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Abstract

A.A. Lyapunov [18] in 1940 proved that the range of a countably
additive bounded measure with values in a finite dimensional vector space
is compact and, in the non-atomic case, is convex. Simplified proofs,
unified versions, topological versions, generalizations and related theory
have appeared in literature from time to time and recently in a series of
papers by D. E. Wulbert, for instance, [21]. [16] gives a comprehensive
critical survey. In this paper the range of a two dimensional vector
measure with emphasis on geometry, particularly, its boundary is studied.

1 Introduction

For the sake of simplicity of presentation we confine our attention to probability
measures most of the time and leave the adaptation to general measure to the
reader.

In Section 2 we give some basic definitions and a few useful facts about
convex functions.
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118 Geometry of the range of a vector measure

Section 3 is devoted to the study of the range of a two dimensional vector
measure. Emphasis is on its boundary. For instance, let μ = (μ1, μ2) be a pair
of probability measures on a measurable space (X,Ω), then the lower and upper
bound of the range of μ are F 1

μ : μ1(Ω) → R and F 2
μ : μ1(Ω) → R given by

F 1
μ(x) = inf{μ2E : E ∈ Ω, μ1E = x} and F 2

μ(x) = sup{μ2E : E ∈ Ω, μ1E = x}
for each x ∈ μ1(Ω). Clearly F 2

μ(x) = 1 − F 1
μ(1 − x). We prove the following

results:

(a) If μ1 is non-atomic, then F 2
μ and F 1

μ are increasing.

(b) If μ1 and μ2 are both non-atomic, then F 1
μ is an absolutely continuous

convex function on [0, 1].

Let Σ be a σ-algebra of subsets of [0, 1] with B ⊂ Σ ⊂ m, B is the class
of Borel subsets of [0, 1] and m, the class of Lebesegue measurable subsets of
[0, 1].

In Section 4 we define a finite measure μ on ([0, 1],Σ) with Σ = B or m to
be right expanding if

μ(E + a) ≥ μE for all E ∈ Σ, a ≥ 0 with E + a ⊂ [0, 1] .

Let m denote the Lebesgue measure and μ be a non-atomic probability
measure on ([0, 1],B). We show that there exists a unique Borel measure λ on
([0, 1],B) which is right expanding and is absolutely continuous with respect to
m such that

λ[0, x] = F 1
(m,μ)(x) for all x ∈ [0, 1] .

Further in case μ is right expanding and absolutely continuous with respect
to m, then we have λ = μ.

Similar results can be proved for certain vector measures on some general
measure space (X,Ω).

In Section 5 we give different examples to illustrate our results and to show
the significance of conditions in the hypotheses in our results.

2 Basic results on convex functions and the

cumulative distribution function of a Borel
measure

We begin with the definition and a few facts on convex functions based on
fundamental results from sources such as [3], [7], [14], [17], [19] and [20].

Let N be the set of positive integers, R be the set of real numbers with
the usual topology and I an interval in R. Let I0 denote the interior of I. Let
Re = R∪{∞,−∞} be the extended real number system. We equip Re with the
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topology arising from the metric d(x, y) = | tan−1 x − tan−1 y| where tan−1 ∞
and tan−1(−∞) are taken as π

2 and −π
2 , respectively.

2.1 Definition. A function f : I → R ∪ {∞} is said to be convex if

f(λx + (1 − λ)y)≤λf(x) + (1 − λ)f(y) for all x, y∈I and 0 ≤ λ ≤ 1 .

A function f : I → R ∪ {−∞} is said to be concave if the function (−f) is
convex.

2.2 Remark. (i) Let f : I → R be a convex function. Then we have the
following:

(a) If α, β ∈ I are such that f(α) ≤ f(x) for x in [α, β], then putting
γ = sup{x ∈ [α, β] : f(α) = f(x)}, we have that f(x) = f(α) for x in [α, γ] and
f is strictly increasing on [γ, β]. As a consequence f is increasing on [α, β].

(b) The function f is absolutely continuous on each closed interval [a, b]
contained in the interior I0 of I.

(c) The right- and left-derivatives of f exist at each point of I0 and are
equal except on a countable set.

(d) The right- and left-derivative are monotone increasing functions and at
each point of I0 the left-derivative is less than or equal to the right-derivative.

(ii) Let A be a convex subset of R
2 and let D be the projection of A on the

x-axis. Suppose that inf{y : (x, y) ∈ A} > −∞ for each x in D, then the
function f : D → R defined by f(x) = inf{y : (x, y) ∈ A} is a convex function.

2.3 Remark. Let −∞ < a < b <∞.

(i) If f : [a, b) → R is convex and increasing, then f is continuous on [a, b).

(ii) If f : (a, b] → R is convex and decreasing, then f is continuous on (a, b].

2.4 Definition. Let f : I → R be a function and x a point of I, f is
said to be convex, concave, monotone increasing, monotone decreasing or
absolutely continuous near x if there exists α > 0 such that f is convex,
concave, monotone increasing, monotone decreasing or absolutely continuous
respectively on (x − α, x+ α) ∩ I.

2.5 Remark. Let f : [a, b] → R be a convex function.

(i) If f is absolutely continuous near ‘a’ and near ‘b’, then f is absolutely
continuous on [a, b].

(ii) If f is monotone increasing near ‘a’ and monotone decreasing near ‘b’,
then f is absolutely continuous on [a, b].

(iii) If f is continuous and monotone near ‘a’ and ‘b’, then f is absolutely
continuous on [a, b].
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2.6 Let f : I → R and x ∈ I0, we define the second symmetric or second
Schwarz derivative f [11](x) of f at x by

f [11](x) = lim
h→0

(f(x + h) − 2f(x) + f(x − h))
h2

.

Even if this limit does not exist, we can define the lower and upper second
symmetric (or Schwarz) derivatives by taking the limit inferior and limit
superior and denote them by f [11](x) and f̄ [11](x), respectively.

Clearly if f is differentiable in some neighbourhood of the point x ∈ I0 and
f ′′ exists at ‘x’, then f ′′(x) = f [11](x).

2.7 Remark. Let f : I → R be a continuous function.

(i) If f is convex on I0, then it is so on I.

(ii) If f [11](x) ≥ 0 on I0 then f is convex.

2.8 Let μ be a finite measure on ([0, 1],Σ). We shall denote by Fμ, the
cumulative distribution function of μ, that is Fμ(x) = μ[0, x] for x ∈ [0, 1]

2.9 Remark. (i) Fμ is a monotone increasing function which is continuous
on the right. Moreover if μ{a} = 0 for all singleton set {a} in Σ, then Fμ

is continuous on [0, 1].

(ii) The measure μ is absolutely continuous with respect to the Lebesgue
measure if and only if Fμ is absolutely continuous.

2.10 Borel equivalence Let X be a complete separable metric space and BX

be the Borel σ-algebra on X. Let μ1 be a complete non-atomic probability
measure defined on a σ-algebra Tμ1 containing BX and μ2 be a non-atomic
probability measure on (X, Tμ1). Then there exists a mapping

ϕ : X → [0, 1]

such that under this mapping the measure space (X, Tμ1 , μ1) is isomorphic to
([0, 1],m, m). That is

ϕ(B) ∈ m for all B ∈ Tμ1 , ϕ
−1(E) ∈ Tμ1 for all E ∈ m,

μ1(B) = m(ϕ(B)) for all B ∈ Tμ1

and

μ1(ϕ−1(E)) = mE for all E ∈ m.

