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Abstract

BCI, BCK, MV-algebras arose as the algebras of non classical logic
in the same way as boolean algebra arose as the algebra of classical
logic. As a dual to the notion of fuzzy ideals of BCI-algebra, in [4], we
have introduced the notion of fuzzy filters and established their basic
properties and characterization. In this paper, we consider the notion of
ultrafilters and show that such fuzzy filters take only the values {0, 1}
and have level filters which are maximal filters. It is shown that fuzzy
ultrafilters of MV-algebra are fuzzy primes and that fuzzy ideals and
fuzzy filters come in pairs. Finally, we established some algorithms for
filters and fuzzy filters.

1 Backgrounds

A BCI algebra is a non empty set X with a binary operation ∗ and a constant
0 satisfying the following axioms:

(1) [(x ∗ y) ∗ (x ∗ z)] ∗ (z ∗ y) = 0
(2) [x ∗ (x ∗ y)] ∗ y) = 0
(3) x ∗ x = 0
(4) x ∗ y = 0 and y ∗ x = 0 =⇒ x = y
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142 Some Properties of Fuzzy Filters in BCI/BCK-algebras

(5) x ∗ 0 = 0 =⇒ x = 0
A partial ordering ≤ on X can be defined by x ≤ y if and only if x ∗ y = 0.

Further, if x ≥ 0 ∀ x ∈ X, then X is called a BCK-algebra. If a BCK-algebra
satisfies the identity

x ∗ (x ∗ y) = y ∗ (y ∗ x),

then it is called commutative, in this case x ∗ (x ∗ y) = y ∗ (y ∗x) is the greatest
lower bound x ∧ y of x and y. If a commutative BCK-algebra has an upper
bound 1, then the least upper bound x∨ y of two elements x and y is given by
x ∨ y = 1 ∗ [(1 ∗ x) ∧ (1 ∗ y)]. This gives the algebra the structure of bounded
distributive lattice. We shall regard an MV-algebra as a bounded commutative
BCK-algebra. The usual MV-algebra operations are given by

x′ = 1 ∗ x,
xy = x ∗ y′ and
x + y = (x′y′)′ = 1 ∗ [(1 ∗ x) ∗ y].

Definition 1.1. An ideal of a BCI-algebra is a subset I containing 0 such that
if x ∗ y ∈ I and y ∈ I, then x ∈ I.
If the algebra is commutative, then an ideal I is prime if it is proper and if
whenever x ∧ y ∈ I, then x ∈ I or y ∈ I.
An ideal I is maximal if it is proper and whenever I ⊂ J for some ideal J , then
I = J or J is the whole algebra.

It is clear that the ideals of an MV-algebra are precisely the ideals of the
underlying BCI-algebra.

Definition 1.2. A non empty set F of a BCI-algebra X is said to be a filter if
1. x ∈ F and x ≤ y ⇒ y ∈ F
2. x ∈ F and y ∈ F ⇒ x ∧ y ∈ F and y ∧ x ∈ F.
A filter F is prime if it is proper and if whenever x ∨ y ∈ F , then x ∈ F or

y ∈ F .
A filter F is maximal if it is proper and whenever F ⊂ U for some filter U ,
then F = U or U is the whole algebra.

It is also clear that the filters of an MV-algebra are precisely the filters of
the underlying BCI-algebra. We briefly review some fuzzy logic concepts, we
refer the reader to [1], [3], [6], [7] for more details.

Definition 1.3. A fuzzy subset of a BCI-algebra X is a function

μ : X �−→ [0, 1];

It is a fuzzy ideal if it satisfies μ(0) ≥ μ(x) and μ(x) ≥ (μ(x ∗ y), μ(y)).
A fuzzy ideal μ is prime if μ(x∧ y) = max(μ(x), μ(y)). We can define a partial
ordering relation ≤ on a set of all fuzzy ideals of X by μ ≤ λ if and only if
μ(x) ≤ λ(x) ∀ x ∈ X.
A fuzzy ideal is maximal if it is a maximal element of the set of all fuzzy ideals
of X.
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2 Fuzzy filters in BCI-algebra

Definition 2.1. [4]A fuzzy subset μ of a commutative BCI-algebra X is a
fuzzy filter if it satisfies

μ(x ∧ y) ≥ min(μ(x), μ(y))

and when y ≥ x, we have

μ(y) ≥ μ(x) ∀ x and y ∈ X.

We can characterize a fuzzy filter in a commutative BCI-algebras by the
following proposition.

