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Abstract

The purpose of this paper is to introduce notations of r-reticular map
germs on IRn and investigate their stability. The main results are proofs
of stability theorems, which is the similar to Mather’s stable theorems
for C∞-maps.

1 Introduction

In the Mather’s stable theory for C∞ map-germ, in order to prove stable cri-
teria, J. Mather gave various equivalent notations of stability of map-germs.
They are Stable map; Transverse stability; Infinitesimally stable; Homotopi-
cally stable; Stability under deformation, and he proved that all notations are
equivalent (see [3], pp. 111-142).

We propose in this paper to generalize Mather’s theory of stable map-germ
and to prove stable theorems similar in Mather’s stable theorem for C∞ map-
germ by unfolding theory.

The paper contains two sections: The first section deals with the basic
notation and in Section 2, we prove some results concerning the stability of
r-reticular map-germ in IRn. The main results of this paper are theorems 3.1,
3.4 and 3.5.
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166 The stability of regular map germs

2 Preliminaries

We denote by ε(n, p) the set of germs of differentiable maps at zero on R
n to

R
p. We write ε(n) instead ε(n, 1).

Fix r ∈ N, 0 ≤ r ≤ n, let Xi denote a germ of the set {(x1, x2, ..., xn) ∈
R

n|xi = 0}, and let P (Ir) denote the family of all subsets of the set Ir =
{1, 2, ..., r}.

The collection X = (Xσ)σ∈P(Ir ) where Xσ = ∩i∈σXi, is called a germ
of r-reticular manifold. Denote by Diffr(n) = {Φ : (Rn, 0) → (Rn, 0)|Φ is a
diffeomorphism germ at zero, such that Φ(Xσ) = Xσ , σ ∈ P (Ir)} and Y ≡ R

m.

2.1 Definition Let f : X → Y be a function from X into Y . Denote by f the
collection (fσ)σ∈P(I) , where fσ = f |Xσ . f is called a r-reticular map-germ, we
write f : X → Y .

We say that two germs f
1
, f

2
: (X, 0) → (Y, 0) are reticularly equivalent if

there exists φ ∈ Diffr(n) such that f
1

= f
2
◦ φ.

Example 1 Let X = IR3, Y = IR, I = {1, 2} then
P (I) = {{∅}, {1}, {2}, {1, 2}}. Let f : X → IR, (x, y, z) 	→ x2 + 2xy + yz.

Then we have
if σ1 = σ = φ ∈ P (I), then fσ1 : IR3 → IR, fσ1 (x, y, z) = x2 + 2xy+ yz;
if σ2 = σ = {1} ∈ P (I), then fσ2 : Xσ2 → IR, fσ2 (0, y, z) = yz;
if σ3 = σ = {2} ∈ P (I), then fσ3 : Xσ3 → IR, fσ3 (x, 0, z) = x2;
if σ4 = σ = {1, 2} ∈ P (I), then fσ4 : Xσ4 → IR, fσ4 (0, 0, z) = 0.
It is easily seen that f = {fσ1 , fσ2 , fσ3 , fσ4}, whereXσ1 = X{∅} = IR3 , Xσ2 =

X{1} = {(0, y, z) ∈ IR3}, Xσ3 = X{2} = {(x, 0, z) ∈ IR3}, Xσ4 = X{1,2} =
X1 ∩X2 = {(0, 0, z) ∈ IR3}.
Example 2 Let X = IR3, Y = IR, I = {1, 2}, f : X → IR, (x, y, z) 	→
x2+2xy+yz and g : X → IR, (x, y, z) 	→ x2

4
+xy+yz. Then f, g are reticularly

equivalent. Indeed, taking φ : (IR3, 0) → (IR3, 0), (x, y, z) 	→ (2x, y, z), we have
φ(Xσi ) = Xσi , i = 1, 2, 3, 4 and f = g ◦ φ.