Put ψ(E) = μ2(ϕ−1(E)) for all E ∈ m. Then ψ is a non-atomic probability
measure on ([0, 1],m) and if μ2 is absolutely continuous with respect to μ1,
then ψ is absolutely continuous with respect to m.
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3 Geometry of the range of a two-dimensional

vector measure

3.1 By a measure pair μ on a measurable space (X,Ω), we mean

μ = (μ1, μ2),

where μ1 and μ2 are signed measures on the measurable space (X,Ω).
If μ1 and μ2 are both finite then μ will be called a two dimensional vector

measure.

3.2 Definition. Let μ = (μ1, μ2) be a measure pair on (X,Ω). Then we define
the lower and upper bounds of the range of μ viz.,

F 1
μ : μ1(Ω) → Re and F 2

μ : μ1(Ω) → Re

by F 1
μ(x) = inf{μ2E : E ∈ Ω, μ1E = x} and F 2

μ(x) = sup{μ2E : E ∈ Ω, μ1E =
x} for x ∈ μ1(Ω).

In the case when μ1 = m and μ2 = μ, we will simply write F 1
μ and F 2

μ in
place of F 1

μ and F 2
μ.

Let ρ(x) = −x, x ∈ Re. Clearly F 2
−μ = −F 1

μ ◦ ρ and F 1
−μ = −F 2

μ ◦ ρ.

The following Remark puts these concepts in the right perspective with
discussion and examples in [6], [4] and [9] as the essential background.

3.3 Remark. Let μ = (μ1, μ2) be a measure pair on (X,Ω).

(i) Let R(μ) be the range of μ, that is R(μ) = {(μ1E, μ2E) : E ∈ Ω} treated
as a subset of Re × Re.

(a) For (x, y) ∈ R(μ) we have F 1
μ(x) ≤ y ≤ F 2

μ(x).
(b) For any x ∈ μ1(Ω), if F 1

μ(x) > −∞ then (x, F 1
μ(x)) ∈ Bd. R(μ) and

if F 2
μ(x) <∞ then (x, F 2

μ(x)) ∈ Bd. R(μ).
(c) In case both μ1 and μ2 are non-atomic finite measures, then by

Liapounov’s theorem R(μ) is compact and convex, as a consequence
(b) is applicable and the graph of the lower and upper bounds of the
range of μ are actually the lower and upper boundary of the range of
μ.

(ii) (a) If μ1, μ2 are both non-negative finite measures then

F 2
μ(x) = μ2(X) − F 1

μ(μ1(X) − x) for x ∈ μ1(Ω).

(b) If μ1, μ2 are probability measures, then R(μ) is symmetric about(
1
2
, 1

2

)
and

F 2
μ(x) = 1 − F 1

μ(1 − x) for x ∈ μ1(Ω).
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(iii) Let C(μ) be the range of the function E → (μ1E, μ2(X ∼ E)), E ∈ Ω, the
notation reminiscent of the division of a cake into pieces E and X ∼ E
for pre-assigned values viewed by two persons P1 and P2 measured by μ1

and μ2 respectively. We define the functions C1
μ and C2

μ on μ1(Ω) by

C1
μ(x) = inf{μ2(X ∼ E) : E ∈ Ω, μ1E = x};

C2
μ(x) = sup{μ2(X ∼ E) : E ∈ Ω, μ1E = x} for each x ∈ μ1(Ω).

(a) If μ is finite then we have

C(μ) = {(x,−y) : (x, y) ∈ R(μ)} + (0, μ2(X)),

C1
μ(x) = μ2(X) − F 2

μ(x) and C2
μ(x) = μ2(X) − F 1

μ(x) .

Thus it is enough to confine our attention to R(μ) and F 1
μ in this

case.

(b) Further, if μ1 and μ2 are both probability measures then E ∈ Ω for
P1 gives a good cut if μ1E ≥ 1

2
and μ2(X−E) ≥ 1

2
. Thus our interest

is in the set

G(μ) = C(μ) ∩
{

(x, y) : x ≥ 1
2
, y ≥ 1

2

}
and some optimal solutions. Equivalently, we can look at its reflection
in the line y = 1

2 , that is the set

Gr(μ) = R(μ) ∩
{

(x, y) : x ≥ 1
2
, y ≤ 1

2

}
.

This, in turn, leads us to study F 1
μ and F 2

μ restricted to
[
1
2
, 1
]
, or, in

view of (ii) (b) above to these functions restricted to
[
0, 1

2

]
only.

Our next Remark is an adaptation of the standard measure theory
arguments used for reducing some general cases to non-atomic cases ([5], [9],
[11], [12] and [13]).

3.4 Remark. Let μ = (μ1, μ2) be a measure pair on (X,Ω) such that μ2

possesses the Lebesgue decomposition (μ0, μ3) with respect to μ1, that is
μ2 = μ0 + μ3 where μ0 ⊥ μ1 and μ3 << μ1. Let μa = (μ1, μ3). Then,
we have

(i) R(μ) = R(μa) + {0} × R(μ0),
(ii) F 1

μ = F 1
μa

+ inf{μ0E : E ∈ Ω} and F 2
μ = F 2

μa
+ sup{μ0E : E ∈ Ω}. In

particular, if μ0 is non-negative, then

F 1
μ = F 1

μa
and F 2

μ = F 2
μa

+ μ0X,
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(iii) If R(μa) is a convex subset of R
2 and μ0(Ω) is an interval in R, then R(μ)

is a convex subset of R
2.

3.5 Proposition. Let μ = (μ1, μ2) be a measure pair of non-negative measures
on (X,Ω). Suppose μ1 is finite and non-atomic and put μ1(Ω) = [0, μ1X] = I.
Then F 1

μ and F 2
μ are both increasing on I.

Proof Let 0 ≤ x1 < x2 ≤ μ1X. As μ1 is a finite non-atomic measure
there exist sets E1, E2 with μ1E1 = x1 and μ1E2 = x2. Further, for any
such pair (E1, E2), there exists a pair (G1, G2) of sets with E1 ⊂ G2 and
G1 ⊂ E2 satisfying μ1G1 = x1 and μ1G2 = x2. So F 1

μ(x1) ≤ F 1
μ(x2) and

F 2
μ(x1) ≤ F 2

μ(x2). �

3.6 Proposition. Let μ = (μ1, μ2) be a two-dimensional vector measure on
(X,Ω).

(i) If R(μ) is convex, then F 1
μ is a convex function on μ1(Ω) and F 2

μ is a
concave function on μ1(Ω).

(ii) If R(μ) is convex and μ1 and μ2 are both non-negative then F 1
μ and F 2

μ

are both increasing functions on [0, μ1X].
(iii) In particular, if both μ1 and μ2 are non atomic probability measures,

then F 1
μ is an increasing convex function and F 2

μ is an increasing concave
function.

Proof

(i) The results follow from Remark 2.2.

