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Abstract

Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of typ (2,0). We say
that a graph G satisfies an identity s ≈ t if the corresponding graph
algebra A(G) satisfies s ≈ t. A graph G = (V, E) is called a symmetric
graph if the graph algebra A(G) satisfies the equation xy ≈ x(yx). An
identity s ≈ t of terms s and t of any type τ is called a hyperidentity
of an algebra A if whenever the operation symbols occurring in s and t
are replaced by any term operations of A of the appropriate arity, the
resulting identities hold in A.

In this paper we characterize symmetric graph algebras, identities
and hyperidentities in symmetric graph algebras.

1 Introduction

An identity s ≈ t of terms s, t of any type τ is called a hyperidentity of an
algebra A if whenever the operation symbols occurring in s and t are replaced
by any term operations of A of the appropriate arity, the resulting identity
holds in A. Hyperidentities can be defined more precisely using the concept of
a hypersubstitution.

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I , and operation symbols
(fi)i∈I , where fi is ni − ary. Let Wτ(X) be the set of all terms of type τ over
some fixed alphabet X, and let Alg(τ ) be the class of all algebras of type τ .
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174 Hyperidentities in symmetric graph algebras

Then a mapping
σ : {fi|i ∈ I} −→ Wτ (X)

which assigns to every ni − ary operation symbol fi an ni − ary term will be
called a hypersubstitution of type τ (for short, a hypersubstitution). By σ̂ we
denote the extension of the hypersubstitution σ to a mapping

σ̂ : Wτ (X) −→ Wτ (X).

The term σ̂[t] is defined inductively by
(i) σ̂[x] = x for any variable x in the alphabet X

and
(ii) σ̂[fi(t1, ..., tni)] = σ(fi)Wτ (X)(σ̂[t1], ..., σ̂[tni ]).

Here σ(fi)Wτ (X) on the right hand side of (ii) is the operation induced by σ(fi)
on the term algebra Wτ (X).

Graph algebras have been invented in [11] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V, E) be a (directed)
graph with the vertex set V and the set of edges E ⊆ V ×V . Define the graph
algebra A(G) corresponding to G to have the underlying set V ∪{∞}, where ∞
is a symbol outside V , and two basic operations, a nullary operation pointing
to ∞ and a binary one denoted by juxtaposition, given for u, v ∈ V ∪ {∞} by

uv =
{

u, if (u, v) ∈ E,
∞, otherwise.

Graph identities were characterized in [3] by using the rooted graph of a term
t where the vertices correspond to the variables occurring in t. Since on a
graph algebra we have one nullary and one binary operation, σ(f) in this
case is a binary term in Wτ (X), i.e. a term built up from variables of a two-
element alphabet and a binary operation symbol f corresponding to the binary
operation of the graph algebra.

In [9] R. Pöschel has shown that any term over the class of all graph alge-
bras can be uniquely represented by a normal form term and that there is an
algorithm to construct the normal form term to every given term t.

In [1] K. Denecke and T. Poomsa-ard characterized graph hyperidentities
by using normal form graph hypersubstitutions.

In [6] T. Poomsa-ard characterized associative graph hyperidentities by us-
ing normal form graph hypersubstitutions.

In [7] T. Poomsa-ard, J. Wetweerapong and C. Samartkoon characterized
idempotent graph hyperidentities by using normal form graph hypersubstitu-
tions.

In [8] T. Poomsa-ard, J. Wetweerapong and C. Samartkoon characterized
transitive graph hyperidentities by using normal form graph hypersubstitu-
tions.
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A graph G = (V, E) is called symmetric if the graph A(G) satisfied the
equation xy ≈ x(yx). In this paper we characterize symmetric graph algebras,
identities and hyperidentities in symmetric graph algebras.

2 Symmetric graph algebras.

We begin with a more precise definition of terms of the type of graph algebras.

Definition 2.1. The set Wτ (X) of all terms over the alphabet

X = {x1, x2, x3, ...}
is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;
(ii) if t1 and t2 are terms, then f(t1 , t2) is a term; instead of f(t1 , t2) we

will write t1t2, for short;
(iii) Wτ (X) is the set of all terms which can be obtained from (i) and (ii)

in finitely many steps.

Terms built up from the two-element set X2 = {x1, x2} of variables are thus
binary terms. We denote the set of all binary terms by Wτ (X2). The leftmost
variable of a term t is denoted by L(t) and rightmost variable of a term t is
denoted by R(t). A term, in which the symbol ∞ occurs is called a trivial term.