Remark (a) By a change of basis in IRn, each element φ of Diffr(n) is of the
form φ(x) = (x1φ1(x), . . . , xrφr(x), φr+1(x), . . . , φn(x)) where φi are germs of
smooth functions on IRn and Jac(φ) 
= 0 .

(b) Let U be an open subset of IRq . Then X ×U = (Xσ ×U)|σ∈P(I) is also
a germ of a reticular manifold.

2.2 Definition Let f : X → Y be a r-reticular map-germ, and U be an
open subset of IRq (called the base of the unfolding). We say that a reticular
map-germ F : X × U � (x, u) → (F (x, u), u) ∈ Y × U is an unfolding of f if
F (x, 0) = f(x).

We say that two unfolding F1 and F2 are equivalent if there exist φ ∈
Diffr(n + q), G ∈ ε(m + q,m+ q) (where dimY = m) such that φ (resp. G)
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is an unfolding of the identity of X (resp. Y ) and the following diagram is
commutative

X × U
F1−−−−−−−−−→ Y × U⏐⏐⏐�φ ⏐⏐⏐�G

X × U
F2−−−−−−−−−→ Y × U

Let F be as above and let h : (U ′, 0) → (U, 0) be a germ of a diffeo-
morphism and h(u′) ∈ U . Then the map germ h∗F defined by (h∗F )(x, u′) =
(F (x, h(u′)), u′) is called the unfolding derived from the unfolding F : X×U →
Y × U of f by the change of basis h.

We say that an unfolding F of f is versal if any unfolding of f is reticularly
equivalent to an unfolding induced from F by a change of basis.

A reticular map germ is stable if any unfolding F : X × U → Y × U is
trivial, i.e., it is reticularly equivalent to the constant unfolding

X × U � (x, u) → (f(x), u) ∈ (Y × U).

Let f : X → Y be a smooth map-germ, we say that f is infinitesimally
stable if for any g ∈ ε(n,m), where ε(n,m) is the ring of smooth functions
from IRn into Y , there exist hi ∈ ε(n) and ki ∈ ε(m) such that

g(x) =
r∑

i=1

xi
∂f

∂xi
hi(x) +

n∑
i=r+1

∂f

∂xi
hi(x) +

m∑
j=1

kj(f(x))ej .

Where (e1, . . . , em) is canonical basis of ε(n,m). We write

Trf = ε(n){x1
∂f

∂x1
, . . . , xr

∂f

∂xr
,
∂f

∂xr+1
, . . .

∂f

∂xn
} + f∗ε(m)(e1 , . . . , em)

where f∗ε(m) is the subring of ε(n) defined by f∗ε(n) = {kof : k ∈ ε(m)}ε(n).
The number Codr(f) = dimIR (ε(n,m)/Trf) is called the reticular codi-

mention of f .
Let F be an unfolding of f with base U . We say that F is infinitesimally

versal if
Trf + IR{ .

F 1,
.

F 2, . . . ,
.

F q} = ε(n,m) (1)

where F (x, u) = (F (x, u), u),
.

F i (x) =
∂F

∂ui
(x, 0) and IR{ .

F 1,
.

F 2, . . . ,
.

F q} is the

vector subspace of ε(n,m) generated by { .

F 1,
.

F 2, . . . ,
.

F q}.
Remark We can prove that f is infinitesimally stable if and only if any
infinitesimal unfolding f + ta is trivial (i.e a ∈ Trf)
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3 Some Results

3.1 Theorem A smooth map-germ f has a versal unfolding if and only if
Codr(f) is finite.

Proof Assume that Codr(f) = l, and g1, . . . , gl form a basis of ε(n,m)/Trf .
Then the map-germ defined by

F (x, u) = (f(x) +
l∑

i=1

uigi(x), u)

is infinitesimally versal unfolding (since it satisfies (1)). In order to proceed,
now we are interested in the case, all map-germs are holomorphic. In this
case, instead of ε(n), we denote by O(n), O(p), O(n, p) the rings of germs of
holomorphic functions on the germs X, Y and of germs of holomorphic maps
of the germ X to the germ Y respectively, where n = dimX, p = dimY. We
need the following theorem.

