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Abstract

We establish necessary and sufficient conditions for the existence of
solutions of certain fractional differential equations in the form of finite
fractional-order of Dirac delta functions. We then give some fractional
differential equations whose solutions are in such a form.

1 Introduction

Existence criterion of finite-order of distributional solutions to any homoge-
neous differential equations was first established by Wiener [1] in 1982. Pre-
cisely, his solution is in the form of finite summation of Dirac delta function,
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δ, and its distributional derivatives, that is

u(t) =
m∑

k=0

bkδ(k)(t), bm �= 0, (1.1)

and satisfies the equation

n∑
i=0

ai(t)u(n−i)(t) = 0,

with coefficients ai(t) ∈ C(m+n−i). As for the infinite-order solutions, he con-
sidered the r-vector of the type

u(t) =
∞∑

k=0

bkδ(k)(t), (1.2)

where bk are constant r-vectors. He proved the existence of this solutions u(t)
in the space of generalized functions (Sβ

0 )′, β > 1, for comprehensive systems
of any order with countable sets of argument deviations

∞∑
i=0

m∑
j=0

Aij(t)u(j)(λijt) = 0, (1.3)

in which r × r-matrices Aij and real parameters λij satisfy certain conditions.
It is well-known that the infinite-order objects in the form (1.2) in general are
neither distributions, ultradistributions nor hyperfunctions. Many researchers
call them dual Taylor series since in a way they are “dual”to the Taylor series∑∞

n=0 antn. Using the idea of the proof for the existence of dual Taylor series
solutions of system (1.3), Weiner [2] proved existence of entire solutions

u(t) =
∞∑

n=0

antn

of the system

u(p)(t) =
∞∑

i=0

p∑
j=0

Qij(t)u(j)(λijt)

u(j)(0) = uj , j = 0, . . . , p− 1

under certain conditions of r × r-matrices Qij and real parameters λij. Cooke
and Weiner [3] extended the results in [1] by showing that dual Taylor series
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solutions in the space (Sβ
0 )′, β > 1, exist for the comprehensive systems of any

order with countable sets of variable argument deviations
∞∑

i=0

m∑
j=0

Aij(t)u(j)(λij(t)) = 0,

under suitable conditions on Aij(t) and functions λij(t). A thorough overview
of finite-order of distributional solutions, dual Taylor series solutions and entire
solutions of ordinary differential equations and functional differential equations
was given by Shah and Wiener [4].

Dual Taylor series (1.2) has been used frequently in the problem of find-
ing solutions for ordinary differential equations. For example, Littlejohn and
Kanwal [5] in 1985 used them to solve the confluent hypergeometric differential
equation

tu′′ + (m − t)u′ − pu = 0

and the hypergeometric equation

t(1 − t)u′′(t) + [γ − (α + β + 1)t]u′(t) − αβu(t) = 0.

In particular, for positive integers m ≤ p, they found that the series solutions
reduce to finite-order of distributional solutions (1.1). In 1991 Wiener, Cooke
and Shah [6] proved that under certain conditions the equation

n∑
i=0

(ait + bi)u(n−i)(t) = 0

with constant coefficients ai, bi and a0 = 1, b0 = 0 admits a sum of finite-order
of distributional solutions and a locally integrable function of particular forms.
They also proved the existence and non-existence theorems of dual Taylor series
solutions in the space (Sβ

0 )′, β > 1 for certain linear equations with polyno-
mial coefficients. Hernandez and Estrada [7] studied connections between dual
Taylor series solutions of ordinary differential equations and the asymptotic ex-
pansion of classical, distributional, or hyperfunction solutions of the equations.
They found through examples that in general the connections are not obvious
because there is no relationship between the dimension of the solution spaces of
dual Taylor series and others. In 2015, Kanwal [8] reviewed and demonstrated
some techniques based on the distributional theory of asymptotic analysis and
moment expansion of Dirac delta functions in solving certain differential and
integral equations. Next, Nonlaopon et. al. [9] studied the solutions in the
space of right-sided distributions of the differential equation

tu(n)(t) + mu(n−1)(t) + tu(t) = 0,

where m and n are any integers with n ≥ 2 and t ∈ R using Laplace transform
technique. They found that the types of Laplace transformable solutions in
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the space of right-sided distributions depend on the relationship between the
values of m and n. Moreover, they found that when m > n, all solutions are
expressed as finite-order distributional solutions. In 2017, Opio et. al. [10]
considered the equation

tu(n)(t) + (m− t)u(n−1)(t) − pu(t) = 0,

and classified its solutions according the values of m and p. Using Laplace
transforms, they found that when p = 0 and m = n, all solutions are expressed
as finite-order distributional solutions.