(ii) We first use (i) and apply Remark 2.2 (i)(a) to f = F 1
μ with α = 0 = f(α)

to obtain that F 1
μ is increasing. The rest is now immediate from Remark

3.3.

(iii) We appeal to Liapounov’s Theorem and apply (i) and (ii) above. �

3.7 Proposition. Let μ = (μ1, μ2) be a two dimensional vector measure on
(X,Ω) with μ1 and μ2 both non-negative.

(i) If R(μ) is convex and closed, then F 1
μ(x) is absolutely continuous on

[0, μ1X].
(ii) In particular, it is so if μ1 and μ2 are both non-atomic probability

measures.

Proof (i) It is enough to give the proof when μ1 is a probability measure.
Proposition 3.6 gives that F 1

μ(x) is increasing and convex on [0, 1]. Thus by
Remark 2.3 F 1

μ is continuous on [0, 1). Now we shall show that F 1
μ is also

continuous at 1. Since R(μ) is closed and convex in R
2, by Remark 3.3



124 Geometry of the range of a vector measure

we have for each n ∈ N,
(
1 − 1

n
, F 1

μ

(
1 − 1

n

))
∈ R(μ). So

(
1, F 1

μ(1−)
)

=

lim
(

1 − 1
n
, F 1

μ

(
1 − 1

n

))
∈ R(μ). Therefore, there exists E ∈ Ω such that

μ1E = 1 and μ2E = F 1
μ(1−). Hence F 1

μ(1−) ≥ F 1
μ(1). But F 1

μ is an increasing
function, therefore F 1

μ(1) ≥ F 1
μ(1−). Thus F 1

μ(1) = F 1
μ(1−). Therefore F 1

μ is
continuous at 1 and hence by Remark 2.5 it is absolutely continuous on [0, 1].

(ii) It follows from Liapounov’s Theorem and part (i). �

3.8 Remark. Various generalization of a convex function can be found in
literature. For instance, S. J. Dilworth, R. Howard and J. W. Roberts [8] have
defined an approximately convex function to be a function f on an interval I
to R satisfying

f

(
x+ y

2

)
≤ f(x) + f(y)

2
+ 1 for all x, y ∈ I .

They have carried out an extensive study of such functions. Clearly for any
probability measures μ1 and μ2 on (X,Ω) with μ1(Ω) = [0, 1], F 1

μ and F 2
μ are

both approximately convex functions on [0, 1]. We can use their work to our
advantage in the case when μ1 and μ2 are both finite measures and μ1(Ω) is
an interval.

3.9 Remark. For a subset A of a normed linear space X, there are various
notions to measure the degree of non-convexity of A. We recall two of them
defined by V. M. Kadets [15] and J. Elton and T. P. Hill [10] who use these
numbers for the range of a vector measure μ to measure the degree of non
atomicity of μ in their own ways. One may look at [1] and [2] for ‖ . ‖p - norms
and sharper bounds.

(a) [15] defines C(A) = sup
{
d
(

1
2
(x+ y),A

)
: x, y ∈ A

}
, which is zero if and

only if Ā is convex.
(b) [10] defines D(A) = sup{d(x,A) : x ∈ Co(A)}, which in case A is closed,

is zero if and only if A is convex. Here Co(A) denotes the convex hull of
A.

(c) Clearly C(A) ≤ D(A). If A consists of the vertices of an equilateral
triangle of unit side, then C(A) = 1

2
and D(A) = 1√

3
.

For the sake of convenience we take empty sums to be zero.

4 Right expanding measures

4.1 Definition. Let μ be a finite measure on ([0, 1],Σ) with Σ = B or m,
then μ is said to be right expanding if

μ(E + a) ≥ μE for all E ∈ Σ, a ≥ 0 with E + a ⊂ [0, 1].
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4.2 Proposition. If a finite measure μ on ([0, 1],Σ) is right expanding, then all
the four Dini’s derivatives D+Fμ, D+Fμ, D−Fμ and D−Fμ on their respective
domains are monotone increasing.

Proof It follows immediately from the definition. �

We have a partial converse of the above Proposition.

4.3 Proposition. Let μ be a finite measure on ([0, 1],Σ) with Σ = B or m. If
μ is absolutely continuous with respect to m and D+Fμ is monotone increasing,
then μ is right expanding.

Proof By Remark 2.9(i) Fμ is an increasing real-valued function, therefore Fμ

is differentiable a.e. and F ′
μ = D+Fμ a.e.. By Remark 2.9(ii) Fμ is absolutely

continuous, therefore it is the definite integral of its derivative. So for 0 ≤ x ≤ 1,
we have

μ[0, x] = Fμ(x) =
∫ x

0

D+Fμdm.

Let (α, β), an open sub-interval of [0, 1] and a > 0 be such that (α, β)+a ⊂
[0, 1]. Then as μ{β} = μ{β + a} = 0 and D+Fμ is increasing, we have

μ(α, β) = μ(α, β] =
∫ β

α

D+Fμdm ≤
∫ β+a

α+a

D+Fμdm

= Fμ(β + a) − Fμ(α+ a) = μ(α+ a, β + a]
= μ(α+ a, β + a) = μ((α, β) + a).

Thus

μ(α, β) ≤ μ((α, β) + a). (1)

Let E ∈ Σ and a > 0 be such that E + a ⊂ [0, 1]. We shall show that
μE ≤ μ(E+ a). Let ε > 0 be given. Since μ� m, there exists δ > 0 such that
for any A ∈ Σ with mA < δ, we have μA < ε . Also there exist disjoint open
intervals of [0, 1], say I1, I2, . . . , In such that

U =
n⋃

i=1

Ii, m(EΔU) < δ.

Therefore, we have

μE ≤ μ(E ∪ U) = μ(E ∩ U) + μ(EΔU) ≤ μU + ε. (2)

Since m is translation invariant, we have

m((E ∼ U) + a) +m((U ∼ E) + a) < δ.
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So

μ(E + a) ≥ μ((E ∩ U) + a) = μ(U + a) − μ((U ∼ E) + a)
≥ μ(U + a) − ε (3)

And we have, in view of (1),

μ(U + a) =
n∑

i=1

μ(Ii + a) ≥
n∑

i=1

μIi = μU.

Using this in (3), we get

μ(E + a) ≥ μU − ε. (4)

From (4) and (2), we get μE ≤ μ(E+a)+2ε. Since ε > 0 is arbitrary, we have
μE ≤ μ(E + a). Hence μ is right expanding. �

4.4 Proposition. Let μ be a finite measure on ([0, 1],Σ) which is right
expanding and absolutely continuous with respect to m, then F 1

μ is the
cumulative distribution function of μ, that is

Fμ(x) = F 1
μ(x) for all x ∈ [0, 1] .

Proof For each x ∈ [0, 1], we have

F 1
μ(x) = inf{μE : E ∈ Σ, mE = x} ≤ μ[0, x] = Fμ(x).

To prove the reverse inequality, we shall show that

Fμ(x) = μ[0, x] ≤ μE for all E ∈ Σ with mE = x .

Let (α, β) be any open sub-interval of [0, 1], then since μ is right expanding we
have μ(0, β − α) ≤ μ(α, β) . Also μ� m. So μ{x} = 0 for any x ∈ [0, 1].