3.2 Theorem Any infinitesimally versal deformation is versal.
The proof of this theorem is similar to that of theorem 3.3 in [5], if we know

a generalization of the flow-box theorem. Hence it is enough to formulate this
generalization and prove it.

3.3 Flow-box Theorem (in a generalized form) Let v(x) =
n∑

i=1

ξi(x) ∂
∂xi

be a

germ of a vector-field at 0, where ξi ∈ ε(n) and ξi(x) = xiξ̃i(x), i = 1, . . . , r.
Let ht be the flow generated by v. Then, in a small neighbourhood of t = 0, ht

is a reticular analysis map-germ.

Proof a) By the usual flow-box theorem, ht is a analysis map-germ. The
proof can be found in [V.Arnold, Ordinary Dif and only if erential Equations,
Moscow 1974]. Observe that this is the holomorphic version of the usual flow-
box theorem.

b) Let ht be of the form: ht(x) = (h1
t (x), . . . , hn

t (x)), it is enough to prove
that,

(3) hi
t|xi=0 = 0 for i = 1, . . . , r.

In oder to prove (3), we show that d
shi

t
dts

|t=0 = 0 on xi = 0 for all s (since
by analyticity of the mapping t → ht, h

i
t must then vanish on xi = 0 in the

neighborhood of t = 0).
Since the proof is the same for all i = 1, . . . , r, we consider i = 1 only.
We know that d

dt
h1

t (x) = ξ1(ht(x)), d
dt
h1

t |t=0 = ξ1(x) = x1ξ̃1(x), and hence
d
dt
h1

t |t=0 vanished at x = 0. Now consider the second derivative:

d2

dt2
h1

t =
n∑

j=1

∂ξ1
∂xj

dh1
t

dt
=

n∑
j=1

∂ξ1
∂xj

ξj(ht(x))
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=
(

∂

∂x1
ξ1(ht(x)

)
+ x1

(
n∑

i=2

∂ξ̃1
∂xi

ξi(ht(x)

)
.

Hence d2h1
t

dt2
|t=0 = 0 at x1 = 0. By induction we conclude that the deriva-

tives of all order vanish at t = 0 for x1 = 0. Because hi
t are analytic therefore

hi
t ≡ 0.

Proof of Theorem 3.2
Before giving our proof of the theorem, we need a lemma.
Let F is an infinitesimally versal deformation of the germ f and let φ be

any one-parameter deformation of F :
Φ(x, λ, 0) ≡ F (x, λ), F (x, 0) ≡ f(x)
Φ: (Rn × R

l × R, 0) → (Rq , 0).
We may consider Φ as an l + 1−parameter deformation of the germ f of a

map from R
n into R

q with parameters λ ∈ R
l, u ∈ R.

Lemma (Reduction) The deformation Φ of f is equivalent to one induced
from F.

Proof We construct a vector field germ v at 0 in space R
n × R

l × R. In such
a way that

i) v = ∂
∂u

+ ε(λ, u) ∂
∂λ

+X(x, λ, u) ∂
∂x

ii) v ◦ Φ = 0.
According to i) the phase curves of such a field are transversal to the hyper-

plane u = 0 and determine near zero a smooth fibration of n+l+1−dimensional
space over n+l−dimensional space. This fibration may be described as follows.
Associate to each point (x, λ, u) the intersection of the phase curve through it
with plane u = 0. Denote the x−and λ−coordinate of this point of intersec-
tion by g and ϕ. According to i) the fibration so constructed can be written
in the form (x, λ, u) 	→ (g(x, λ, u), ϕ(λ, u)). By ii) it is clear that Φ is constant
deformation of F, hence v is constant of vector field

η = ∂
∂u + ε(λ, u) ∂

∂λ in neighbourhood of 0 ∈ R
l × R.

