
East-West J. of Mathematics: Vol. 7, No 1 (2005) pp. 99-106

THE LIFTING CONDITION AND FULLY

INVARIANT SUBMODULES

M. Tamer Koşan
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Abstract

A module M is lifting if for every submodule A of M, there exists
a direct summand B of M such that B ≤ A and A/B small in M/B.
Every non-cosingular lifting module has the summand sum property. We
call any module M FI-lifting if for every fully invariant submodule A of
M there exists a direct summand B of M such that B ≤ A and A/B is
small in M/B. In contrast to lifting modules, any finite direct sum of
FI-lifting modules is FI-lifting.

I. Introduction

Throughout this paper R denotes an associative ring with unity and all R-
modules are unitial right R-modules.

A submodule N of a module M is called small, written N << M , if M �=
N + L for every proper submodule L of M . Properties of small submodules
are given in [9, Lemma 4.2] and [13, Proposition 19.3]. Let M be a module.
M is called lifting module (or (D1))), if for every submodule N of M , M has
a decomposition M = M1 ⊕ M2 with M1 ≤ N and M2 ∩ N small in M2,
equivalenty if for every submodule A of M there exists a direct summand B of
M such that B ≤ A and A/B is small in M/B. Let M be a module. M has
summand sum property if the sum of any two direct summands of M is a direct
summand of M and denoted by SSP . M has summand intersection property
if the intersection of any two direct summands of M is a direct summand of M
and denoted by SIP (see [6,7,12]). Let M be an R-module. M is called small
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100 The lifting condition and fully invariant submodules

, if M << E(M), where E(M) is the injective hull of M . In [10], Talebi and
Vanaja defined Z(M) = ∩{Ker(g) : g ∈ Hom(M, N), N � E(N)}. They call
M cosingular (non-cosingular) module if Z(M) = 0 (Z(M) = M). Cosingular
and non-cosingular modules are studied in [10] and [11].

In Section 2, we prove that (1) for every fully invariant submodule Y of M ,
M/Y is lifting and (2) every non-cosingular lifting module has the summand
sum property.

Following [3], M is called FI-extending, every fully invariant submodule of
M is essential in a direct summand of M . In Section 3, dually, we called the
module M is FI-lifting if for every fully invariant submodule A of M , there
exists a direct summand B of M such that B ⊆ A and A/B small in M/B,
and shown that

Proposition Let M be a module and X a fully invariant submodule of M . If
M is FI-lifting then M/X is FI-lifting.

Theorem Let M = ⊕n
i=1Xi. If each Xi is FI-lifting, then M is FI- lifting.

We will refer to [1, 9, 13] for all undefined notions used in the text, and also
for basic facts concerning coatomic and singular modules.

2. The lifting condition for a factor submodule

In this section we investigate conditions which ensure that a factor submodule
of a lifting module will be a lifting module. The following theorem is dual of
[2, Theorem 1.1].

Theorem 2.1 Let M be an R−module.

1. Assume that M is a lifting module and X a submodule of M . If for every
direct summand K of M , (X +K)/X is a direct summand of M/X then
M/X is lifting .

2. Let D be a submodule of M and X a direct summand of M . Assume that
M/X is lifting. If D/(D ∩ X) is non-cosingular, then D + X is a direct
summand of M .

3. If M is non-cosingular and M/X is lifting with X a direct summand of
M , then (X+D)/X is a direct summand of M/X for all direct summands
D of M .

Proof (1) Let A/X ≤ M/X. Since M is lifting, there exists a direct summand
D of M such that D ⊆ A and A/D is small in M/D. By hypothesis, (D+X)/X



M. Tamer Koşan 101

is a direct summand of M/X. Clearly, (D +X)/X ⊆ A/X. Now we show that
A/(D+X) is small in M/(D+X). Let M/(D+X) = A/(D+X)+L/(D+X)
for any submodule L/(D + X) of M/(D + X). Then M = A + L implies
that M/D = A/D + L/D. Since A/D is small in M/D, M = L. Therefore
A/(D + X) is small in M/(D + X). Thus M/X is lifting.
(2) Let D, X ≤ M with X a direct summand of M . Consider the submodule
(D+X)/X ≤ M/X. Since M/X is lifting, there exists a direct summand C/X
of M/X such that C/X ⊆ (D+X)/X and (D+X)/C is small in M/C. Hence
(D +X)/C is cosingular. On the other hand (D +X)/X ∼= D/(D ∩X) and so
(D + X)/X is non-cosingular. Therefore by [10, Proposition 2.4 ], (D + X)/C
is non-cosingular. Hence D + X = C.
(3) Let M be non-cosingular module and M/X lifting with X a direct summand
of M . Let D be a direct summand of M . Then D/(D ∩ X) is non-cosingular
by [10, Proposition. 2.4 ]. By (2) D + X is a direct summand of M and hence
(D + X)/X is a direct summand of M/X. �

Let M be a module. A submodule X of M is called fully invariant if for
every h ∈ EndR(M), h(X) ⊆ X. Some properties of fully invariant submod-
ules are given in Lemma 3.2.

A module M is called distributive if its lattice of submodules is a distribu-
tive lattice.

Corollary 2.2 Let M be a lifting module.

1. If M is a distributive module, then M/X is lifting for every submodule
X of M .

2. Let X ≤ M and eX ⊆ X for all e2 = e ∈ End(M). Then M/X is
lifting. In particular, for every fully invariant submodule Y of M , M/Y
is lifting.

Proof (1) Let D be a direct summand of M . Then M = D ⊕ D′ for some
submodule D′ of M . Now M/X = [(D + X)/X] + [(D′ + X)/X] and X =
X +(D∩D′) = (X +D)∩ (X +D′). So, M/X = [(D+X)/X]⊕ [(D′ +X)/X].
By Theorem 2.1.(1), M/X is lifting.
(2) Let D be a direct summand of M . Consider the projection map e : M → D.
Then e2 = e ∈ End(M). By hypothesis, eX ⊆ X and hence eX = X ∩ D.
There exists a direct summand D′ of M such that M = D ⊕ D′. Therefore
X = (X∩D)⊕(X∩D′). Now (D+X)/X = (D⊕(X∩D′))/X and (D′+X)/X =
(D′⊕(X∩D))/X. Hence M = D⊕D′ = D+X+D′+X = [D⊕(X∩D′)]+D′+X
implies that M/X = (D⊕ (X ∩D′))/X +(D′ +X)/X. Since [D⊕ (X ∩D′)]∩
(D′ + X) = (X ∩ D′) ⊕ (X ∩ D), M/X = (D ⊕ (X ∩ D′))/X ⊕ (D′ + X)/X.
Thus by Theorem 2.1.(1), M/X is lifting. �
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Theorem 2.3 Let R be a semiperfect ring.

1. If R has every idempotent central then, for every right ideal I of R, R/I
is right lifting.

2. For every ideal I of R, R/I is semiperfect.

Proof They follows from Corollary 2.2.(2) and [1]. �

Corollary 2.4 Every non-cosingular lifting module has the summand sum prop-
erty.

Proof Let M be a non-cosingular lifting module. Let A and B be two direct
summands of M . Let M = A ⊕ A′ = B ⊕ B′ for some submodules A′, B′.
Note that A′ and B′ are lifting modules. Since M/A ∼= A′ and M/B ∼= B′,
(A + B)/A is a direct summand of M/A and (A + B)/B is a direct summand
of M/B by theorem 2.1.(3). Hence A + B is a direct summand of M . �

We know that there are modules having the SSP and (D1) but not the SIP.

Example 2.5. Let F be a field and R the upper triangular matrix ring

R =
(

F F
0 F

)
. For submodules A =

(
0 F
0 F

)
and B =

(
F F
0 0

)
,

A ⊕ (R/B) has the SSP by [6] and (D1) by [9]. But has not the SIP.

We consider the following condition:

(D3) If M1 and M2 are direct summands of M with M = M1 + M2, then
M1 ∩M2 is also a direct summand of M .

Lemma 2.6 Assume that M is (D3). If M has the SSP then M has the SIP.

