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Abstract

Let R be a ring and S a nonempty subset of R. An additive mapping
F : R → R is called a generalized derivation on S if there exists a
derivation d : R → R such that F (xy) = F (x)y + xd(y), for all x, y ∈ S.
Suppose that U is a Lie ideal of R with the property that u2 ∈ U , for
all u ∈ U . In the present paper, we prove that if R is a prime ring
with characteristic different from 2 admitting a generalized derivation F
satisfy any one of the properties: (i) F (uv)−uv ∈ Z(R), (ii) F (uv)+uv ∈
Z(R), (iii) F (uv) − vu ∈ Z(R) and (iv) F (uv) + vu ∈ Z(R), for all
u, v ∈ U , then U must be central

1. Introduction

Throughout the present paper R will denote an associative ring with centre
Z(R). For any x, y ∈ R, the symbol [x, y] stands for the commutator xy − yx.
For a nonempty subset S of R, we put CR(S) = {x ∈ R | [x, s] = 0, for all s ∈
S}. The set of all commutators of elements of S will be written as [S, S]. Re-
call that a ring R is said to be 2-torsion free, if whenever 2x = 0, with x ∈ R,
implies x = 0. A ring R is prime if for any a, b ∈ R, aRb = (0), implies that
either a = 0 or b = 0. An additive subgroup U of R is said to be a Lie ideal
of R if [u, r] ∈ U , for all u ∈ U, r ∈ R. An additive mapping d : R −→ R is
called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ S. Following
[8], An additive mapping F : R −→ R is said to be a generalized derivation on
R if there exists a derivation d : R −→ R such that F (xy) = F (x)y + xd(y),
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holds for all x, y ∈ S. We shall make use of the two basic commutator identities
without any specific mention:

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z.

There has been a great deal of work concerning the relationship between the
commutativity of a ring R and the existance of certain specific types of deriva-
tions of R. Recently, many authors viz [1], [2], [3], [5] and [9] etc. have obtained
commutativity of prime and semiprime rings with derivations satisfying certain
polynomial constraints. In [1], Ashraf and Nadeem established that a prime
ring R with a non-zero ideal I must be commutative if it admits a derivation
d satisfying either of the properties d(xy) + xy ∈ Z(R) or d(xy) − xy ∈ Z(R),
for all x, y ∈ I.

In this paper, we continue the study and attempt to generalize the above
mentioned result on a Lie ideal U of the ring R satisfying either of the condi-
tions: (i) F (uv)−uv ∈ Z(R), (ii) F (uv)+uv ∈ Z(R), (iii) F (uv)−vu ∈ Z(R)
and (iv) F (uv) + vu ∈ Z(R), for all u, v ∈ U .

2. Main Results

We begin with the following known results which will be used extensively to
prove our theorems.

Lemma 2.1 [4, Lemma 3] Let R be a 2-torsion free prime ring and U be a Lie
ideal of R. If U �⊆ Z(R), then CR(U) = Z(R).

Lemma 2.2 [4, Lemma 4] If U �⊆ Z(R) is a Lie ideal of a 2-torsion free prime
ring R and a, b ∈ R such that aUb = (0), then a = 0 or b = 0.

Lemma 2.3 [11, Lemma 2.6] Let R be a 2-torsion free prime ring and U be
a Lie ideal of R. If U is a commutative Lie ideal of R i.e., [u, v] = 0, for all
u, v ∈ U , then U ⊆ Z(R).

The following lemma is in fact, an extension of a result [9, Lemma 2(a)] due to
J. H. Mayne.

Lemma 2.4 Let R be a 2-torsion free prime ring and U be a Lie ideal of R
such that U �⊆ Z(R). If R admits a derivation d which is zero on U , then d is
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zero on R.

Proof By our hypotheses, we have

d(u) = 0, for all u ∈ U. (2.1)

Replacing u by [u, r] in (2.1), we find that d([u, r]) = ud(r) − d(r)u = 0 and
hence [u, d(r)] = 0, for all u ∈ U and r ∈ R. This yields that d(r) ∈ CR(U).
Thus, the application of Lemma 2.1 gives d(r) ∈ Z(R). Hence [d(r), s] = 0,
for all r, s ∈ R. Replacing r by rr1 in latter relation and using it, we obtain
d(r)[r1, s] + [r, s]d(r1) = 0, for all r, r1, s ∈ R. Now replace r1 by d(r), to
get [r, s]d2(r) = 0, for all r, s ∈ R. Again replacing s by us, we find that
[r, u]sd2(r) = 0, for all u ∈ U and r, s ∈ R i.e., [r, u]Rd2(r) = (0), for all
u ∈ U, r ∈ R. Thus primeness of R implies that either [r, u] = 0 or d2(r) = 0.
Since U �⊆ Z(R), we have d2(r) = 0, for all r ∈ R. Replace r by rs in the
above relation, to get 2d(r)d(s) = 0, for all r, s ∈ R. Since R is 2-torsion free,
the latter relation yields that d(r)d(s) = 0, for all r, s ∈ R. We conclude that
d(r)d(sr) = (0), for all r, s ∈ R. Thus d(r)Rd(r) = (0), for all r ∈ R. The
primeness of R forces that d = 0. �
Theorem 2.1 Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R with u2 ∈ U , for all u ∈ U . If R admits a generalized derivation F
with associated derivation d �= 0 such that F (uv)−uv ∈ Z(R), for all u, v ∈ U ,
then U ⊆ Z(R).