If ψ(u, t1, . . . , tl) = (u, ψu(t1, . . . , tl)) is locally dif and only if eomorphism
defined by in integral of vector field η. By theorem 3.3 we have ψn(t1, . . . , tl)
is a germ of holomorphic function, then deformation Φ of f is r−reticularly
equivalent to one induced from F for h : (Rl × R, 0) → (Rl, 0) (u, t1, . . . , tl) 	→
ψ−1

u (t1, . . . , tl).
Therefore to prove the lemma, it remains to construct a field v satisfying i)

and ii).
Since F is an infinitesimally versal deformation of f then ∀α ∈ ε(n + l, p)

we have

α(x) =
r∑

i=1

xi
∂f

∂xi
hi(x) +

n∑
i=r+1

∂f

∂xi
hi(x) +

l∑
i=1

.

Fi ξi.
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Consequently for every variation α(x, λ, u) of Φ there exists a decomposi-
tion:

α(x, λ, u) =
r∑

i=1

xi
∂f

∂xi
hi(x) +

n+1∑
i=r+1

∂f

∂xi
hi(x) +

l∑
i=1

.

Fi ξi.

The preparation theorem (see section 6.6, p.130 of [2]) shows that the de-
composition exists also for convergent series and in the C∞−case [it is necessary
to apply the theorem to the Ax,λ,u−module (Ax,λ,u)n/{ ∂Φ

∂xi
, Φiej}, to the map

(x, λ, u) → (λ, u) and to generators ∂Φ
∂λi

].
The decomposition as above for α = −∂Φ

∂u supplies the desired solution, the
lemma is proved.

The continuation of the proof of theorem 3.2
Let F ′ be any deformation of f with parameter λ′ ∈ R

l′ and let F be
an infinitesimally versal deformation of the same germ with parameter λ ∈ R

l.
From the “sum” that is the deformation F̂ (x, λ, λ′) ≡ F (x, λ)+F ′(x, λ′)−f (x)
with l+ l′−dimensional parameter (λ, λ′).

For λ′ = 0 the deformation F̂ reduces to F and for λ = 0 to F ′. The
inclusion of submanifold in the base of the deformation induces a deformation
whose base is the embedded submanifold; we shall call the original deformation
(with the large base) an extension of the deformation with the smaller base.
Note that an extension of an infinitesimally versal velocities only increase.

Consider now the chain of subspace R
l ⊂ R

l+1 ⊂ · · · ⊂ R
l+l′ , beginning with

the base of the deformation F and finishing with the base of the deformation F̂ .
The restrictions of F̂ to these subspaces are infinitesimally stable. Consequently
applying the reduction lemma we may see that deformation F̂ is r−reticularly
equivalent to one induced from F. But the deformation F ′ is induced from F̂ .
Therefore the deformation F ′ also is r−reticularly equivalent to one induced
from F, at which point therefore F is the versal unfolding the proof of the
theorem is concluded.

Now we consider the case when F is versal we see that Codr(f) is finite.
Indeed, it follows readily from F is a versal unfolding of f that for all α(x) ∈
ε(n,m), we construct an 1-parameter unfolding F ′(x, t) = f(x) + α(x) of f .
Since F is versal hence there exist g, ϕ such that f(x)+tα(x) = F [g(x, t), ϕ(t)],
where g : X × IR → X, g(x, 0) = x and ϕ : IR → IRl, ϕ(0) = 0 such that f
and g are smooth germs. Dif and only if erentiating by t at zero we get

α(x) = (F [g(x, t), ϕ(t)])′|t=0 =
r∑

i=1

xi
∂F

∂xi

∂gi(x, t)
∂t

∣∣∣∣
t=0

+

n∑
i=r+1

∂F

∂xi

∂gi(x, t)
∂t

∣∣∣∣
t=0

+



Ngo Dinh Quoc 171

l∑
i=1

∂F

∂xi

∂ϕi

∂t

∣∣∣∣
t=0

=
r∑

i=1

xi

∂f

∂xi
hi(x) +

n∑
i=r+1

∂f

∂xi
hi(x) +

l∑
i=1

ci
.