Definition 2.2. To each non-trivial term t of type τ = (2, 0) one can define a
directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set var(t)
of all variables occurring in t, and where E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))},

when t = t1t2 is a compound term and L(t1), L(t2) are the leftmost variables
in t1 and t2 respectively.

L(t) is a root of the graph G(t) and the pair (G(t), L(t)) is the rooted graph
corresponding to t. Formally, to every trivial term t we assign the empty graph
φ.

Definition 2.3. We say that a graph G = (V, E) satisfies an identity s ≈ t
if the corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t for
every assignment V (s)∪V (t) → V ∪{∞}), and in this case, we write G |= s ≈ t.

Definition 2.4. Let G = (V, E) and G
′

= (V
′
, E

′
) be graphs. A homomor-

phism h from G into G′ is a mapping h : V → V
′

carrying edges to edges, that
is, for which (u, v) ∈ E implies (h(u), h(v)) ∈ E

′
.

In [3] it was proved:
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Proposition 2.1. Let s and t be non-trivial terms from Wτ (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V, E)
satisfies s ≈ t if and only if the graph algebra A(G) has the following property:

A mapping h : V (s) −→ V is a homomorphism from G(s) into G iff it is a
homomorphism from G(t) into G.

Proposition 2.1 gives a method to check whether a graph G = (V, E) satisfies
the equation s ≈ t. Hence, we can check whether a graph G = (V, E) has a
symmetric graph algebra by the following proposition.

Proposition 2.2. Let G = (V, E) be a graph. Then G has a symmetric graph
algebra if and only (a, b) ∈ E ⇔ (b, a) ∈ E.

Proof Suppose that G = (V, E) has a symmetric graph algebra. Let s and t be
non-trivial terms such that s = xy, t = x(yx). Let (a, b) ∈ E and h : V (s) → V
be the restriction function of the variables such that h(x) = a, h(y) = b. We
see that h is a homomorphism from G(s) into G. Since G has a symmetric
graph algebra. By Proposition 2.1, we have that h is a homomorphism from
G(t) into G. Since (y, x) ∈ E(t), we get (h(y), h(x)) = (b, a) ∈ E. Suppose
that (b, a) ∈ E. If we map h(x) = b, h(y) = a, then h is a homomorphism from
G(s) into G. By the same manner, we have h is a homomorphism from G(t)
into G. Since (y, x) ∈ E(t), hence (h(y), h(x)) = (a, b) ∈ E.

Conversely, suppose that G = (V, E) is a graph such that (a, b) ∈ E if and
only if (b, a) ∈ E. Let s and t be non-trivial terms such that s = xy, t = x(yx).
Suppose that h : V (s) → V is a homomorphism from G(s) into G. Since
(x, y) ∈ E(s), we have (h(x), h(y)) ∈ E. By assumption, we get (h(y), h(x)) ∈
E. Therefore h is a homomorphism from G(t) into G. Suppose that h is a
homomorphism from G(t) into G. Then, it is clear that h is a homomorphism
from G(s) into G. By Proposition 2.1, we get that A(G) satisfies s ≈ t. �

From Proposition 2.2 we see that graphs which have symmetric graph alge-
bras are the following graphs:
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and all graphs such that every induced subgraph with at most two vertices of
each component is one of these graphs.

3 Identities in symmetric graph algebras.

Graph identities were characterized in [3] by the following proposition:

Proposition 3.1. A non-trivial equation s ≈ t is an identity in the class of
all graph algebras iff either both terms s and t are trivial or none of them is
trivial, G(s) = G(t) and L(s) = L(t).

Further it was proved.

Proposition 3.2. Let G = (V, E) be a graph and let h : X∪{∞} −→ V ∪{∞}
be an evaluation of the variables such that h(∞) = ∞. Consider the canonical
extension of h to the set of all terms. Then there holds: if t is a trivial term
then h(t) = ∞. Otherwise, if h : G(t) −→ G is a homomorphism of graphs,
then h(t) = h(L(t)), and if h is not a homomorphism of graphs, then h(t) = ∞.

In [6] the following lemma was proved:

Lemma 3.1. Let G = (V, E) be a graph, let t be a term and let

h : X −→ V ∪ {∞}
be an evaluation of the variables. Then:

(i) If h : G(t) −→ G with the property that the subgraph of G induced by
h(V (t)) is complete, then h(t) = h(L(t));

(ii) If h : G(t) −→ G with the property that the subgraph of G induced by
h(V (t)) is disconnected, then h(t) = ∞.