Proof If F = 0, then uv ∈ Z(R), for all u, v ∈ U . Hence [uv, r] = 0, for
all u, v ∈ U and r ∈ R. This gives that u[v, r] + [u, r]v = 0 for all u, v ∈ U .
Replacing u by 2wu and using the fact that charR �= 2, we get [w, r]uv = 0,
for all u, v, w ∈ U and r ∈ R. Replace r by rs, to get [w, r]suv = 0, for all
u, v, w ∈ U and r, s ∈ R i.e., [w, r]Ruv = (0), for all u, v, w ∈ U and r ∈ R.
Thus primeness of R implies that either [w, r] = 0 or uv = (0). If uv = 0, for
all u, v ∈ U , then replacing v by [v, r], we get urv = 0, for all u, v ∈ U and
r ∈ R. Hence uRv = (0), for all u, v ∈ U . Thus primeness of R forces that
U = (0), which is not possible. Hence we have [w, r] = 0, for all w ∈ U and
r ∈ R i.e., U ⊆ Z(R).

Hence onward we assume that F �= 0. Suppose on contrary that U �⊆ Z(R).
Since we have F (uv) − uv ∈ Z(R), for all u, v ∈ U , [F (uv) − uv, w] = 0, for
all u, v, w ∈ U . Replacing v by 2vw and using the fact that charR �= 2, we get
[(F (uv) − uv)w + uvd(w), w] = 0, for all u, v, w ∈ U . Hence [uvd(w), w] = 0,
for all u, v, w ∈ U i.e.,

uv[d(w), w] + u[v, w]d(w)+ [u, w]vd(w) = 0, for all u, v, w ∈ U. (2.3)

Replace u by 2u1u in (2.3) and use (2.3), to obtain [u1, w]uvd(w) = 0, for
all u, u1, v, w ∈ U . Hence [u1, w]Uvd(w) = (0), for all u1, v, w ∈ U . Thus by
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Lemma 2.2 for each w ∈ U either [u1, w] = 0 or vd(w) = 0. Now, let U1 = {w ∈
U | vd(w) = 0, for all v ∈ U} and U2 = {w ∈ U | [u1, w] = 0, for allu1 ∈ U}.
Then U1 and U2 both are additive subgroups of U and U1 ∪ U2 = U . But
a group can not be union of its proper subgroups. Thus either U1 = U or
U2 = U . If U1 = U , then vd(w] = 0, for all v, w ∈ U . Replacing v by [v, r] in
above relation and using it, we get vrd(w) = 0, for all v, w ∈ U and r ∈ R,
i.e. URd(w) = (0), for all w ∈ U . Since R is prime and U is nonzero we
conclude that d(w) = 0, for all w ∈ U . Hence by Lemma 2.4, we get d = 0, a
contradiction. On the other hand, if U2 = U , then [u1, w] = 0, for all u1, w ∈ U .
Thus by Lemma 2.3, we get U ⊆ Z(R), again a contradiction. This completes
the proof of the theorem. �

Using the same techniques with necessary variations, we get the following:

Theorem 2.2 Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R with u2 ∈ U , for all u ∈ U . If R admits a generalized derivation F
with associated derivation d �= 0 such that F (uv)+uv ∈ Z(R), for all u, v ∈ U ,
then U ⊆ Z(R).

Following is the immediate consequence of Theorem 2.1.

Corollary 2.1 Let R be a prime ring. If R admits a generalized derivation F
with associated derivation d �= 0 such that F (xy)−xy ∈ Z(R), for all x, y ∈ R,
then R is commutative.

Remark 2.1 Since every ideal in a ring R is a Lie ideal of R, conclusion of
the above theorem holds even if U is assumed to be an ideal of R. Though the
assumption that u2 ∈ U , for all u ∈ U seems close to assuming that U is an
ideal of the ring, but there exist Lie ideals with this property which are not

ideals. For example, let R =
{(

x y
0 z

)
| x, y, z ∈ Z

}
. Then it can be easily

seen that U =
{(

x y
0 x

)
| x, y ∈ Z

}
is a Lie ideal of R satisfying u2 ∈ U , for

all u ∈ U . However, U is not an ideal of R.