Morita and Sato [11] discussed a fractional differential equations of the type
Laplace’s differential equation, a linear fractional differential equation whose
coefficients are linear functions of the variable :

(a2t + b2) ·0 D2σ
R u(t) + (a1t + b1) ·0 Dσ

Ru(t) + (a0t + b0)u(t) = f(t)

for t > 0, σ = 1 and σ = 1/2, where 0D
σ
R is the Riemann-Liouville fractional

derivative. Interpreting the equation in the framework of distributional the-
ory and using operational calculus, they were able to solved for its solutions
which are locally integrable. Morita and Sato [12] continued their study on
Laplace’s differential equations and discovered more solutions which are not
locally integrable using the method of analytic continuation.

Motivated by the works of Wiener [1], and Morita and Sato [11], we are led
to consider the homogeneous fractional differential equations with polynomial
coefficients

nm+r∑
i=0

ai(t)u(i/m)(t) = 0,

where n, m ∈ N with m ≥ 2, r ∈ N ∪ {0} with r ≤ m − 1, and u(i/m) denotes
the i/m-th fractional derivative of u. The polynomial coefficients ai are of
particular form

ai(t) =
�i/m�∑
j=0

aijt
j,

where �i/m� denotes the floor function of i/m.
Following Wiener’s idea, we derive existence and necessary conditions for

its finite fractional-order solution

u(t) =
N∑

k=0

bkδ(k/m)(t), bN �= 0 (1.4)

where δ(k/m) denotes the k/m-th fractional derivative of the Dirac delta func-
tion δ. The proof are presented in section 3. We then provide examples to
support our study in section 4.

In order to prove our results, we now introduced the concept of right-sided
distributions and its fractional integral and derivatives:
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2 Right-sided Distributions and Their Fractional

Integrals and Derivatives

A right-sided distribution f is a continuous linear functional on the space of
infinitely differentiable functions (test functions) with support on the right, DR.
The space of right-sided distributions is denoted by D′

R. We write a number
assigned to each test function φ ∈ DR from a right-sided distribution f by
〈f, φ〉. A regular right-sided distribution f is a locally integrable function on
R which has a support bounded on the left. For a regular distribution, the
number 〈f, φ〉 is defined by

〈f, φ〉 =
∫ ∞

−∞
f(t)φ(t) dt.

A singular right-sided distribution is a right-sided distribution which is not
regular.

The fractional integral operator of a test function φ ∈ DR is denoted by
D−ν

w φ for ν ∈ (0,∞) and is defined by

D−ν
w φ(t) =

1
Γ(ν)

∫ ∞

t

(x − t)ν−1φ(x) dx,

where Γ(ν) is a gamma function. Moreover, the operator defines the fractional
derivative operator. The definition of fractional derivative operator is, let β be
a positive real number and n = �β, a ceiling function of β,

Dβ
wφ(t) = Dβ−n

w [Dn
wφ(t)] ,

where
Dn

wφ(t) = (−1)n dn

dtn
φ(t),

and especially for ν = 0, D0
wφ(t) = φ(t).

The fractional integral and fractional derivative operator of a distribution
f is denoted by Dβf(t) for β ∈ R. If β is a positive real number, Dβf is
the fractional derivative of f(t) but if β is a negative real number, it is the
fractional integral, and D0f(t) = f(t). The definition of Dβf(t) is defined as
follow,

〈Dβf(t), φ(t)〉 = 〈f(t), Dβ
wφ(t)〉,

where φ ∈ DR.
One example of a regular right-sided distribution is a Heaviside function

Ha(t), which is defined by

Ha(t) =

{
1, for t ≥ a;
0, for t < a,
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where a ∈ R and in the sense of distribution

〈Ha(t), φ(t)〉 =
∫ ∞

a

φ(t) dt.

An example of a singular right-sided distribution is an important element
Dirac delta function δ(t) which is defined by

〈δ, φ〉 = φ(0).

A fractional integral and a fractional derivative of order α of Dirac delta
function can be computed as follows

〈Dαδ(t), φ(t)〉 = 〈δ(t), Dα
wφ(t)〉.