F i (x),

where

hi(x) =
∂gi(x, t)
∂t

∣∣∣∣
t=0

, i = 1, 2, . . . , n;
.

F j (x) =
∂F

∂uj
, j = 1, 2, . . . l;

ci =
∂ϕi(x, t)

∂t

∣∣∣∣
t=0

.

Therefore F is an infinitesimally versal l-parameter unfolding of f , then the
equality (1) holds and it implies, of course, the finiteness of Codr(f).

3.4 Theorem f is infinitesimally stable if and only if f is stable.

Proof Firstly, we note that f is infinitesimally stable if and only if Codr(f) = 0
(by definition). Now assume that f is stable, we have to prove that Codr(f) =
0. This mean that for all g ∈ ε(n,m) we have g ∈ Trf . Because f is sta-
ble, any unfolding of f is trivial, in particular the one-parameter unfolding
F defined by F (x, u) = (f(x) + ug(x), u) is trivial. Therefore there exist
H ∈ Diffandonlyifr(n + 1), G : IRm+1 → IRm+1 , (without loss of general-
ity we can assume that G = IdIRm+1 ) such that F = G ◦ F ′ ◦H , where H is of
the form

H(x, u) = (x1h1(x, u), . . . , xrhr(x, u), hr+1(x, u), . . . , hn(x, u), u)

and F ′ is the constant unfolding of f . Hence we have

f(x) + ug(x) = f [h1(x, u), h2(x, u), . . . , hn(x, u)]; (5)

hi(x, u) = xih̃i(x, u), i = 1, . . . , r.

Differentiating both sides of (5) by u at u = 0 we get the equality

g(x) =
r∑

i=1

xi
∂h̃i

∂u

∂f

∂xi

∣∣∣∣
u=0

+
n∑

i=r+1

x2
∂hi

∂u

∂f

∂xi

∣∣∣∣
u=0

.

Hence g ∈ Tr(f).
If f is infinitesimally stable, then Codr(f) = 0 . Now if we consider f as an

unfolding of f with base u = {0}, then f is versal, and so any unfolding F of f
is derived from f by a change of basis. Therefore F is trivial, and we conclude
that f is stable.

3.5 Theorem An unfolding F of f is versal if and only if F is stable.
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Proof Let F be an unfolding of f. Then F is stable if and only if Codr(f) = 0
(see 3.4), hence it is enough to prove that F is versal if and only if Codr(F ) = 0.

We use the Weierstrass preparation theorem (in the algebraic version) (see
[4]).

Let F (x, u) = (F̃ (x, u), u), let g1, . . .gs ∈ O(n + q, p) and put gi,0(x) =
gi(x, 0); of course gi,0 ∈ O(n, p). Then the following conditions are equivalent:

a) Trf + R{g1,0, . . . , gs,0} = O(n, p).

b) O(n+ p){x1
∂F̃
∂x1

, . . . , xr
∂F̃
∂xr

, ∂F̃
∂xr+1

, . . . ∂F̃
∂xn

}+
O(n+ p){e1, . . . , ep} + O(p){g1, . . . gs} = O(n+ q, p).

By the notation of Codr(F ), we have Codr(F ) = 0.

Problem We have generalized Mather’s theory of singularities of map-germs to
reticular map-germs. In [10] D. Siersma classified the germs of function with
boundary and with corners in small dimensions only. Hence the interesting
problem in singularity theory is to classify the reticular map-germs in higher
dimensions?
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Prof. Nguyen Huynh Phan for many valuable discussions.
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