Now, we apply our results to characterize all identities in the class of all
symmetric graph algebras. Clearly, if s and t are trivial, then s ≈ t is an
identity in the class of all symmetric graph algebras and x ≈ x, x ∈ X is an
identity in the class of all symmetric graph algebras too. So we consider the
case that s and t are non-trivial and different from variables. Then all identities
in the class of all symmetric graph algebras are characterized by the following
theorem:
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Theorem 3.1. Let s and t be non-trivial terms. Then s ≈ t is an identity in
the class of all symmetric graph algebras if and only if the following conditions
are satisfied:

(i) L(s) = L(t),
(ii) V (s) = V (t),
(iii) for any x, y ∈ V (s), (x, y) ∈ E(s) or (y, x) ∈ E(s) if and only if

(x, y) ∈ E(t) or (y, x) ∈ E(t).
Proof Suppose that s ≈ t is an identity in the class of all symmetric graph
algebras. Since any complete graph is symmetric, it follows that L(s) = L(t)
and V (s) = V (t).

Suppose that (x, y) ∈ E(s) or (y, x) ∈ E(s) but (x, y) /∈ E(t) and (y, x) /∈
E(t). If x = y, then consider the graph G = (V, E) such that V = {0, 1}, E =
{(0, 1), (1, 0), (1, 1)}. By Proposition 2.2, A(G) has a symmetric graph algebra.
Let h : V (s) → V be the restriction of an evaluation of the variables such that
h(x) = 0, h(z) = 1 for all z 	= x. We see that h(s) = ∞ and h(t) = h(L(t)).
Hence, A(G) does not satisfy s ≈ t.

Suppose that x 	= y. Consider the symmetric graph G = (V, E) such
that V = {0, 1, 2}, E = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)}. Let h :
V (s) → V be the restriction of an evaluation of the variables such that h(x) =
0, h(y) = 2 and h(z) = 1 for all z 	= x, z 	= y. We get that h(s) = ∞ and
h(t) = h(L(t)). Hence, A(G) does not satisfy s ≈ t.

Conversely, suppose that s and t are non-trivial terms satisfying (i), (ii)
and (iii). Let G = (V, E) be a symmetric graph and let h : V (s) → V be
the restriction function of the variables. Suppose that h is a homomorphism
from G(s) into G and let (x, y) ∈ E(t). By (iii) we get (x, y) ∈ E(s) or
(y, x) ∈ E(s). If (x, y) ∈ E(s), then we have (h(x), h(y)) ∈ E. If (y, x) ∈ E(s),
then (h(y), h(x)) ∈ E. Since G is a symmetric graph, we get (h(x), h(y)) ∈ E.
Hence h is a homomorphism from G(t) into G. By the same way, if h is a
homomorphism from G(t) into G, then we can prove that it is a homomorphism
from G(s) into G. By Proposition 2.1, we get that A(G) satisfies s ≈ t. �

4 Hyperidentities in symmetric graph algebras

Let SG be the classes of all symmetric graph algebras and let IdSG be the set
of all identities satisfied in SG. Now we want to make precise the concept of a
hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → Wτ (X2), where f is the opera-
tion symbol corresponding to the binary operation of a graph algebra is called
graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ Wτ (X2). The graph
hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is a symmetric graph hyperidentity iff for
all graph hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities in SG.
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If we want to check that s ≈ t is a hyperidentity in SG, we can restrict
ourselves to a (small) subset of HypG - the set of all graph hypersubstitutions.

In [4] the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions σ1, σ2 are called SG-equivalent
iff σ1(f) ≈ σ2(f) is an identity in SG. In this case we write σ1 ∼SG σ2.

In [2] (see also [4]) the following lemma was proved:

Lemma 4.1. If σ̂1[s] ≈ σ̂1[t] ∈ IdSG and σ1 ∼SG σ2 then σ̂2[s] ≈ σ̂2[t] ∈
IdSG.

Therefore it is enough to consider the quotient set HypG/ ∼SG .
In [7] it was shown that any non-trivial term t over the class of graph

algebras has a uniquely determined normal form term NF (t) and there is an
algorithm to construct the normal form term to a given term t. Now we want to
describe how to construct the normal form term . Let t be a non-trivial term.
The normal form term of t is the term NF (t) constructed by the following
algorithm:

(i) Construct G(t) = (V (t), E(t))
(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)) of all out-

neighbors (i.e. (x, xij ) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing indices
i1 ≤ ... ≤ ik(x) and let sx be the term (...((xxi1)xi2)...xik(x)).