In case of α < 0, namely, α = −ν , where ν is a positive real number, we have

〈δ(t), Dα
wφ(t)〉 = 〈δ(t), D−ν

w φ(t)〉

=
1

Γ(ν)
〈δ(t),

∫ ∞

t

(x − t)ν−1φ(x) dx〉

=
(

1
Γ(ν)

∫ ∞

t

(x − t)ν−1φ(x) dx

)∣∣∣
t=0

.

In case of α > 0, we set n = �α and obtain

〈δ(t), Dα
wφ(t)〉 = 〈δ(t), Dα−n

w Dn
wφ(t)〉

= 〈δ(t), Dα−n
w (−1)nφ(n)(t)〉

= (−1)n〈δ(t), D−(n−α)
w φ(n)(t)〉

=
(−1)n

Γ(n − α)
〈δ(t),

∫ ∞

t

(x − t)n−α−1φ(n)(x) dx〉

=
(

(−1)n

Γ(n − α)

∫ ∞

t

(x − t)n−α−1φ(n)(x) dx

)∣∣∣
t=0

.

Hereafter, in dealing with certain product forms, we use the Pochhammer sym-
bol

(a)0 = 1, (a)n = a(a + 1) · · · (a + n − 1), n = 1, 2, 3, . . .

where a is a real number.
We collect certain properties of right-sided distributions and properties of

finite double sum needed in our proofs. Lemma 2.1 is proved in [11]. Lemma 2.2
is proved in [11] for the case n = 1. However, it can be extended naturally for
n > 1 by induction.

Lemma 2.1. For u ∈ D′
R, the index law

DαDβu = Dα+βu,

is valid for every α, β ∈ R.
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The proof of this lemma is given in [11].

Lemma 2.2. Let n ∈ N and α ∈ R with α ≥ 0, the formula of tnδ(α) is as
follow

tnδ(α) = (−1)n(α − n + 1)nδ(α−n). (2.1)

The proof of this lemma is given in [11].

Lemma 2.3. For n, m ∈ N with m ≥ 2, and r ∈ N∪ {0} with r ≤ m− 1, then

nm+r∑
i=0

�i/m�∑
j=0

ai,j =
n∑

j=0

nm+r∑
i=jm

ai,j.

Proof. Let n, m ∈ N with m ≥ 2, and r ∈ N ∪ {0} with r ≤ m− 1. We expand
and regroup the summation to get the result:

nm+r∑
i=0

�i/m�∑
j=0

ai,j =
0∑

j=0

m−1∑
i=0

ai,j +
1∑

j=0

2m−1∑
i=m

ai,j +
2∑

j=0

3m−1∑
i=2m

ai,j

+ · · ·+
n−1∑
j=0

nm−1∑
i=(n−1)m

ai,j +
n∑

j=0

nm+r∑
i=nm

ai,j

=
nm+r∑
i=0

ai,0 +
nm+r∑
i=m

ai,1 +
nm+r∑
i=2m

ai,2

+ · · ·+
nm+r∑

i=(n−1)m

ai,n−1 +
nm+r∑
i=nm

ai,n

=
n∑

j=0

nm+r∑
i=jm

ai,j.

This completes the proof.

Lemma 2.4. For m ∈ N with m ≥ 2, and N1 ∈ N ∪ {0}, then

m−1∑
l=0

N1∑
j=0

al+jm,j =
mN1+m−1∑

i=0

ai,�i/m�.

Proof. Let m ∈ N with m ≥ 2, and N1 ∈ N∪ {0}. We expand and regroup the
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summation to obtain the result:

m−1∑
l=0

N1∑
j=0

al+jm,j =
N1∑
j=0

ajm,j +
N1∑
j=0

ajm+1,j +
N1∑
j=0

ajm+2,j + · · ·+
N1∑
j=0

ajm+m−1,j

= (a0,0 + am,1 + a2m,2 + · · ·+ aN1m,N1 )
+ (a1,0 + am+1,1 + a2m+1,2 + · · ·+ aN1m+1,N1 )
+ (a2,0 + am+2,1 + a2m+2,2 + · · ·+ aN1m+2,N1 )

+ · · ·+ (am−1,0 + a2m−1,1 + a3m−1,2 + · · ·+ a(N1+1)m−1,N1

)
= (a0,0 + a1,0 + a2,0 + · · ·+ am−1,0)

+ (am,1 + am+1,1 + am+2,1 + · · ·+ a2m−1,1)
+ (a2m,2 + a2m+1,2 + a2m+2,2 + · · ·+ a3m−1,2)

+ · · ·+ (aN1m,N1 + aN1m+1,N1 + aN1m+2,N1 + · · ·+ a(N1+1)m−1,N1

)
=

(N1+1)m−1∑
i=0

ai,�i/m�.