Proposition 2.1. A fuzzy subset μ of a commutative BCI-algebras X is a
fuzzy filter if and only if

μ(x ∧ y) = min(μ(x), μ(y))∀ x and y ∈ X.

Sketch of Proof . For any x and y in X, we have x ≥ x ∧ y and y ≥ x ∧ y.
Using the definition of fuzzy filters, we obtain μ(x ∧ y) = min(μ(x), μ(y)).

Example 2.1. Every constant function μ : X �−→ [0, 1] is a fuzzy filter.

Example 2.2. Let X = {0, 1, 2, 3} with ∗ defined by the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 1 0

It is easy to check that X is a commutative BCI-algebra. Let μ to be a fuzzy
subset on X defined by μ(1) = μ(3) = μ(2) > μ(0) = μ(1), routine calculations
prove that μ is a fuzzy filter.

Example 2.3. Let X ={0, a, b, c, 1} with ∗ defined by the following table:

∗ 0 a b c 1
0 0 0 0 0 0
a a a 0 0 0
b b a 0 a 0
c c c c 0 0
1 1 c c a 0

Let μ to be a fuzzy subset on X defined by μ(a) = μ(b) = μ(0) < μ(c) = μ(1),
one can easily check that μ is a fuzzy filter.
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Given a fuzzy subset μ and t ∈ [0, 1], μt= {x ∈ X/μ(x) ≥ t}. This could
be an empty set. The Theorem 2.2. of [4] shows that μ is a fuzzy filter if
and only if μt is either empty or a filter. Thus, given a fuzzy filter of X, Xμ

={x ∈ X/μ(x) = μ(1)} is a filter.
If F is a filter, then the characteristic function of F , χF is a fuzzy filter. Clearly,
given a filter F of X,

XχF = {x ∈ X/χF (x) = 1} = F

3 Fuzzy prime filter in MV-algebra

In this section, X will always denote a bounded commutative BCK-algebra.

Definition 3.1. A fuzzy filter μ of an MV-algebra X is prime if it is non
constant and

μ(x ∨ y) = max(μ(x), μ(y)) ∀ x and y ∈ X.

It is shown ( Theorem 2.1. of [4] ) that F is a filter of X if and only if the
characteristic function of F is a fuzzy filter. In a similar way, we can show the
following result.

Theorem 3.1. A filter F of an MV-algebra X is prime if and only if the
characteristic function of F , χF is a fuzzy prime filter.

We can characterize fuzzy prime filter in terms of level subsets as:

Theorem 3.2. A fuzzy filter μ of an MV-algebra X is prime if and only if

μt = {x ∈ X/μ(x) ≥ t}
is either empty or a prime filter of X.

Proof . Suppose that μ is a fuzzy prime filter, we already know (Theorem 2.2.
of [4]) that μt is a fuzzy filter. Next, let x ∨ y ∈ μt. Then μ(x ∨ y) ≥ t. Since
μ is fuzzy prime,

μ(x ∨ y) = max(μ(x), μ(y)).

So μ(x) ≥ t or μ(y) ≥ t. We have x ∈ μt or y ∈ μt, which prove that μt is
prime.

Conversely, suppose that μt= {x ∈ X/μ(x) ≥ t} is a prime filter of X.
According to Theorem 2.2. of [4], μt is a fuzzy filter. Let x and y ∈ X and
t = μ(x ∨ y), x ∨ y ∈ μt. Since μt is a prime filter, we have x ∈ μt or y ∈ μt.
So μ(x) ≥ t or μ(y) ≥ t and we obtain that

max(μ(x), μ(x)) ≥ t = μ(x ∨ y).

On the other hand x ≤ x∨ y and y ≤ x∨ y, we apply Definition 2.1 and obtain
μ(x) ≤ μ(x∨y) and μ(y) ≤ μ(x∨y) so that max(μ(x), μ(x)) ≤ μ(x∨y). Finally
max(μ(x), μ(x)) = μ(x∨ y) and we conclude that μ is a fuzzy prime filter.
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Now, we construct a new fuzzy prime filter from a given prime filter.

Definition 3.2. [4]Let μ is a fuzzy subset of X and α ∈ [0, 1]. The function

μα : X �−→ [0, 1]

is given by μα(x) = (μ(x))α.

Proposition 3.1. If a fuzzy subset μ of X is a fuzzy prime filter, then μα is
also a fuzzy prime filter.

Sketch of Proof . From Theorem 2.3. of [4], we have that μα is also a fuzzy
filter when μ is a fuzzy filter. Combining the definition of fuzzy prime filter
and the definition of μα, we can easily obtain the result.