(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable
xi ∈ Z ∩V (s) with the least index i, substitute the first occurrence of xi by the
term sxi , denote the resulting term again by s and put Z := Z \ {xi}. While
Z 	= φ continue this procedure. The resulting term is the normal form NF (t).
The algorithm stops after a finite number of steps, since G(t) is a rooted graph
. Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

In [1] the following definition was given:

Definition 4.4. The graph hypersubstitution σNF (t), is called normal form
graph hypersubstitution. Here NF (t) is the normal form of the binary term t.

Since for any binary term t the rooted graphs of t and NF (t) are the same,
we have t ≈ NF (t) ∈ IdSG. Then for any graph hypersubstitution σt with
σt(f) = t ∈ Wτ (X2), one obtains σt ∼SG σNF (t).

In [1] all rooted graphs with at most two vertices were considered. Then
we formed the corresponding binary terms and used the algorithm to construct
normal form terms. The result is given in the following table.
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normal form term graph hypers. normal form term graph hypers.

x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 x2((x1x1)x2) σ15

x1((x2x1)x2) σ16 (x2(x1x2))x2 σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

By Theorem 3.1, we have the following relations:
(1) σ0∼SGσ12,
(2) σ5∼SGσ13,
(3) σ6∼SGσ14,
(4) σ7∼SGσ17,
(5) σ8∼SGσ16,
(6) σ9∼SGσ15,
(7) σ10∼SGσ18,
(8) σ11∼SGσ19.

Let MSG be the set of all normal form graph hypersubstitutions in SG. Then
we get,

MSG = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11}.
We defined the product of two normal form graph hypersubstitutions in MSG
as follows.
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Definition 4.5. The product σ1N ◦N σ2N of two normal form graph hyper-
substitutions is defined by (σ1N ◦N σ2N)(f) = NF (σ̂1N [σ2N(f)]).

The following table gives the multiplication of elements in MSG .

◦N σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

σ0 σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

σ1 σ1 σ1 σ2 σ1 σ2 σ2 σ1 σ2 σ1 σ1 σ1 σ2

σ2 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ2 σ2 σ1 σ2 σ2

σ3 σ3 σ1 σ2 σ3 σ4 σ4 σ3 σ4 σ3 σ4 σ3 σ4

σ4 σ4 σ1 σ2 σ3 σ4 σ3 σ4 σ4 σ4 σ3 σ4 σ4

σ5 σ5 σ1 σ2 σ3 σ4 σ0 σ9 σ5 σ7 σ6 σ11 σ9

σ6 σ6 σ1 σ2 σ3 σ4 σ7 σ6 σ7 σ10 σ11 σ10 σ11

σ7 σ7 σ1 σ2 σ3 σ4 σ6 σ11 σ11 σ7 σ6 σ11 σ11

σ8 σ8 σ1 σ2 σ3 σ4 σ9 σ10 σ11 σ8 σ9 σ10 σ11

σ9 σ9 σ1 σ2 σ3 σ4 σ8 σ9 σ11 σ11 σ10 σ11 σ11

σ10 σ10 σ1 σ2 σ3 σ4 σ11 σ10 σ11 σ10 σ11 σ10 σ11

σ11 σ11 σ1 σ2 σ3 σ4 σ10 σ11 σ11 σ11 σ10 σ11 σ11

In [1] the concept of a leftmost normal form graph hypersubstitution was de-
fined.

Definition 4.6. A graph hypersubstitution σ is called leftmost if L(σ(f)) =
x1.

The set ML(SG) of all leftmost normal form graph hypersubstitutions in
MSG contains exactly the following elements.

ML(SG) = {σ0, σ1, σ3, σ6, σ8, σ10}.
In [5] the concept of a proper hypersubstitution of a class of algebras was

introduced.

Definition 4.7. A hypersubstitution σ is called proper with respect to a class
K of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

A graph hypersubstitution with the property that σ(f) contains both vari-
ables x1 and x2 is called regular. It is easy to check that the set of all regular
graph hypersubstitutions forms a groupoid Mreg.

We want to prove that {σ0, σ10} is the set of all proper normal form graph
hypersubstitutions with respect to SG.

In [1] the following lemma was proved.