Now let {(ai, bi)}n
i=1 be a finite family of disjoint open sub-intervals of [0, 1].

Without loss of generality we may assume that

0 ≤ a1 ≤ b1 ≤ a2 < b2 ≤ . . . ≤ ai < bi ≤ ai+1 < . . . ≤ an < bn ≤ 1.

We have

μ

(
0,

n∑
i=1

(bi − ai)

)

= μ

[
(0, b1 − a1) ∪ ((b1 − a1), (b1 − a1) + (b2 − a2)) ∪ . . .

∪
( n−1∑

i=1

(bi − ai),
n∑

i=1

(bi − ai)
)]
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= μ(0, b1 − a1) +
n∑

k=2

[
μ(

k−1∑
i=1

(bi − ai),
k∑

i=1

(bi − ai))

]
(5)

Since
k∑

i=2

(ai − bi−1) ≥ 0 for each k = 2, 3, . . . , n, we have, for any such k,

μ

(
k−1∑
i=1

(bi − ai),
k∑

i=1

(bi − ai)

)

≤ μ

(
k−1∑
i=1

(bi − ai) +
k∑

i=2

(ai − bi−1),
k∑

i=1

(bi − ai) +
k∑

i=2

(ai − bi−1)

)

= μ(ak − a1, bk − a1) ≤ μ(ak, bk) .

Therefore, from (5) we get

μ

(
0,

n∑
i=1

(bi − ai)

)
≤ μ(a1, b1) +

k∑
k=2

μ(ak, bk) =
n∑

i=1

μ(ai, bi)

Thus

μ

(
n⋃

i=1

(ai, bi)

)
≥ μ

(
0, m

(
n⋃

i=1

(ai, bi)

))
. (6)

Now let E ∈ Σ and ε > 0 be given. Since μ � m, there exists δ > 0
such that for every A ∈ Σ with mA ≤ δ we have μA < ε. Also for the above
δ > 0, there exist disjoint open intervals I1, I2, I3, . . . , In in [0, 1] such that if

U =
n⋃

i=1
Ii, then m(EΔU) < δ.

Using (6), we have

μE ≥ μ(E ∩ U) = μ(U ∼ (U ∼ E)) = μU − μ(U ∼ E)
> μU − ε ≥ μ(0, mU) − ε (7)

Thus, |mU −mE| ≤ m(U ∼ E) +m(E ∼ U) < δ. Therefore, we get

mU − δ < mE < mU + δ (8)

Now m(mE − δ,mE) = δ, therefore μ(mE − δ,mE) < ε. Using (7) and (8),
we get μ(0, mE) − 2ε < μE. Since ε > 0 is arbitrary and μ{0} = 0 = μ{mE},
we have μ[0, mE] ≤ μE. Therefore, for all x ∈ [0, 1], Fμ(x) ≤ F 1

μ(x) . Hence
Fμ(x) = F 1

μ(x) for all x ∈ [0, 1].

4.5 Theorem. Let μ be a non-negative measure on ([0, 1],B).

(i) Suppose R(m, μ) is a closed convex subset of R
2. Then the following hold.

(a) There exists a unique Borel measure λ on ([0, 1],B) which is right
expanding and is absolutely continuous with respect to m such that
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Fλ = F 1
μ.

(b) In case μ is absolutely continuous with respect to m, we have λ = μ
if and only if μ is right expanding if and only if Fμ = F 1

μ.

(ii) Suppose μ possesses the Lebesgue decomposition μ = μ0 +μa with μ0 ⊥m,
μa � m and R(m, μa) is a closed convex subset of R2, then (i) (a) holds
and λ = μa if and only if μa is right expanding if and only if Fμa = F 1

μ.

In particular, the conclusions in (i) hold if μ is a non-atomic probability
measure. The conclusions in (ii) hold if μa is a non-atomic probability measure.

Proof (i) (a) By Proposition 3.6 and Proposition 3.7, F 1
μ is an increasing,

convex and absolutely continuous function on [0, 1] with F 1
μ(0) = 0. Therefore

there exists a unique Borel measure λ such that for all ‘a’ and ‘b’ in [0, 1] with
a < b, we have

λ(a, b] = F 1
μ(b) − F 1

μ(a) and λ{0} = 0 .

So Fλ = F 1
μ which is absolutely continuous on [0, 1]. Therefore, by Remark

2.9, λ is absolutely continuous with respect to m. Now as F 1
μ is a convex

function, by Remark 2.2, D+F 1
μ = D+Fλ is a monotone increasing function.

Thus, by Proposition 4.3, λ is right expanding. To establish part (b) we apply
Proposition 4.4.

The first part of (ii) follows from Remark 3.4. For the second part we apply
Proposition 4.4 to μa. �

4.6 Remark. If f is a non-negative continuous function on [0, 1], which is
increasing with f(0) �= f(1), then the measure μ on Σ given by

μE =
∫

E

fdm

is right expanding and the boundary of R(m, μ) is not smooth at (0, 0) and
(1, 1). This is because

F 1
μ(0) = F 2

μ(0) = 0, F 1
μ(1) = F 2

μ(1),

F 1 ′
μ (0) = f(0) �= f(1) = F 2 ′

μ (0)

and F 1 ′
μ (1) = f(1) �= f(0) = F 2 ′

μ (1).

4.7 Remark. Let X be a complete, separable metric space and BX the Borel
σ-algebra on X. Let μ1 be a complete non-atomic probability measure defined
on a σ-algebra Tμ1 containing BX and μ2 be a non-atomic probability measure
on (X, Tμ1) such that μ2 � μ1. Put μ = (μ1, μ2).

Let ϕ : X → [0, 1] be an isomorphism of (X, Tμ1 , μ1) onto ([0, 1],m, m) and
let F : [0, 1] → R be given by F (x) = μ2(ϕ−1[0, x]) for all x ∈ [0, 1].

If D+F is increasing then F 1
μ(x) = F (x) for all x ∈ [0, 1].
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5 Examples

Now we discuss well known different types of examples to illustrate our results
and to show the significance of conditions in the hypotheses in our results.

5.1 Examples of two-dimensional vector measures that are not non-
atomic but have a convex and closed range

Let {rn}∞n=1 be a sequence of distinct points in [0, 1].

(a) Let μ1 = m and μ2 = 1
2

(
m+

∞∑
n=1

1/2nδrn

)
be measures on ([0, 1],Σ).

Then μ2 = μ0 + μ3 where μ0 =
1
2

∞∑
n=1

1/2nδrn and μ3 =
1
2
m. Now, we

have μ0 ⊥ μ1 and μ3 � μ1. That is, (μ0, μ3) is the Lebesgue decomposition of
μ2 with respect to μ1. Further μ1(Σ) = μ2(Σ) = [0, 1]; μ0(Σ) = μ3(Σ) =

[0,
1
2
]. Let μ = (μ1, μ2). Then μa = (μ1, μ3). Then the range R(μ) is the

parallelogram in R
2 bounded by the lines x = 0, y = 1

2
x, x = 1 and y = 1

2
x+ 1

2
.