Definition 3.3. [4]Let f : X �−→ Y be a mapping and μ a fuzzy subset of
f(X). Then f−1(μ)(x) =μ(f(x)) is a fuzzy subset. Conversely, let λ be a fuzzy
subset of X. Then f(λ) is defined by:

f(λ(x)) = sup
t∈f−1(y)

λ(t)

is a fuzzy subset of Y .
A mapping f is called an MV-homomorphism if

f(x ∗ y) = f(x)∗f(y).

It is clear that for any MV-homomorphism f , we have f(0) = 0 and f(x) ≤
f(y) when x ≤ y.

Proposition 3.2. Let f : X �−→ Y be an onto MV-homomorphism, we have
the following results:

- If μ is a fuzzy prime filter, then f−1(μ) is also a fuzzy prime filter.

- Conversely, if λ is a fuzzy prime filter with a sup property (for any subset
T of X, there exists t0 ∈ T such that λ(t0) = supt∈T λ(t)) is also a fuzzy
prime filter.

The proof is similar to the one of Theorem 2.5. of [4] and is omitted.

4 Fuzzy ultrafilter in a bounded commutative

BCK-algebra

In this section, X will always denote a bounded commutative BCK-algebra.
If μ is a fuzzy filter of X, it is easy to prove that μ(1) is the largest value of
μ. It is often convenient to have μ(1) = 1. A fuzzy filter μ is normalized if
μ(1) = 1. The normalization of μ is
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μ+ : X �−→ [0, 1]
x −→ μ+(x) = μ(x) + 1 − μ(1).

It is easy to prove that μ+ is a normalized fuzzy filter and μ+ = μ if μ is
normalized. We can define a partial ordering on the set of all fuzzy filters of
X by μ1 ≤ μ2 if μ1(x) ≤ μ2(x) ∀ x ∈ X. It is easy to see that μ ≤ μ+. Let
(X) denote the set of all normalized fuzzy filters μ of X such that 0 ∈ image
of μ. The restriction of ≤ to (X) is a partial order. If μ1 ≤ μ2, we have
Xμ1 ≤ Xμ2 . It is easy to see that for any proper filter F of X, χF ∈ (x) and
for two proper filters F1, F2 of X, we have

F1 ⊂ F2 ⇐⇒ χF1 ≤ χF2 .

We can establish a correspondence between filters and fuzzy filters of X as
follows:

Let (X) be the set of normalized fuzzy filters of X and F (X) the set of
proper filters of X. We define θ and γ in the following way,

θ : F (X) �−→ (X)
such that θ(F ) = χF

γ: (X) �−→ F (X)
such that γ(μ) = Xμ

Proposition 4.1. θ is injective and γ is surjective.

Sketch of Proof . We can easily establish that for any filter F of X, γ(θ(F )) =
F and for any fuzzy filter μ of (X), θ(γ(μ)) = χXµ ≤ μ.

Definition 4.1. Let μ1 and μ2 two fuzzy subsets of an MV-algebra X, we
define μ1 ∧ μ2: X �−→ [0, 1] by (μ1 ∧ μ2)(x) = μ1(x) ∧ μ2(x).

One can easily establish the following lemmas:

Lemma 4.1. If μ1 and μ2 are two fuzzy filters of an MV-algebra X, then
μ1 ∧ μ2 is also a fuzzy filter. Furthermore, if μ1 and μ2 are normalized, then
μ1 ∧ μ2 is also normalized.

If μ is a normalized fuzzy filter, then μ+ is also normalized.

Lemma 4.2. Xμ = Xμ+ .

Lemma 4.3. ((X),≤) is a meet-semi lattice. It has a smallest element χ{1}
and the largest element 1C given by 1C(x) = 1 ∀ x ∈ X.

If μ+(x) = 0 for some x ∈ X, then μ(x) = 0.

Lemma 4.4. If F1 and F2 are filters of X, then

χF1∩F2 = χF1 ∧ χF2 .
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If μ1 and μ2 are two normalized fuzzy filters of X, then

Xμ1∧μ2 = Xμ1 ∩ Xμ2 .

Therefore,
θ(F1 ∩ F2) = θ(F1) ∧ θ(F2)

and
γ(μ1 ∧ μ2) = γ(μ1) ∩ γ(μ2).

Definition 4.2. A fuzzy filter μ is a fuzzy ultrafilter if it is non constant and
μ+ is a maximal element of ((X),≤).