Lemma 4.2. For each non-trivial term s, (s 	= x ∈ X) and for all u, v ∈ X,
we have:

(i)E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)},
(ii)E(σ̂8[s]) = E(s) ∪ {(v, v)|(u, v) ∈ E(s)},

and
(iii)E(σ̂12[s]) = E(s) ∪ {(v, u)|(u, v) ∈ E(s)}.
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In [1] the concept of a dual term sd of the non-trivial term s was defined in
the following way:

If s = x ∈ X, then xd = x; if s = t1t2, then sd = td2t
d
1. The dual term

sd can be obtained by application of the graph hypersubstitution σ5, namely,
σ̂5[s] = sd. Then, we can prove the following lemma:

Lemma 4.3. For each non-trivial term s, (s 	= x ∈ X) and for all u, v ∈ X,
we have:

(i)E(σ̂7[s]) = E(sd) ∪ {(u, u)|(u, v) ∈ E(sd)},
(ii)E(σ̂9[s]) = E(sd) ∪ {(v, v)|(u, v) ∈ E(sd)},

and
(iii)E(σ̂10[s]) = E(s) ∪ {(u, u), (v, v)|(u, v) ∈ E(s)}.

Proof We prove the equation by induction with respect to the complexiy of
terms. Assume that s = uv, where u, v are variables. Then

E(σ̂7[s]) = E((vu)v) = {(v, u), (v, v)} = E(sd) ∪ {(v, v)},

E(σ̂9[s]) = E(v(uu)) = {(u, u), (v, u)} = E(sd) ∪ {(u, u)},
E(σ̂10[s]) = E((uu)(vv)) = {(u, v), (u, u), (v, v)} = E(s) ∪ {(u, u), (v, v)}.

Assume that s = s1s2 and that at least one of the terms s1, s2 is not a variable,
assume further that s1 , s2 fulfil the equation which we want to prove. Then we
have
E(σ̂7[s]) = E(σ̂7[s1s2]) = E((σ̂7[s2]σ̂7[s1])σ̂7[s2])

= E(σ̂7[s1]) ∪E(σ̂7[s2])∪ {(L(σ̂7[s2]), L(σ̂7[s1])), (L(σ̂7[s2]), L(σ̂7[s2])),
= E(sd

1 ]) ∪ {(u, u)|(u, v) ∈ E(sd
1)} ∪ E(sd

2) ∪ {(u′, u′)|(u′, v′) ∈ E(sd
2)}

∪{(L(sd
2), L(sd

1 ])), (L(sd
2 ]), L(sd

2]))}
= E(sd) ∪ {(u, u)|(u, v) ∈ E(sd)}.

E(σ̂9[s]) = E(σ̂9[s1s2]) = E(σ̂9[s2](σ̂9[s1]σ̂9[s1]))
= E(σ̂9[s1]) ∪E(σ̂2[s2])∪ {(L(σ̂9[s2]), L(σ̂9[s1])), (L(σ̂9[s1]), L(σ̂9[s1])),
= E(sd

1 ]) ∪ {(v, v)|(u, v) ∈ E(sd
1)} ∪ E(sd

2) ∪ {(v′, v′)|(u′, v′) ∈ E(sd
2)}

∪{(L(sd
2), L(sd

1)), (L(sd
1 ]), L(sd

1))
= E(sd) ∪ {(v, v)|(u, v) ∈ E(sd)}.

E(σ̂10[s]) = E(σ̂10[s1s2]) = E((σ̂10[s1]σ̂10[s1])(σ̂10[s2]σ̂10[s2]))
= E(σ̂10[s1])∪E(σ̂10[s2])∪{(L(σ̂10[s1]), L(σ̂10[s1])), (L(σ̂10[s1]), L(σ̂10[s2])),
(L(σ̂10[s2]), L(σ̂10[s2]))}
= E(s1) ∪ {(u, u), (v, v)|(u, v) ∈ E(s1)} ∪ E(s2) ∪ {(u′, u′), (v′, v′)|(u′, v′) ∈
E(s2)} ∪ {(L(s1), L(s1)), (L(s1), L(s2)), (L(s2]), L(s2))}
= E(s) ∪ {(u, u), (v, v)|(u, v) ∈ E(s)}. �

Then we obtain:

Theorem 4.1. {σ0, σ10} is the set of all proper graph hypersubstitution with
respect to the class SG of symmetric graph algebras.
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Proof If s ≈ t ∈ IdSG and s, t are trivial terms, then for every graph
hypersubstitution σ ∈ {σ0, σ10} the term σ̂[s] and σ̂[t] are also trivial and thus
σ̂[s] ≈ σ̂[t] ∈ IdSG. By the same manner, we see that σ̂[s] ≈ σ̂[t] ∈ IdSG for
every σ ∈ {σ0, σ10}, if s = t = x.

Now, assume that s and t are non-trivial terms, different from variables,
and s ≈ t ∈ IdSG. Then (i) − (iii) of the Theorem 3.1 hold.

