ in its standing orientation as illustrated by Figure 3.1. Let
h be the height of γ. We will rotate T to cover γ. To describe the orientation
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Figure 3.1: The height h of a standing convex arc.

Figure 3.2: The drape γ can be covered by T but cannot be covered by T .

of T , we define T θ to be an isometric copy of T after being rotated by angle
θ. Furthermore, by “T θ can cover γ” we mean that T θ contains a translated
copy of γ.

Since T can cover γ in its standing orientation but T cannot cover γ, we
must have h > h0 (see Figure 3.2). Now we name 5 key points of γ as its head,
shoulders and feet as follows. Consider Figure 3.3.

Put a support angle of π
4 on γ. Let Ls be a point where γ touches the left

support line and define Rs similarly. Note that in some case there are more
than one choice of Ls. Let H , Lf and Rf be the top, the left and the right
ends of γ. Note that we may have H = Ls, H = Rs, Ls = Lf or Rs = Rf , but
it is clear that H �= Lf and H �= Rf .

First we place γ in T 11
8 π as illustrated in Figure 3.4. Next we see that

Rf /∈ T 11
8 π. For if this is not the case, then Lf /∈ T 11

8 π, which implies that
Lf is lower than Rf , a contradiction. It follows that Lf /∈ T 5

8π . Let R be
the rhombus with side length

√
2h0 and angle π

4 and place γ in R as shown
in Figure 3.5. Hence R has width w = 2

√
2h0 sin π

8 (from left to right.) We
will divide into cases according to whether Lf , Rf ∈ R. We will show that the
length of γ is greater than 1 in every case.

CASE Lf , Rf /∈ R and LfRf ≥ w.
According to a simple direct comparison using 2 translations as in Figure

3.6, we have 1 ≥ LfH + HRf ≥ 2
√

h2
0 + (w

2
)2 = 2h0

√
1 + 2 sin2 π

8
> 1.0006, a

contradiction.
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Figure 3.3: After putting the drape γ in a corner of angle π
4
, we name 5 key

points.

Figure 3.4: The drape γ is placed in T 11
8 π.

Figure 3.5: The rhombus R with side length
√

2h0 and angle π
4 .
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Figure 3.6: Comparison of length of the arcs when Lf , Rf �∈ R and LfRf ≥ w.

CASE Lf , Rf /∈ R and LfRf < w.
According to a simple direct comparison using 2 translations as in Fig-

ure 3.7, we have 1 ≥ min{d(xl1, yl1, xl2, yl2 , xH, yH , xr2, yr2, xr1, yr1) | yl1 =
yl2 , (xl1, yl1) ∈ l1, (xl2, yl2) ∈ l2, yH ≥ yl1 + h0, (xr2, yr2) ∈ r2 and (xr1, yr1) ∈
r1} = min{2d(xl1, yl1, xl2, yl2, 0, yl1 + h0) | (xl1 , yl1) ∈ l1, (xl2, yl2) ∈ l2} where
d(x1, y1, . . . , xn, yn) = d(x1, y1, . . . , xn−1, yn−1) + d(xn−1, yn−1, xn, yn),
d(x1, y1, x2, y2) =

√
(x1 − x2)2 + (y1 − y2)2 and l1, l2, r1, r2 are sides on R. The

length of the last 4-segment arc is convex on free variables xl2 and yl1 that form
convex domain. Hence numerical minimization by Mathematica can get closely
enough to the minimum. The length of the last 4-segment arc is clearly smooth
on yl1 as illustrated in Figure 3.8, where the variable yl1 ∈ [−√

2h0 sin 7
8π, 0],

and the minimum is 1.00004, a contradiction.
CASE Rf ∈ R (or Lf ∈ R).
By the previous case, we have Rf /∈ T 11

8 π . According to a simple direct com-
parison as in Figure 3.9, we have 1 ≥ min{yl2−y+d(xl2 , yl2 , xH, yH , xr2, yr2)+
yr2 − y | (xl2, yl2) ∈ l2, yH ≥ y + h0 and (xr2, yr2) ∈ r2} = min{2(yl2 − y +
d(xl2, yl2, 0, y + h0)) | (xl2, yl2) ∈ l2}. The length of the last 4-segment arc is
convex on free variables xl2 and y that form convex domain. Hence numerical
minimization by Mathematica can get closely enough to the minimum. The
length of the last 4-segment arc is clearly smooth on y as illustrated in Fig-
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Figure 3.7: Comparison of length of the arcs when Lf , Rf �∈ R and LfRf < w.

Figure 3.8: The graph of the minimum length of the last arc in the previous
figure.
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Figure 3.9: Comparison of length of the arcs when Rf ∈ R.

Figure 3.10: The graph of the minimum length of the last arc in the previous
figure.
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Figure 3.11: A clipped triangle that might cover every convex unit arc.

ure 3.10, where the variable y ∈ [−√
2h0 sin 7

8
π,−(1 − 2h0) sin 7

8
π], and the

minimum is 1.02396, a contradiction.
In any case, we found a contradiction. Therefore γ can be covered by T . �
We can see that h0 can be lowered a little bit as long as the minimum length

in the second case, currently 1.00004, is still greater than 1.
We conjecture that the clipped triangle in Figure 3.11 can cover every con-

vex unit arc. It has no symmetry and has area 0.23982 which is close to the
lower bound 0.21946. A similar cover was conjectured earlier in [6]; see Figure
9(b).

4 Mathematica code and output

In Figure 4.1, it shows the mathematica code for calculations of the 3 cases.
It runs in Mathematica version 5 or later as it heavily uses the command
“Minimize”.
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Figure 4.1: Mathematica code for calculations of the 3 cases.
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