This completes the proof.

We are now in a position to prove our assertions:

3 Main Results

Theorem 3.1. Consider an equation

nm+r∑
i=0

ai(t)u(i/m)(t) = 0, (3.1)

where n, m ∈ N with m ≥ 2, r ∈ N ∪ {0} with r ≤ m − 1 and each polynomial
coefficient ai(t) is of particular form

ai(t) =
�i/m�∑
j=0

ai,jt
j.

If equation (3.1) has a finite fractional-order distributional solution (1.4), then

(1) coefficients anm+r−p,0 = 0 for all p = 0, 1, 2, . . . , m− 1;

(2) the index N in equation (1.4) satisfies the relation

a(n−1)m+r,0 + anm+r,1(−1)
(

N + nm + r

m

)
= 0;
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(3) there exists a non-trivial solution (b0, b1, b2, . . . , bN) of the system

r∑
l=0

bl̄−l

n∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

+
n∑

ν=1

νm+r∑
l=(ν−1)m+r+1

bl̄−l

n−ν∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

= 0, (3.2)

for all l̄ = 0, 1, 2, . . ., N + nm + r.

Proof. We substitute the finite fractional-order distributional solution into (3.1)
and interpret the equation in the the sense of distribution as

〈
nm+r∑
i=0

ai(t)D(i/m)

(
N∑

k=0

bkD(k/m)δ(t)

)
, φ(t)

〉
= 0,

where φ(t) ∈ DR. Using Lemma 2.1, we have

〈
nm+r∑
i=0

ai(t)
N∑

k=0

bkD(k+i)/mδ(t), φ(t)

〉
= 0

To reduce the complexity of the notations, we write

nm+r∑
i=0

ai(t)
N∑

k=0

bkδ((k+i)/m)(t) = 0.

Substituting polynomial ai yields

nm+r∑
i=0

�i/m�∑
j=0

ai,jt
j

N∑
k=0

bkδ((i+k)/m)(t) = 0.

Applying Lemma 2.2, we obtain

nm+r∑
i=0

�i/m�∑
j=0

N∑
k=0

ai,jbk(−1)j

(
i + k

m
− j + 1

)
j

δ((i+k−jm)/m) = 0.

Swapping double sums by Lemma 2.3, we have

N∑
k=0

n∑
j=0

nm+r∑
i=jm

ai,jbk(−1)j

(
i + k

m
− j + 1

)
j

δ((i+k−jm)/m) = 0.
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Next, we let l = i − jm and rearrange the sum as

N∑
k=0

⎛
⎝ r∑

l=0

n∑
j=0

al+jm,jbk(−1)j

(
l + k

m
+ 1
)

j

δ((l+k)/m)

+
m+r∑

l=r+1

n−1∑
j=0

al+jm,jbk(−1)j

(
l + k

m
+ 1
)

j

δ((l+k)/m)

+
2m+r∑

l=m+r+1

n−2∑
j=0

al+jm,jbk(−1)j

(
l + k

m
+ 1
)

j

δ((l+k)/m)

+ · · ·+
nm+r∑

l=(n−1)m+r+1

0∑
j=0

al+jm,jbk(−1)j

(
l + k

m
+ 1
)

j

δ((l+k)/m)

⎞
⎠ = 0.

We group all terms together except the first term:

N∑
k=0

⎛
⎝ r∑

l=0

n∑
j=0

al+jm,jbk(−1)j

(
l + k

m
+ 1
)

j

δ((l+k)/m)

+
n∑

ν=1

νm+r∑
l=(ν−1)m+r+1

n−ν∑
j=0

al+jm,jbk(−1)j

(
l + k

m
+ 1
)

j

δ((l+k)/m)

⎞
⎠ = 0.

Then, we let l̄ = l + k and introduce all extra-terms of bk to be zero, i.e.,

b−1 = b−2 = b−3 = · · · = b−(N+nm+r) = 0

and

bN+1 = bN+2 = bN+3 = · · · = bN+nm+r = 0.