For σ10 we obtain

L(σ̂10[s]) = L(s) = L(t) = L(σ̂10[t]).

Since σ10 is regular, we have V (σ̂10[s]) = V (s) = V (t) = V (σ̂10[t]). By Lemma
4.2, we have

E(σ̂10[s]) = E(s) ∪ {(u, u), (v, v) | (u, v) ∈ E(s)},
E(σ̂10[t]) = E(t) ∪ {(u, u), (v, v) | (u, v) ∈ E(t)}.

For any x, y ∈ V (s), suppose that (x, y) ∈ E(σ̂10[s]). Suppose that x = y
(i.e. (x, y) = (x, x) ∈ E(σ̂10[s])). If (x, x) ∈ E(s), then by (iii) (x, x) ∈ E(t).
Hence (x, x) ∈ E(σ̂10[t]). If (x, x) /∈ E(s), then there exists z 	= x such that
(x, z) ∈ E(s) or (z, x) ∈ E(s). By (iii), we get (x, z) ∈ E(t) or (z, x) ∈ E(t).
Hence (x, x) ∈ E(σ̂10[t]). If x 	= y, then (x, y) ∈ E(s). By (iii), we get
(x, y) ∈ E(t) or (y, x) ∈ E(t). Therefore (x, y) ∈ E(σ̂10[t]) or (y, x) ∈ E(σ̂10[t]).
Hence σ̂10[s] ≈ σ̂10[t] ∈ IdSG.

For any σ /∈ {σ0, σ10}, we give an identity s ≈ t ∈ IdSG such that σ̂[s] ≈
σ̂[t] /∈ IdSG. Clearly, if s and t are trivial terms with different leftmost and
different rightmost, then σ̂1[s] ≈ σ̂1[t] /∈ IdSG, σ̂2[s] ≈ σ̂2[t] /∈ IdSG, σ̂3[s] ≈
σ̂3[t] /∈ IdSG and σ̂4[s] ≈ σ̂4[t] /∈ IdSG.

Let s = x1x2 and t = x1(x2x1). By Theorem 3.1, we get s ≈ t ∈ IdSG.
Since

σ̂6[s] = σ̂6[x1x2] = (x1x1)x2,

σ̂6[t] = σ̂6[x1(x2x1)] = (x1x1)((x2x2)x1),

σ̂8[s] = σ̂8[x1x2] = x1(x2x2)

and
σ̂8[t] = σ̂8[x1(x2x1)] = x1((x2(x1x1))(x2(x1x1))).

We see that (x2, x2) ∈ σ̂6[t] but (x2, x2) /∈ σ̂6[s] and (x1, x1) ∈ σ̂8[t] but
(x1, x1) /∈ σ̂8[s]. Hence σ̂6[s] ≈ σ̂6[t] /∈ IdSG and σ̂8[s] ≈ σ̂8[t] /∈ IdSG.

Now, let s = (x1x2)x1 and t = ((x1x2)x1)x2. By Theorem 3.1, we have s ≈
t ∈ IdSG. If σ ∈ {σ5, σ7, σ9, σ11}, then L(σ(f) = x2. We see that L(σ̂[s]) = x1

and L(σ̂[t]) = x2 for all σ ∈ {σ5, σ7, σ9, σ11}. Thus σ̂[s] ≈ σ̂[t] /∈ IdSG. �
Now we apply our results to characterize all hyperidentities in the class of

all transitive graph algebras. Clearly, if s and t are trivial terms, then s ≈ t is
a hyperidentity in SG if and only if they have the same leftmost and the same
rightmost and x ≈ x, x ∈ X is a hyperidentity in SG too. So we consider the
case that s and t are non-trivial and different from variables.
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Theorem 4.2. An identity s ≈ t in SG, where s, t are non-trivial and s 	=
x, t 	= x, is a hyperidentity in SG if and only if the following conditions are
satisfied:

(i) sd ≈ td ∈ IdSG,
(ii) for all x ∈ V (s), ∃y ∈ V (s), (x, y) ∈ E(s) ⇔ ∃z ∈ V (t), (x, z) ∈ E(t),
(iii) for all x ∈ V (s), ∃y ∈ V (s), (y, x) ∈ E(s) ⇔ ∃z ∈ V (t), (z, x) ∈ E(t),
(iv) for all x′ ∈ V (s), ∃y′ ∈ V (s), (x′, y′) ∈ E(sd) ⇔ ∃z′ ∈ V (t), (x′, z′) ∈

E(td),
(v) for all x′ ∈ V (s), ∃y′ ∈ V (s), (y′, x′) ∈ E(sd) ⇔ ∃z′ ∈ V (t), (z′, x′) ∈

E(td).
Proof If s ≈ t is a hyperidentity in SG, then σ̂5[s] ≈ σ̂5[t] is an identity in
SG, i.e., sd ≈ sd ∈ IdSG.