Remark 2.2 In conclusion, it is tempting to conjecture as follows:

Conjecture 2.1 Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R. If R admits a generalized derivation F with associated derivation
d �= 0 such that F (uv) − uv ∈ Z(R) or F (uv) + uv ∈ Z(R), for all u, v ∈ U ,
then U ⊆ Z(R).

Theorem 2.3 Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R with u2 ∈ U , for all u ∈ U . If R admits a generalized derivation F
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with associated derivation d �= 0 such that F (uv)−vu ∈ Z(R), for all u, v ∈ U ,
then U ⊆ Z(R).

Proof If F = 0, then vu ∈ Z(R), for all u, v ∈ U . Using the same arguments
as we have used in the begining of the proof of Theorem 2.1, we get the required
result.

Hence, onward we assume that F �= 0. Suppose on contrary that U �⊆ Z(R).
Since for any u, v ∈ U we have F (uv) − vu ∈ Z(R), [F (uv) − vu, v] = 0, for
all u, v ∈ U . Replacing u by 2uv and using the fact that charR �= 2, we get
[(F (uv) − vu)v + uvd(v), v] = 0, for all u, v ∈ U and hence [uvd(v), v] = 0, for
all u, v ∈ U . We have

uv[d(v), v] + [u, v]vd(v) = 0, for all u, v ∈ U. (2.4)

Replace u by 2wu in (2.4) and use (2.4), to obtain [w, v]uvd(v) = 0, for all
u, v, w ∈ U . Hence [w, v]Uvd(v) = (0), for all v, w ∈ U . Thus by Lemma 2.1,
for each v ∈ U either [w, v] = 0 or vd(v) = 0. Now, let A = {v ∈ U | [w, v] =
0, for all w ∈ U} and B = {v ∈ U | vd(v) = 0}. Clearly A and B are additive
subgroups of U whose union is U . Therefore, either [w, v] = 0, for all v, w ∈ U
or vd(v) = 0, for all v ∈ U . If [w, v] = 0, for all v, w ∈ U , then by Lemma
2.3, we get U ⊆ Z(R), a contradiction. On the other hand, if vd(v) = 0, then
linearizing the above relation on v, we obtain

ud(v) + vd(u) = 0, for all u, v ∈ U. (2.5)

Again replace v by 2vu in (2.5) and use the fact that charR �= 2, to get ud(vu)+
vud(u) = 0, for all u, v ∈ U . Thus (2.5) yields that [u, vd(u)] = 0, for all
u, v ∈ U . This gives that v[u, d(u)] + [u, v]d(u) = 0, for all u, v ∈ U . Replacing
v by 2wv, we get [u, w]vd(u) = 0, for all u, v, w ∈ U i.e., [u, w]Ud(u) = (0), for
all u, w ∈ U . Hence by Lemma 2.2, either [u, w] = 0 or d(u) = 0. Now, let
U1 = {u ∈ U | d(u) = 0} and U2 = {u ∈ U | [u, w] = 0, for all w ∈ U}. Then
U1 and U2 both are additive subgroups of U and U1 ∪ U2 = U . Thus either
U1 = U or U2 = U . If U1 = U , then d(u) = 0, for all u ∈ U and by Lemma 2.4,
we get d = 0, a contradiction. On the other hand, if U2 = U , then [u, w] = 0,
for all u, w ∈ U . Thus by Lemma 2.3, U ⊆ Z(R), again a contradiction. Hence
the result is proved. �

Using the same techniques with necessary variations we get the following :

Theorem 2.4 Let R be a 2-torsion free prime ring and U be a nonzero Lie
ideal of R with u2 ∈ U , for all u ∈ U . If R admits a generalized derivation F
with associated derivation d �= 0 such that F (uv)+vu ∈ Z(R), for all u, v ∈ U ,
then U ⊆ Z(R).
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The following example demonstrates that R to be prime is essential in the hy-
potheses of the above results.

Example 2.1 Consider S as any ring. Let R=
{(

a b
0 0

)
| a, b ∈ S

}
and let

I=
{(

0 b
0 0

)
| b ∈ S

}
be a Lie ideal of R. Define F : R −→ R by F (x) =

2e11x − xe11. Then F is a generalized derivation with associated derivation d
given by d(x) = e11x − xe11. It can be easily seen that R satisfies the proper-
ties (i) F (uv)− uv Z(R), (ii) F (uv)+ uv Z(R), (iii) F (uv)− vu Z(R) and (iv)
F (uv) + vu Z(R) for all u, v ∈ U . However, U is not central.
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