Proof Let M1 and M2 be direct summands of M . Since M1 + M2 is direct
summand of M by assumption, we have (M1 +M2)⊕X for some submodule X
of M . Again by assumption, M1 +X and M2 +X are direct summands. Since
M is (D3), M = [(M1 + X) ∩ (M2 + X)] ⊕ Y for some submodule Y of M .
Now we have M = (M1 ∩ M2) ⊕ X ⊕ Y . That is M1 ∩ M2 is direct summand
of M . �

Corollary 2.7 Let M be a non-cosingular module with (D3). Then
M is lifting ⇒ M has SSP ⇒ M has SIP

Example 2.8 (1) Let MZ = ZZ ⊕ ZZ. MZ is not lifting. Since ZZ ⊕ ZZ <<
QZ⊕QZ, we have MZ is co-singular. Furthermore, M has the SIP and so M has
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(D3). Let N = Z(2, 3) and K = Z(3, 2). Since N ⊕ K is not direct summand
of M , M has not the SSP.
(2) Let MZ = Z/pZ ⊕ Z/p2Z, where p is any prime. MZ is a lifting module
and, since Z/pZ << Q/pZ, Z/pZis co-singular and so M is cosingular module.
Furthermore MZ is not (D3) and MZ has neither the SIP nor the SSP.
(3) The Z-module Q, the set of all rational numbers, is non- cosingular module
by [10, Remark 2.11]. We know that QZ has the SIP and so (D3) and has the
SSP. But QZ is not a lifting module.

3. FI-lifting modules

Let M be a lifting module. In Corollary 2.2 we proved that, for every fully
invariant submodule Y of M , M/Y is lifting. In this section, we determine
a generalization of the lifting modules. Let M be any module. Following [3],
M is called FI-extending, every fully invariant submodule of M is essential in
a direct summand of M . FI-extending modules are studied [3], [4] and [5].
Dually, we say the module M is FI-lifting if for every fully invariant submodule
A of M , there exists a direct summand B of M such that B ⊆ A and A/B
small in M/B.

Clearly, M is FI-lifting if and only if for every fully invariant submodule A
of M there is a decomposition M = M1 ⊕ M2 such that M1 ≤ A and M2 ∩ A
is small in M2.

Lemma 3.1 Let M be a module.
(1) M is FI-lifting.
(2) For every fully invariant submodule A of M there is a decomposition
A = N ⊕ S with N a direct summand of M and S small in M .

Proof For the proof, we completely follow the proof of [9, Proposition 4.8].
(i) ⇒ (ii) Let A be a fully invariant submodule of M . Since M is FI-lifting,
there exists a decomposition M = M1 ⊕ M2 such that M1 ≤ A and M2 ∩ A
small in M2. Therefore A = M1 ⊕ (A ∩ M2), as required.
(ii) ⇒ (i) Assume that every fully invariant submodule has the stated decom-
position. Let A be a fully invariant submodule of M . By hypothesis, there
exists a direct summand N of M and a small submodule S of M such that
A = N ⊕ S. Now M = N ⊕ N ′ for some submodule N ′ of M . Consider the
natural epimorphism π : M −→ M/N . Then π(S) = (S + N)/N = A/N small
in M/N . Therefore M is FI-lifting. �

Lemma 3.2 Let M be a module.

1. Any sum and intersection of fully invariant submodules of M is again a
fully invariant submodule of M .
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2. If X ≤ Y ≤ M such that Y is a fully invariant submodule of M and X is
a fully invariant submodule of Y , then X is a fully invariant submodule
of M .

3. If M = ⊕i∈IXi and S is a fully invariant submodule of M , then S =
⊕i∈Iπi(S) = ⊕i∈I(Xi∩S), where π is the i−th projection homomorphism
of M .

4. If X ≤ Y ≤ M such that X is a fully invariant submodule of M and
Y/X is a fully invariant submodule of M/X, then Y is a fully invariant
submodule of M .

Proof (1), (2), (3) see [3, Lemma 1.1].
(4) Let f : M → M be any homomorphism. Then f(X) ⊆ X. Now, consider
the homomorphism g : M/X → M/X defined by g(m+X) = f(m)+X, (m ∈
M). Then g(Y/X) ⊆ Y/X. Clearly, g(Y/X) = (f(Y ) + X)/X. Therefore
f(Y ) ⊆ Y . �

Proposition 3.3 Let M be a module and X a fully invariant submodule of M .
If M is FI-lifting then M/X is FI-lifting.