Suppose that there exists x ∈ V (s) such that ∃y ∈ V (s), (x, y) ∈ E(s) but
	 ∃z ∈ V (t), (x, z) ∈ E(t). We see that (x, x) ∈ E(σ̂6[s]) but (x, x) /∈ E(σ̂6[t]).
Hence σ̂6[s] ≈ σ̂6[t] /∈ IdSG.

Suppose that there exists x ∈ V (s) such that ∃y ∈ V (s), (y, x) ∈ E(s) but
	 ∃z ∈ V (t), (z, x) ∈ E(t). We get (x, x) ∈ E(σ̂8[s]) but (x, x) /∈ E(σ̂8[t]). Hence
σ̂8[s] ≈ σ̂8[t] /∈ IdSG.

Suppose that there exists x′ ∈ V (s) such that ∃y′ ∈ V (s), (x′, y′) ∈ E(sd)
but 	 ∃z′ ∈ V (t), (x′, z′) ∈ E(td). We see that (x′, x′) ∈ E(σ̂7[s]) but (x′, x′) /∈
E(σ̂7[t]). Hence σ̂7[s] ≈ σ̂7[t] /∈ IdSG.

Suppose that there exists x′ ∈ V (s) such that ∃y′ ∈ V (s), (y′, x′) ∈ E(sd)
but 	 ∃z′ ∈ V (t), (z′, x′) ∈ E(td). We get (x′, x′) ∈ E(σ̂9[s]) but (x′, x′) /∈
E(σ̂9[t]). Hence σ̂9[s] ≈ σ̂9[t] /∈ IdSG.

Conversely, assume that s ≈ t is an identity in SG satisfying (i),(ii), (iii),
(iv) and (v).

We have to prove that s ≈ t is closed under all graph hypersubstitutions
from MSG .

If σ ∈ {σ0, σ10}, then σ is proper and we get that σ̂[s] ≈ σ̂[t] ∈ IdSG.
By assumption, σ̂5[s] = sd ≈ td = σ̂5[t] and σ̂1[s] = L(s) = L(t) = σ̂1[t],
σ̂2[s] = L(sd) = L(td) = σ̂2[t], σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t], σ̂4[s] =
L(sd)L(sd) = L(td)L(td) = σ̂4[t].

Because of σ10◦Nσ5 = σ11 and σ̂10[σ̂5[t′]] = σ̂10[t′d] for all t′ ∈ Wτ (X). We
have σ̂11[s] ≈ σ̂11[t] is an identity in SG.

Next, we will prove that σ̂6[s] ≈ σ̂6[t] ∈ IdSG, σ̂7[s] ≈ σ̂7[t] ∈ IdSG,
σ̂8[s] ≈ σ̂8[t] ∈ IdSG and σ̂9[s] ≈ σ̂9[t] ∈ IdSG. We see that L(σ̂6[s]) = L(s) =
L(t) = L(σ̂6[t]), L(σ̂7[s]) = L(sd) = L(td) = L(σ̂7[t]), L(σ̂8[s]) = L(s) =
L(t) = L(σ̂8[t]), L(σ̂9[s]) = L(sd) = L(td) = L(σ̂9[t]). Since σ6, σ7, σ8 and σ9

are regular, we have V (σ̂6[s]) = V (s) = V (t) = V (σ̂6[t]), V (σ̂7[s]) = V (s) =
V (t) = V (σ̂7[t]), V (σ̂8[s]) = V (s) = V (t) = V (σ̂8[t]), V (σ̂9[s]) = V (s) =
V (t) = V (σ̂9[t]).