Proposition 4.2. If μ is non-constant and is a maximal element of ((X),≤),
then it takes only the values {0,1}.
Proof . By hypothesis, μ is non constant and μ(1) = 1. We claim that if
μ(x) �= 1, then μ(x) = 0. If not, there exists a ∈ X such that 0 < μ(a) < 1.
Let α(x) = 1/2{1 + μ(x)}, if μ(x) ≥ 1/2 and α(x) = 3/4μ(x), if μ(x) < 1/2.

One can observe that
α(x) ≥ 3/4 if and only if μ(x) ≥ 1/2; α(x) < 3/4 if and only if μ(x) < 1/2;
α is a fuzzy subset of X and α(1) = 1 ≥ α(x) for any x ∈ X and α(x0) = 0

for any x0 ∈ X is such that μ(x0) = 0.
Now, let t ∈ [0, 1].

If t ≥ 3/4, then αt = {x/α(x) ≥ t} = μ1/2.

If t < 3/4, then

αt = {x/α(x) ≥ t} = {x/α(x) ≥ 3/4} ∪ {x/t ≤ α(x) < 3/4}
= {x/μ(x) ≥ 2t/3} = μ2t/3.

We obtain that for all t ∈ [0.1], αt is either empty or a filter of X, hence we
can conclude that α is a normalized fuzzy filter. However α(x) ≥ μ(x) ∀ x ∈ X
and α(a) > μ(a) and we have a contradiction since μ is maximal in the set of
normalized fuzzy filters of X.

Theorem 4.1. Every fuzzy ultrafilter of X is normalized and takes only the
values {0,1}.
Proof . If μ is an ultrafilter, μ+ is a maximal in the set of all normalized fuzzy
filters of X. Since μ is non constant, μ+ is also non constant. We use the
Proposition 4.2 and obtain that μ+ takes only the values {0,1}, Using Lemma
4.3 and the definition of μ+, we can prove that μ+= μ.

Corollary 4.1. If μ is a fuzzy ultrafilter of X, then χXµ = μ.

Corollary 4.2. If μ is a fuzzy ultrafilter of X, then Xμ is an ultrafilter of X.
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Let us recall the following results:

Theorem 4.2. (Corollary 3.9. of [1]) Every fuzzy prime ideal μ of X takes
only two values {μ(0), μ(1)}.
Theorem 4.3. (Theorem 3.9. of [3]) Every ultrafilter of X is prime.

Theorem 4.4. Every fuzzy ultrafilter of X is fuzzy prime.

Proof . By definition of fuzzy filter, we have

μ(x ∨ y) ≥ max(μ(x), μ(y)).

By Theorem 4.1, μ takes only the value {0,1}. To prove that μ(x ∨ y) ≤
max(μ(x), μ(y)), we need only to consider the case μ(x∨y) = 1. If μ(x∨y) = 1,
then x ∨ y ∈ Xμ. From Corollary 4.2, Xμ is an ultrafilter of X, we apply
Theorem 4.3 and obtain that Xμ is a prime filter. Therefore x ∈ Xμ or y ∈ Xμ

and we have
max(μ(x), μ(y)) = 1.

Finally μ(x ∨ y) = max(μ(x), μ(y)) and μ is fuzzy prime.

We can establish a correspondence between ultrafilter and fuzzy ultrafilter
of X as follows: Let (X)′ be the set of fuzzy ultrafilters of X and F (X)′ the
set of ultrafilters of X. We define θ and γ as follows:

θ : F (X) �−→ (X) such that θ(F ) = χF

γ : (X)′ �−→ F (X)′ such that γ(μ) = Xμ

Proposition 4.3. θ and γ are inverses of each other and we have a one-to-one
correspondence between the ultrafilters and the fuzzy ultrafilters of X.

Sketch of Proof . We can easily establish that for any ultrafilter F of X,
γθ(F ) = F and for any fuzzy ultrafilter μ of (X)′,

θγ(μ) = χXµ = μ.

We can show that fuzzy filters and fuzzy ideals of X come in pairs. We
recall that for any fuzzy subset μ of X, we can define a complement μ̄ of μ by:

μ̄(x) = 1 − μ(x).

Proposition 4.4. If a fuzzy subset μ of X is a fuzzy ideal, then μ(x) ≥ μ(y)
when x ≤ y.

Proof . Since x ≤ y, x ∗ y = 0. From the definition of fuzzy ideal, we obtain
that

μ(x) ≥ min(μ(x ∗ y), μ(y)) = μ(y).
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Theorem 4.5. Let μ be a fuzzy subset of X, if μ is a fuzzy prime ideal, then
its complement μ̄ is a fuzzy filter, in fact, a fuzzy ultrafilter.