We see that the range is convex and compact although the measure μ has atoms.
Further, we have F 1

μ(x) = 1
2x and F 2

μ(x) = F 2
μa

(x) + μ0X = 1
2x + 1

2 , 0 ≤
x ≤ 1 . We see that F 1

μ(x) and F 2
μ(x) are both absolutely continuous and

increasing and F 1
μ is the cumulative distribution function of the right expanding

measure λ = μ1 = 1
2m. Moreover, the boundary of R(μ) is smooth except at

(0, 0),
(
1, 1

2

)
, (1, 1) and

(
0, 1

2

)
. Finally G(μ) is a two-dimensional closed convex

set expressing bias towards the first person P1.
(b) We consider the measure pair υ = (υ1, υ2), where

υ1 = μ2 =
1
2

(
m+

∞∑
n=1

1/2nδrn

)
and υ2 = μ1 = m.

Then υ2 � υ1. Using part (a) above we get that the range R(υ) is the
parallelogram in R

2 bounded by the lines y = 0, y = 2x − 1, y = 1 and
y = 2x. Here also the range is convex and compact although the measure υ
has atoms. We also have

F 1
υ(x) =

⎧⎨
⎩

0, 0 ≤ x ≤ 1
2

2x− 1, 1
2 ≤ x ≤ 1.

and

F 2
υ(x) =

⎧⎨
⎩

2x, 0 ≤ x ≤ 1
2

1, 1
2
≤ x ≤ 1.

So F 1
υ and F 2

υ are both absolutely continuous and increasing. Further F 1
υ

is the cumulative distribution function of the measure η given by dη =
2χ[1/2,1]dm which is right expanding and absolutely continuous with respect



130 Geometry of the range of a vector measure

to m. Moreover, the boundary of R(υ) is smooth except at (0, 0),
(
1
2
, 0
)
, (1, 1)

and
(

1
2 , 1
)
. Finally G(υ) is a two-dimensional closed convex set expressing bias

towards the second person P2.

5.2 Examples of two-dimensional vector measures with disconnected
range having two convex components

(a) Let μ1 = m and μ2 = 1
2(m + δ1) be measures on ([0, 1],Σ) and

μ = (μ1, μ2). Then μ2 = μ0 + μ3, where μ0 = 1
2δ1 and μ3 = 1

2m . Now, we
have μ0 ⊥ μ1 and μ3 � μ1. That is (μ0, μ3) is the Lebesgue decomposition of
μ2 with respect to μ1. So μa = (μ1, μ3) = (m, 1

2
m). Further,

μ1(Σ) = μ2(Σ) = [0, 1];μ0(Σ) = {0, 1
2
} and μ3(Σ) = [0,

1
2
].

So the range of μ = (μ1, μ2) consists of the two line segments y = 1
2x and

y = 1
2 (x + 1), x ∈ [0, 1]. And, for x ∈ [0, 1] we have F 1

μ(x) = 1
2x and

F 2
μ(x) = 1

2 (x + 1) . The range R(μ) of μ is not convex but has two disjoint
compact convex components. However, the range R(μa) consists of the line
segment y = 1

2
x, 0 ≤ x ≤ 1 and is thus convex and closed. The upper and

lower bounds of the range, viz. F 1
μ, F

2
μ, are both monotonically increasing,

absolutely continuous and convex on [0, 1]. Moreover, μ1, μ2 and μ3 are all
right expanding and F 1

μ is the cumulative distribution function of the measure
λ = μ3 = 1

2m. Finally, G(μ) is a one-dimensional closed convex set expressing
bias towards the first person P1.

(b) Consider the measure pair ν = (ν1, ν2), where

ν1 = μ2 =
1
2
(m+ δ1) and ν2 = μ1 = m.

Here ν2 � ν1. Using (a) above, the range R(ν) consists of two line segments
y = 2x, 0 ≤ x ≤ 1

2
and y = 2x− 1, 1

2
≤ x ≤ 1. Thus the range has two disjoint

compact convex components but it is not convex. Therefore, we have

F 1
ν (x) =

⎧⎨
⎩

2x, 0 ≤ x < 1
2

2x− 1, 1
2 ≤ x ≤ 1

and F 2
ν (x) =

⎧⎨
⎩

2x, 0 ≤ x ≤ 1
2

2x− 1, 1
2 < x ≤ 1 .

Thus the upper bound and the lower bound of the range are continuous on
[0, 1] ∼ { 1

2} and neither of them is increasing and thus cannot be the cumulative
distribution function of any measure. Further, F 1

ν is right continuous at 1
2

and
F 2

ν is left continuous at 1
2
, though both have jump discontinuity at 1

2
. Finally,

G(ν) is a one-dimensional closed convex set expressing bias towards the second
person P2. Moreover, if A = R(μ) or R(ν), then C(A) = D(A) = 1

2
√

5
.

5.3 Examples of two-dimensional vector measures with connected
range expressible as union of two convex sets
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Let {rn}∞n=1 be any sequence of distinct points in the interval [0, 1] and
r1 = 0.

(a) Let μ1 =
1
2
(m+ δ0), μ2 =

∞∑
n=1

1/2nδrn be measures on ([0, 1],Σ). Then

μ2 = μ0 + μ3 where μ0 =
∞∑

n=2

1/2nδrn and μ3 = 1
2
δ0 . We next note that

μ0 ⊥ μ1 and μ3 � μ1. That is (μ0, μ3) is the Lebesgue decomposition of μ2

with respect to μ1. So μa = (μ1, μ3) for μ = (μ1, μ2). We have

μ1(Σ) = μ2(Σ) = [0, 1], μ0(Σ) = [0,
1
2
] and μ3(Σ) = {0, 1

2
}.

Now we shall evaluate R(μ), F 1
μ and F 2

μ. We consider three cases.
(i) 0 ≤ x < 1

2
. If E ∈ Σ is such that μ1E < 1

2
, then 0 /∈ E, and, therefore,

μ3E = 0 and μ2E =
∞∑

n=2

1/2nδrnE ≤ 1
2
. Thus ([0, 1

2
) × [0, 1]) ∩ R(μa) =

[0, 1
2
) × {0}. So [0, 1

2
) × [0, 1] ∩ R(μ) = [0, 1

2
) × [0, 1

2
], F 1

μ(x) = 0 and

F 2
μ(x) =

1
2

for 0 ≤ x <
1
2
.

(ii) x = 1
2 . Now μ1E = x if and only if either 0 ∈ E and mE = 0

or 0 /∈ E and mE = 1. In the former case μ3E = 1
2 and in the later

case μ3E = 0. So we have { 1
2} × [0, 1] ∩ R(μa) = {(1

2 , 0), (1
2 ,

1
2)} . Thus,

{ 1
2
} × [0, 1]∩ R(μ) = { 1

2
} × [0, 1]. Further, F 1

μ(1
2
) = 0 and F 2

μ(1
2
) = 1 .