For any x, y ∈ V (s), assume that (x, y) ∈ E(σ̂6[s]) or (y, x) ∈ E(σ̂6[s]).
Suppose that x = y (i.e. (x, x) ∈ E(σ̂6[s]). If (x, x) ∈ E(s), then by Theorem
3.1(iii), we have (x, x) ∈ E(t). Therefore (x, x) ∈ E(σ̂6[t]). If (x, x) /∈ E(s),
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then there exists z such that (x, z) ∈ E(s). By (ii), there exists w such that
(x, w) ∈ E(t). Therefore (x, x) ∈ E(σ̂6[t]). If x 	= y, then (x, y) ∈ E(s) or
(y, x) ∈ E(s). By Theorem 3.1 (iii), we get (x, y) ∈ E(t) or (y, x) ∈ E(t). Hence
(x, y) ∈ E(σ̂6[t]) or (y, x) ∈ E(σ̂6[t]). By the same way, we can prove that, if
(x, y) ∈ E(σ̂6[t]) or (y, x) ∈ E(σ̂6[t]), then (x, y) ∈ E(σ̂6[s]) or (y, x) ∈ E(σ̂6[s]).
Hence σ̂6[s] ≈ σ̂6[t] ∈ IdSG.

For any x, y ∈ V (s), assume that (x, y) ∈ E(σ̂8[s]) or (y, x) ∈ E(σ̂8[s]).
Suppose that x = y (i.e. (x, x) ∈ E(σ̂8[s]). If (x, x) ∈ E(s), then by Theorem
3.1(iii), we have (x, x) ∈ E(t). Therefore (x, x) ∈ E(σ̂8[t]). If (x, x) /∈ E(s),
then there exists z such that (z, x) ∈ E(s). By (iii), there exists w such that
(w, x) ∈ E(t). Therefore (x, x) ∈ E(σ̂8[t]). If x 	= y, then (x, y) ∈ E(s) or
(y, x) ∈ E(s). By Theorem 3.1 (iii), we get (x, y) ∈ E(t) or (y, x) ∈ E(t). Hence
(x, y) ∈ E(σ̂8[t]) or (y, x) ∈ E(σ̂8[t]). By the same way, we can prove that, if
(x, y) ∈ E(σ̂8[t]) or (y, x) ∈ E(σ̂8[t]), then (x, y) ∈ E(σ̂8[s]) or (y, x) ∈ E(σ̂8[s]).
Hence σ̂8[s] ≈ σ̂8[t] ∈ IdSG.

For any x, y ∈ V (s), assume that (x, y) ∈ E(σ̂7[s]) or (y, x) ∈ E(σ̂7[s]).
Suppose that x = y (i.e. (x, x) ∈ E(σ̂7[s]). If (x, x) ∈ E(sd), then by assump-
tion (i) and Theorem 3.1(iii), we have (x, x) ∈ E(td). Hence (x, x) ∈ E(σ̂7[t]).
If (x, x) /∈ E(s), then there exists z such that (x, z) ∈ E(sd). By (iv), there
exists w such that (x, w) ∈ E(td). Therefore (x, x) ∈ E(σ̂7[t]). If x 	= y, then
(x, y) ∈ E(sd) or (y, x) ∈ E(sd). By assumption (i) and Theorem 3.1 (iii), we
get (x, y) ∈ E(td) or (y, x) ∈ E(td). Hence (x, y) ∈ E(σ̂7[t]) or (y, x) ∈ E(σ̂7[t]).
By the same way, we can prove that, if (x, y) ∈ E(σ̂7[t]) or (y, x) ∈ E(σ̂7[t]),
then (x, y) ∈ E(σ̂7[s]) or (y, x) ∈ E(σ̂7[s]). Hence σ̂7[s] ≈ σ̂7[t] ∈ IdSG.

For any x, y ∈ V (s), assume that (x, y) ∈ E(σ̂9[s]) or (y, x) ∈ E(σ̂9[s]).
Suppose that x = y (i.e. (x, x) ∈ E(σ̂9[s]). If (x, x) ∈ E(sd), then by assump-
tion (i) and Theorem 3.1(iii), we have (x, x) ∈ E(td). Hence (x, x) ∈ E(σ̂9[t]).
If (x, x) /∈ E(s), then there exists z such that (z, x) ∈ E(sd). By (v), there
exists w such that (w, x) ∈ E(td). Therefore (x, x) ∈ E(σ̂9[t]). If x 	= y, then
(x, y) ∈ E(sd) or (y, x) ∈ E(sd). By assumption (i) and Theorem 3.1 (iii), we
get (x, y) ∈ E(td) or (y, x) ∈ E(td). Hence (x, y) ∈ E(σ̂9[t]) or (y, x) ∈ E(σ̂9[t]).
By the same way, we can prove that, if (x, y) ∈ E(σ̂9[t]) or (y, x) ∈ E(σ̂9[t]),
then (x, y) ∈ E(σ̂9[s]) or (y, x) ∈ E(σ̂9[s]). Hence σ̂9[s] ≈ σ̂9[t] ∈ IdSG. �
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