Proof . Let x, y ∈ X such that x ≤ y. Since μ is a fuzzy ideal, we apply the
Proposition 4.4 and obtain μ(x) ≥ μ(y). So 1−μ(x) ≤ 1−μ(y) and μ̄(x) ≤ μ̄(y).
On the other hand, since μ is a fuzzy prime ideal, μ(x∧ y) = max(μ(x), μ(y)).
Therefore,

1 − μ(x ∧ y) = (1 − max(μ(x), μ(y))) = min(1 − μ(x), 1− μ(y))

and we obtain
μ̄(x ∧ y) ≥ min(μ̄(x), μ̄(y)).

Thus, μ̄ is a fuzzy filter. Because μ is prime, μ takes only two values {0,1}, it
is easy to see that μ̄ also takes only two values {0,1}. From Theorem 4.1, we
conclude that μ̄ is a fuzzy ultrafilter.

5 Conclusion and further Suggestions

We have established some properties of fuzzy filters introduced in [4] and con-
structed some algorithms for recognizing filters and fuzzy filters. In [7], J. Meng
and X. Gou gave a procedure which generate a fuzzy ideal in a BCI-algebra.
Since we have proved that fuzzy ideal and fuzzy filter come in pair, a natu-
ral question is to describe and find a procedure to construct the fuzzy filter
generated by a fuzzy set.
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A Algorithms

Algorithm for BCI-algebras

Input(X : set, ∗: binary operation)
Output(“X is a BCI-algebra or not”)
Begin
If X = ∅ then

go to (1.);
EndIf
If 0 /∈ X then

go to (1.);
EndIf
Stop:=false;
i := 1;
While i ≤ |X | and not(Stop) do
If xi ∗ xi �= 0 then
Stop:=true;

EndIf
j := 1
While j ≤ |X | and not(Stop) do
If xi ∗ (xi ∗ yj) �= 0 then
Stop:=true;

EndIf
If (xi ∗ yj = 0) and (yj ∗ xi = 0) then
If xi �= yj then
Stop:=true;

EndIf
EndIf
k := 1;
While k ≤ |X | and not(Stop) do
If ((xi ∗ yj) ∗ (xi ∗ zk)) ∗ (zk ∗ yj) �= 0 then
Stop:=true;

EndIf
EndWhile

EndWhile
EndWhile
If Stop then
(1.) Output(“X is not a BCI-algebra”)

Else
Output(“X is a BCI-algebra”)

EndIf
End
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Algorithm for filters of BCI-algebra

Input(X : BCI-algebra, F ⊂ X);
Output(“F is a filter of X or not”);
Begin
If F = ∅ then

go to (1.);
EndIf
Stop:=false;
i := 1;
While i ≤ |X | and not(Stop) do

j := 1
While j ≤ |X | and not(Stop) do
If xi ∈ F and xi ≤ yj then
If yj /∈ F then
Stop:=true;

EndIf
EndIf
If not(Stop) then
If xi ∈ F and yj ∈ F then
If (xi ∧ yj) /∈ F or (yj ∧ xi) /∈ F then
Stop:=true;

EndIf
EndIf

EndIf
EndWhile

EndWhile
If Stop then
Output(“F is not a filter of X”)

Else
Output(“F is a filter of X”)

EndIf
End
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Algorithm for fuzzy subsets

Input(X : BCI-algebra, A : X −→ [0, 1]);
Output(“A is a fuzzy subset of X or not”);
Begin
Stop:=false;
i := 1;
While i ≤ |X | and not(Stop) do
If (A(xi) < 0) or (A(xi) > 1) then
Stop:=true;

EndIf
EndWhile
If Stop then
Output(“A is a fuzzy subset of X”)

Else
Output(“A is not a fuzzy subset of X”)

EndIf
End

Algorithm for fuzzy filters

Input(X : Commutative BCI-algebra, µ: Fuzzy subset);
Output(“µ is a fuzzy filter or not”);
Begin
Stop:=false;
i := 1;
While i ≤ |X | and not(Stop) do

j := 1
While j ≤ |X | and not(Stop) do
If µ(xi ∧ yj) < min(µ(xi), µ(yj)) then
Stop:=true;

EndIf
If not(Stop) then
If yj ≥ xi then
If µ(yj) < µ(xi) then
Stop:=true;

EndIf
EndIf

EndIf
EndWhile

EndWhile
If Stop then
Output(“I is not a fuzzy filter”)

Else
Output(“I is a fuzzy filter”)

EndIf
End