Proof Let Y be a submodule of M with X ⊆ Y and assume that Y/X is a fully
invariant submodule of M/X. By Lemma 3.2, Y is a fully invariant submodule
of M . Since M is FI-lifting, there exists a direct summand D of M such that
D ≤ Y and Y/D is small in M/D. Assume M = D⊕D′ for some submodule D′

of M . Let π be the projection with the kernel D and i : D′ → M the inclusion
map. Now, α = iπ : M → M be a homomorphism of M . Since X and Y are
fully invariant submodules of M , α(X) ⊆ X and α(Y ) ⊆ Y . It is easy to see
that Y = α−1(Y ). Now, α−1(X) ⊆ Y = α−1(Y ). Let K be a submodule of M
with α−1(X) ⊆ K and M/α−1(X) = (Y/α−1(X)) + (K/α−1(X)). Then M =
Y +K and since Y/D is small in M/D, M = K. Therefore Y/α−1(X) is small in
M/α−1(X), namely (Y/X)/(α−1(X)/X) << (M/X)/(α−1(X)/X). Now, we
want to show that α−1(X)/X is a direct summand of M/X. Since M = D⊕D′,
then M = α−1(X)+D′. Therefore M/X = (α−1(X)/X)+(D′ +X)/X. Since
α−1(X)∩(D′ +X) = X +(α−1(X)∩D′) = X, α−1(X)/X is a direct summand
of M/X. �

Theorem 3.4 Let M = ⊕n
i=1Xi. If each Xi is FI-lifting, then M is FI- lifting.

Proof Let S be a fully invariant submodule of M . It is easy to see that for
every 1 ≤ i ≤ n, S ∩ Xi is fully invariant in Xi. Since Xi is FI-lifting for
every i, there exists a direct summand Di of Xi such that Di ≤ S ∩ Xi and
(S ∩ Xi)/Di is small in Xi/Di for every i. Clearly, D = ⊕n

i=1Di is a direct
summand of M and D ⊆ ⊕n

i=1(S ∩ Xi). We know that ⊕n
i=1(S ∩ Xi) = S by

Lemma 3.2. Now consider the homomorphism β : ⊕n
i=1(Xi/Di) → (⊕n

i=1Xi)/D
with (x1 + D1, ..., xn + Dn) → (Σn

i=1xi) + Di, where xi ∈ Xi for 1 ≤ i ≤ n.
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Then β(⊕n
i=1((S ∩ Xi)/Di)) = (⊕n

i=1(S ∩ Xi))/D. Since any finite sum of
small submodules again a small submodule, ⊕n

i=1((S ∩ Xi)/Di) is small in
⊕n

i=1(Xi/Di). Then by [9, Lemma 4.2], (⊕n
i=1(S ∩Xi))/D is small in M/D. �

We don’t know if any direct sum of FI-lifting module is an FI-lifting module.

Corollary 3.5 If M is a finite direct sum of lifting (or hollow ) modules, then
M is FI-lifting.

Corollary 3.6 Let R be a PID. Then the torsion submodule of any finitely
generated R−module M is FI-lifting.

Proof Let M be a finitely generated R−module. Then the torsion submodule
Tor(M) of M is a finite direct sum of hollow R-modules. Therefore Tor(M)
is FI-lifting by Corollary 3.5. �

Proposition 3.7 Let M be an FI-lifting module. If M is indecomposable then
every proper fully invariant submodule of M is small in M .

Proof Clear. �

Proposition 3.8 Let R be any ring and let M be an FI-lifting R-module. Then
every fully invariant submodule of the module M/Rad(M) is a direct summand.

Proof Let N/Rad(M) be any fully invariant submodule of M/Rad(M).Then
N is fully invariant submodule of M by Lemma 3.2. By hypothesis, there
exists a decomposition M = M1 ⊕ M2 such that M1 ≤ N and N ∩ M2 is
small in M2. Since N ∩ M2 is also small in M , N ∩ M2 ≤ Rad(M). Thus
M/Rad(M) = (N/Rad(M)) ⊕ ((M2 + Rad(M))/Rad(M)), as required. �

Example 3.9 (i) Let MZ = Z/2Z⊕Z/8Z. Then MZ is FI-lifting by Corollary
3.5. We note that MZ is not lifting by [8, Example 1 ] and not non-cosingular
module. Furthermore MZ has the SIP but it is not (D3).
(ii) The Z-module Q, the set of all rational numbers, is non- cosingular module
(see example 2.10). QZ is not FI-lifting module.

Example 3.10 Take R = Z and M = Z. Let Ai = Z/2iZ, foralli ∈ N and
E = E(A1). Consider N = ⊕n

i=1Ei, where Ei = E and n ∈ N. By [11, Exam-
ple 1.14], N is non-cosingular Z-module and FI-lifting by Corollary 3.5.
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