(iii) 1
2 < x ≤ 1 If E ∈ Σ is such that μ1E > 1

2 , then 0 ∈ E and therefore
μ3E = 1

2 . Thus (1
2 , 1]× [0, 1]∩R(μa) = (1

2 , 1]×{ 1
2} . So (1

2 , 1]× [0, 1]∩R(μ) =

(1
2 , 1]× [ 12 , 1]. This gives F 1

μ(x) =
1
2
; F 2

μ(x) = 1 for
1
2
< x ≤ 1 . Thus, we see

that the range R(μ) consists of two rectangles [0, 1
2 ] × [0, 1

2 ] and [ 12 , 1] × [ 12 , 1]
intersecting at (1

2 ,
1
2) and, thus, is not convex. However, R(μ) is compact and

connected. Further, we have

F 1
μ(x) =

⎧⎨
⎩

0, 0 ≤ x ≤ 1
2

1
2
, 1

2
< x ≤ 1

and F 2
μ(x) =

⎧⎨
⎩

1
2 , 0 ≤ x < 1

2

1, 1
2
≤ x ≤ 1 .

The upper and lower bound of the range, viz. F 1
μ and F 2

μ, are continuous
on [0, 1] ∼ { 1

2}. F 1
μ is left continuous at 1

2 and F 2
μ is right continuous at 1

2 .
Both F 1

μ and F 2
μ are increasing but have jump discontinuity at 1

2 . F 1
μ cannot

be the cumulative distribution function of a measure simply because it is not
continuous on the right at 1

2 . Finally, G(μ) consists of a one-dimensional closed
non-convex set consisting of a horizontal and a vertical segment with common
point (1

2
, 1

2
).

(b) Now consider the measure pair ν = (ν1, ν2) where ν = μ2, ν2 = μ1.
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Using part (a) above we obtain that Range R(ν) = Range R(μ). As a
consequence F 1

μ = F 1
ν , F

2
μ = F 2

ν and G(ν) = G(μ). Moreover, if A = R(μ) or
R(ν), then C(A) = D(A) = 1

4 .

5.4 Examples of two dimensional vector measures with totally
disconnected range which is the graph of a continuous function

Let {rn}∞n=1 be any sequence of distinct points in the interval [0, 1].
(a) We now consider the measure pair μ = (μ1, μ2) on ([0, 1],Σ) given by

μ1 =
∞∑

n=1

2/3nδrn and μ2 =
∞∑

n=1

1/2nδrn .

We note that μ2 � μ1. We have

μ1(Σ) = C, the Cantor Ternary set and μ2(Σ) = [0, 1].

Every point ‘x’ of C can be written uniquely in the form x =
∞∑

n=1
2/3nεx

n where

εx
n = 1 or 0. Let f : C → [0, 1] be the Lebesgue function (or Cantor function),

that is, for each x ∈ C,

f(x) =
∞∑

n=1

1/2nεx
n.

Then f is continuous and increasing on C.
Now let x ∈ C. Then for E ∈ Σ, μ1E = x if and only if

E ∩ {rn : n ∈ N} = {rn : εx
n = 1}.

So, μ1E = x gives μ2E = f(x). Thus the range R(μ) is the graph of the
function f and therefore totally disconnected. Further,

F 1
μ = F 2

μ = f.

Finally, G(μ) consists of the singleton
{
(2
3
, 1

2
)
}

expressing a bias towards the
first person P1.

(b) We now consider ν = (ν1, ν2) where ν1 = μ2 and ν2 = μ1 with μ1 and
μ2 as in (a) above. We first note that ν1(Σ) = [0, 1]. We know that every
x ∈ [0, 1] which is not a dyadic fraction, has a unique binary representation.
Therefore part (a) gives

F 1
ν (x) = F 2

ν (x) = f−1(x) for non-dyadic point ‘x’.

For dyadic fraction x = p/2k (p odd and 1 ≤ p < 2k), we can write

x =
k∑

i=1

1/2iεi where εk = 1
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and also x =
k−1∑
i=1

1/2iεi +0/2k +
∞∑

j=k+1

1/2j . So, we have F 1
ν (x) =

k−1∑
i=1

2/3iεi +

∞∑
j=k+1

2/3j and F 2
ν (x) =

k∑
i=1

2/3iεi . Therefore F 2
ν (x) = F 1

ν (x) + 1/3k . Also

for x1 > x2 > x3 we have F 1
ν (x1) ≥ F 2

ν (x2) ≥ F 1
ν (x2) ≥ F 2

ν (x3). Thus for any
dyadic fraction x, F 1

ν is right discontinuous at ‘x’ and F 2
ν is left discontinuous at

‘x’. The range R(ν) =(the graph of F 1
ν ) ∪ (the graph of F 2

ν ), which is totally
disconnected. Finally G(ν) consists of the singleton {

(
1
2 ,

2
3

)
} expressing a bias

towards the second person P2. Morever, if A = R(μ) or R(ν), C(A) = 1
6

whereas D(A) ≥
√

73
48 . Clearly it is enough to prove the result for A = R(μ).

The proof for this is elementary in nature but rather long. It is given in the
appendix.

The authors thank D. E. Wulbert and S. J. Dilworth for providing pre-prints
of their papers and Rahul Roy for useful discussion.

6 Appendix regarding degree of convexity

Let A = R(μ), where μ is the vector measure given in Example 5.4.

I. C(A) = 1
6 . We begin by noting that z1 = (0, 0) and z2 = (1, 1) ∈ A and

(1
2 ,

1
2 ) = 1

2(z1 + z2). Also d ((1
2 ,

1
2),A) = 1

6 . So C(A) = sup{d(x+y
2 ,A) :

x, y ∈ A} ≥ 1
6 . We now proceed to show that C(A) ≤ 1

6 . The set

B = {
n∑

i=1

2
3i εi : n ∈ N where εi = 0 or 1} is dense in C, therefore

R(f/B) = {(x, f(x)) : x ∈ B} is dense in A. Let x, y ∈ B, x �= y. Then
we may take

x =
n∑

i=1

2
3i
εx
i and y =

n∑
i=1

2
3i
εy
i ,

where εx
i = 0 or 1, εy

i = 0 or 1 for all i, we may assume that εx
n + εy

n �= 0,
otherwise we may take a smaller n. We have

f(x) =
n∑

i=1

1
2i
εx
i , f(y) =

n∑
i=1

1
2i
εy
i .

Also u =
x+ y

2
=

n∑
i=1

1
3i

(εx
i + εy

i ) and v =
f(x) + f(y)

2
=

n∑
i=1

1
2i+1

(εx
i + εy

i ) .

We now consider two cases, when εx
1 + εy

1 = 1 and when εx
1 + εy

1 = 0 or 2.
Case I. εx

1 + εy
1 = 1. Then 1

3 ≤ u < 2
3 .

(i) Now suppose 1
3 ≤ u ≤ 7

18 = 1
3 + 0

32 +
∞∑

i=3

1
3i . Then εx

2 + εy
2 = 0, and,
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therefore, 1
4
≤ v < 1

2
. We note that 1

4
= f( 2

32 ) and 1
2

= f(1
3
) and f has range

[0, 1] and is continuous and increasing on C. Therefore, there exists w ∈ C

such that 2
9
≤ w ≤ 1

3
and v = f(w) . Then 0 ≤ u− w ≤ 7

18
− 2

9
=

1
6

. Thus

d((u, v), (w, f(w))) ≤ 1
6 and (w, f(w)) ∈ A .

(ii) Now suppose

1
3

+
0
32

+
∞∑

i=3

1
3i

=
7
18

< u ≤ 1
2

=
∞∑

i=1

1
3i
.

Then two subcases arise
(a) εx

2 + εy
2 = 0, and

(b) εx
2 + εy

2 = 1.

(a) As εx
2 + εy

2 = 0, 7
18 < u gives εx

i + εy
i = 2 for some i ≥ 3. Let k be the

smallest integer such that εx
k + εy

k = 2, then εx
j + εy

j = 1 for 2 < j < k. So we
have

u =
1
3

+
0
32

+
k−1∑
i=3

1
3i

+
2
3k

+
n∑

i=k+1

1
3i

(εx
i + εy

i )

<
1
3

+
∞∑

i=3

2
3i

=
1
3

+
1
32
,

and

v =
n∑

i=1

1
2i+1

(εx
i + εy

i )

=
1
22

+
0
23

+
k−1∑
i=3

1
2i+1

+
2

2k+1
+

n∑
i=k+1

1
2i+1

(εx
i + εy

i )

=
1
22

+
1
23

+
n∑

i=k+1

1
2i+1

(εx
i + εy

i )

≤ 1
4

+
1
8

+
1
2k

≤ 1
2
.

So 1
4 + 1

8 ≤ v ≤ 1
2 . Now 1

4 + 1
8 = f( 2

32 + 2
33 ) and 1

2 = f(1
3) and f has range

[0, 1] and is continuous and increasing on C. Thus, there exists w ∈ C with
1
3 ≥ w ≥ 2

32 + 2
33 such that f(w) = v . Also 1

3 < u < 1
3 + 1

32 = 4
9 . Therefore we

have 0 < u− w < 4
9 − 2

9 − 2
27 = 4

27 <
1
6 .

(b) Because εx
2 + εy

2 = 1, u ≤ 1/2 gives either εx
i + εy

i ≤ 1 for all i or there
exists k ≥ 3 such that εx

k + εy
k = 2. In the subcase when εx

i + εy
i ≤ 1 for all i,

we have (2
3u) ∈ B. Also
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v =
n∑

i=1

1
2i+1

(εx
i + εy

i ) = f(
n∑

i=1

2
3i+1

(εx
i + εy

i )) = f((
2
3
)u) .

The distance of u from (2
3
)u = (1

3
)u < 1

6
.

We now come to the subcase when there exists a least ‘k’ such that
εx
k + εy

k = 2. Since u ≤ 1
2 , we have k > 3 and there exists a largest ‘p’ with

3 ≤ p < k such that εx
p + εy

p = 0. Therefore we have

u =
n∑

i=1

1
3i

(εx
i + εy

i ) =
1
3

+
1
32

+
p−1∑
t=3

1
3t
εt +

0
3p

+
k−1∑

i=p+1

1
3i

+
2
3k

+
n∑

s=k+1

1
3s
εs

where εt = 0 or 1 and εs = 0, 1 or 2. Therefore

1
3

+
1
32

< u <
1
3

+
1
32

+
p−1∑
t=3

1
3t
εt +

∞∑
i=p+1

2
3i

=
1
3

+
1
32

+
p−1∑
t=3

1
3t
εt +

1
3p
,

and
v =

∑n
i=1

1
2i+1 (εx

i + εy
i )

= 1
22 + 1

23 +
p−1∑
t=3

1
2t+1 εt + 0

2p+1 +
k−1∑

i=p+1

1
2i+1 + 2

2k+1 +
n∑

s=k+1

1
2s+1 εs

= 1
22 + 1

23 +
p−1∑
t=3

1
2t+1 εt + 1/2p+1 +

n∑
s=k+1

1
2s+1 εs .

Therefore 1
2

≥ v ≥ 1
22 + 1

23 +
p−1∑
t=3

1
2t+1 εt + 1

2p+1 . Now 1
2

= f(1
3
) and

1
22 + 1

23 +
p−1∑
t=3

1
2t+1 εt + 1

2p+1 = f( 2
32 + 2

33 +
p−1∑
t=3

2
3t+1 εt + 2

3p+1 ) . Also, f has range

[0, 1] and is continuous and increasing on C. Therefore there exists w ∈ C such
that

2
32

+
2
33

+
p−1∑
t=3

2
3t+1

εt +
2

3p+1
≤ w ≤ 1

3
and f(w) = v.

So we have

0 < u− w ≤ 1
3

+
1
32

+
p−1∑
t=3

1
3t
εt +

1
3p

− 2
32

− 2
33

−
p−1∑
t=3

2
3t+1

εt −
2

3p+1

=
1
32

+
1
33

+
p−1∑
t=3

1
3t+1

εt +
1

3p+1
<

1
3

∞∑
t=1

1
3t

=
1
6
.

(iii) Now, suppose 1
2 =

∞∑
i=1

1
3i < u < 2

3 = 1
3 +

∞∑
i=2

2
3i . Then n > 1 and there exists

‘k’ with 1 ≤ k < n such that εx
i +εy

i = 1 for 1 ≤ i ≤ k and εx
k+1 +εy

k+1 = 2 .
Again we consider three subcases: (a) k + 1 = n, (b) k + 2 = n, n ≥ 3, and (c)
k + 2 < n, n ≥ 4.
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(a) As k + 1 = n, we have u =
n−1∑
i=1

1
3i + 2

3n = 1
2 + 1

2 · 1
3n . and

v =
n−1∑
i=1

1
2i+1 + 2

2n+1 = 1
2 . Let w = 2

3 , then w ∈ B and f(w) = 1
2 = v.

Also 0 < w − u = 2
3 − 1

2 − 1
2 · 1

3n = 1
6 − 1

2 · 1
3n < 1

6 .
(b) As k + 2 = n, we have

v =
k∑

i=1

1
2i+1

+
2

2k+2
+

1
2n+1

(εx
n + εy

n) =
1
2

+
1

2n+1
(εx

n + εy
n)

If εx
n + εy

n = 1, put w = 2
3 + 1

3n+1 which gives w ∈ C and f(w) = 1
2 + 1

2n+1 = v.

Also u =
n−2∑
i=1

1
3i + 2

3n−1 + 1
3n = 1

2 − 1
2 · 1

3n + 1
3n−1 . Therefore

0 ≤ w − u = 2
3

+ 1
3n+1 − 1

2
− 1

3n−1 + 1
2
· 1

3n = 1
6
− 1

2
· 13

3n+1 <
1
6
.

If εx
n + εy

n = 2, put w = 2
3 + 1

3n , which gives w ∈ C and f(w) = 1
2 + 1

2n = v.
Also u =

∑n−2
i=1

1
3i + 2

3n−1 + 2
3n = 1

2 + 7
2 · 1

3n . Therefore

0 ≤ w − u =
2
3

+
1
3n

− 1
2
− 7

2
· 1
3n

=
1
6
− 1

2
· 5
3n

<
1
6
.

(c) Now k + 2 < n. So

u =
k∑

i=1

1
3i

+
2

3k+1
+

n∑
p=k+2

1
3p

(εx
p + εy

p) =
1
2

+
1
2
· 1
3k+1

+
n∑

p=k+2

1
3p

(εx
p + εy

p),

and

v =
k∑

i=1

1
2i+1

+
2

2k+2
+

n∑
p=k+2

1
2p+1

(εx
p + εy

p) =
1
2

+
n∑

p=k+2

1
2p+1

(εx
p + εy

p) .

Put δi = 0 if εx
i + εy

i = 0, δi = 1 if εx
i + εy

i = 1 or 2. Then δi ≤
εx
i + εy

i ≤ 2δi for all i and δn = 1 . Further, 1
2 < v ≤ 1

2 +
n∑

p=k+2

1
2p+1 2δp =

1
2 +

n∑
p=k+2

1
2p δp . Also f(2

3 ) = 1
2 and f(2

3 +
n−1∑

p=k+2

2
3p δp + 1

3n ) = 1
2 +

n∑
p=k+2

1
2p δp.

As f has range [0, 1] and is continuous and increasing on C, there exists w ∈ C

such that f(w) = v and 2
3 ≤ w ≤ 2

3 +
n−1∑

p=k+2

2
3p δp + 1

3n . Hence,

0 ≤ w − u = 2
3 +

n−1∑
p=k+2

2
3p δp + 1

3n − 1
2 − 1

2 · 1
3k+1 −

n∑
p=k+2

1
3p (εx

p + εy
p)

= 1
6 +

n−1∑
p=k+2

1
3p (2δp − (εx

p + εy
p)) + 1

3n (1 − (εx
n + εy

n)) − 1
2 · 1

3k+1

≤ 1
6 +

n∑
p=k+2

1
3p − 1

2 · 1
3k+1 <

1
6 .
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Case II. When εx
1 + εy

1 = 0 or 2. Two possibilities arise.
(i) εx

2 +εy
2 = 0 or 2. We put δi = 0 if εx

i +εy
i = 0 or 1, δi = 1 if εx

i +εy
i = 2.

We take w =
n∑

i=1

2
3i δi , then w ∈ B, w ≤ u and f(w) =

n∑
i=1

1
2i δi. Therefore

0 ≤ u−w =
n∑

i=1

1
3i

(εx
i + εy

i )−
n∑

i=1

2
3i
δi =

n∑
i=3

1
3i

(εx
i + εy

i − 2δi) <
∞∑

i=3

1
3i

=
1
18
,

and

0 ≤ v − f(w) =
n∑

i=1

1
2i+1

(εx
i + εy

i ) −
n∑

i=1

1
2i
δi

=
n∑

i=3

1
2i+1

(εx
i + εy

i − 2δi) <
∞∑

i=3

1
2i+1

=
1
8
.

Hence d((u, v), (w, f(w))) ≤ ( 1
182 + 1

82 )
1
2 =

√
97

72 < 1
6 .

(ii) εx
2 + εy

2 = 1. We consider two subcases (a) εx
1 + εy

1 = 0, and (b)
εx
1 + εy

1 = 2.

(a) When εx
1 + εy

1 = 0, we have 1
32 ≤ u < 2

32 , and 1
23 ≤ v ≤ 1

23 +
n∑

i=3

2
2i+1 =

1
23 +

n∑
i=3

1
2i ≤ 1

22 + 1
23 . Also, 1

22 + 1
23 = f( 2

32 + 1
33 ), 1

23 = f( 2
33 ). Since f has

range [0, 1] and is continuous and increasing on C, there exists w ∈ C such
that v = f(w) and 2

33 ≤ w ≤ 2
32 + 1

33 . Therefore, we have

|w − u| ≤ max{ 2
32

− 2
33
,

2
32

+
1
33

− 1
32

} =
4
27

<
1
6
.

(b) Now in this second subcase when εx
1+εy

1 = 2, we have 2
3
+ 1

32 ≤ u ≤ 2
3
+ 2

32

and 1
2 + 1

23 ≤ v ≤ 1
2 + 1

23 +
n∑

i=3

2
2i+1 ≤ 1

2 + 1
22 + 1

23 . Since 1
2 + 1

23 = f(2
3 + 2

33 )

and 1
2 + 1

22 + 1
23 = f(2

3 + 2
32 + 1

33 ) and f has range [0, 1] and is continuous and
increasing on C, there exists w ∈ C such that f(w) = v and 2

3
+ 2

33 ≤ w ≤
2
3

+ 2
32 + 1

33 . Therefore, we have

|w− u| ≤ max
{

2
3

+
2
32

− 2
3
− 2

33
,
2
3

+
2
32

+
1
33

− 2
3
− 1

32

}
=

4
27

<
1
6
.

Finally, we have d((x+y
2 , f(x)+f(y)

2 ),A) ≤ 1
6 . As x, y ∈ B, x �= y are arbitrary

and R(f/B) is dense in R(μ), we have sup{d(1
2 (z1 + z2),A) : z1, z2 ∈ A} ≤ 1

6 .
Hence C(A) ≤ 1

6 .

II. D(A) ≥
√

73
48
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The point P = (1
2
, 3

8
) = 1

4
(0, 0) + 3

4
(2
3
, 1

2
) ∈ Co(A). We shall show that

d(P,A) ≥
√

73
48 > 1

6 . Since R(f/B) is dense in A, we have d(P,A) =
d(P,R(f/B)) . Let us write P = (1

2 ,
3
8 ) = (1

3 + 1
6 ,

1
4 + 1

8). Take x ∈ B. We
consider three cases

Case 1. When f(x) ≤ 3
8 = 1

4 + 1
8 . Then x ≤ 2

32 + 2
33 = 8

27 . So
d(P, (x, f(x))) ≥ 1

3
+ 1

6
− 8

27
= 11

54
.

Case 2. When 3
8
< f(x) < 1

2
. We may take x =

n∑
i=1

2
3i ε

x
i with εx

i = 0 or 1

and εn
x �= 0. As 1

22 + 1
23 < f(x), we have n ≥ 4,

f(x) =
0
2

+
1
22

+
1
23

+
n∑

i=4

1
2i
εx
i and x =

0
3

+
2
32

+
2
33

+
n∑

i=4

2
3i
εx
i .

So
d(P, (x, f(x)))

=
{(

1
3 + 1

6 −
(

2
32 + 2

33 +
n∑

i=4

2
3i ε

x
i

))2

+
(

3
8 −

(
1
22 + 1

23 +
n∑

i=4

1
2i ε

x
i

))2} 1
2

=
{(

1
6 +

n∑
i=4

2
3i (1 − εx

i ) + 1
3n

)2

+
(

n∑
i=4

1
2i ε

x
i

)2} 1
2

.

Now either εx
4 = 0 or 1. If εx

4 = 1, then

d(P, (x, f(x))) ≥
{(

1
6

)2

+
(

1
24

)2} 1
2

=
√

73
48

.

If εx
4 = 0. Then

d(P, (x, f(x))) >
{(

1
6

+
2
34

)2} 1
2

=
31
162

>

√
73

48
.

Case 3. When f(x) > 1
2 . Then x > 2

3 . We have

d(P, (x, f(x))) ≥
{(

1
3

+
1
6
− 2

3

)2

+
(

1
4

+
1
8
− 1

2

)2} 1
2

=
5
24
.

Therefore for any x ∈ B

d(P, (x, f(x))) ≥ min{11
54
,

√
73

48
,

5
24

} =
√

73
48

.

So d(P,A) ≥
√

73
48

. Thus, D(A) = sup{d(x,A) : x ∈ Co(A)} ≥
√

73
48
.
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