We thus obtain

N+nm+r∑
l̄=0

δ(l̄/m)

⎛
⎝ r∑

l=0

bl̄−l

n∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

+
n∑

ν=1

νm+r∑
l=(ν−1)m+r+1

bl̄−l

n−ν∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

⎞
⎠ = 0.
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For each l̄ = 0, 1, . . . , N + nm + r, we thus have

r∑
l=0

bl̄−l

n∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

+
n∑

ν=1

νm+r∑
l=(ν−1)m+r+1

bl̄−l

n−ν∑
j=0

al+jm,j (−1)j

(
l̄

m
+ 1
)

j

= 0,

which satisfies condition (3.1). Its last term is anm+r,0bN = 0. Since bN �= 0,
we have anm+r,0 = 0. Notice that anm+r−p,0 = 0 for all p = 1, 2, 3, . . ., m − 1
which satisfies condition (1). Moreover, N satisfies the follow equation

anm+r−m,0 + anm+r,1(−1)
(

N + nm + r

m

)
= 0,

which is the relation (3.1).

We now give a sufficient condition to obtain the solution of (3.1):

Theorem 3.2. Equation (3.1) has an N/m order distributional solution, if the
following hypotheses are satisfied:

(i) there exists a positive integer q with m− 1 ≤ q < nm, such that

anm+r−(pm+s),k−p = 0

for all k = 0, 1, 2, . . ., �q/m�, for all s = 0, 1, 2, . . ., min{m−1, q−km},
and for all p = 0, 1, 2, . . ., k;

(ii) the index N is the smallest positive integer root of the equation

�(q+1)/m�∑
j=0

anm+r−(q+1−jm),j(−1)j

(
N + nm + r − (q + 1)

m
+ 1
)

j

= 0;

(iii) there exists a nonzero solution of system (3.2).

Proof. By (iii), for any nontrivial solution (b0, b1, . . . , bN) of system (3.2), we
have a finite fractional-order distributional solution (1.4) that satisfies equa-
tion (3.1). Assuming conditions (i) and choosing the largest integer q in con-
dition (i), we can reduce system (3.2) to

N+nm+r−(q+1)∑
l̄=0

⎛
⎝ r∑

l=0

bl̄−l

n∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

+
n−�(q+1)/m�∑

ν=1

νm+r∑
l=(ν−1)m+r+1

bl̄−l

n−ν∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

⎞
⎠ = 0.
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Observe that the last equation of the above system is⎛
⎝�(q+1)/m�∑

j=0

anm+r−(q+1−jm),j(−1)j

(
N + nm + r − (q + 1)

m
+ 1
)

j

⎞
⎠ bN = 0.

Due to condition (ii), we can set bN �= 0. Other bk can be successively written
in term of bN since

�(q+1)/m�∑
j=0

anm+r−(q+1−jm),j (−1)j

(
l̄

m
+ 1
)

j

�= 0,

for all l̄ = 0, 1, . . . , N + nm + r − (q + 2).

If each polynomial coefficient ai(t) is reduced to a monomial ai,�i/m�t�i/m�,
then the result in Theorem 3.1 can be reduced as shown in the next theorem.
For simplicity, we write ci = ai,�i/m� :

Theorem 3.3. If the equation

nm+r∑
i=0

cit
�i/m�u(i/m) = 0, (3.3)

where n, m ∈ N with m ≥ 2, r ∈ N ∪ {0} with r < m, has a finite fractional-
order distributional solution

u =
N∑

k=0

bkδ(k/m)(t), bN �= 0,

then

(i) the index N satisfies the equation

n+1∑
i=1

cim−1(−1)�(im−1)/m�
(

N + m− 1
m

+ 1
)

�(im−1)/m�
= 0;

(ii) there exists a nontrivial solution (b0, b1, b2, . . ., bN ) of the system

(n+1)m−1∑
i=0

cibl̄−i+m�i/m�(−1)�i/m�
(

l̄

m
+ 1
)

�i/m�
= 0 (3.4)

for all l̄ = 0, 1, 2, . . . , N + m − 1.
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Conversely, if the following hypotheses are satisfied: Either there exists the
smallest index N which satisfies condition (i) where cim−1 are not all zero for
all i = 1, 2, 3, . . . , n+1 and there exists a non-trivial solution of system (3.4)
or

(I) there exists a positive integer q, 1 ≤ q < m− r such that

cpm−s = 0,

for all p = 1, 2, . . . , n + 1, and s = 1, 2, 3, . . . , q;

(II) the index N is the smallest positive integer root of the equation

n+1∑
i=1

cim−(q+1)(−1)�(im−(q+1))/m�
(

N + m − (q + 1)
m

+ 1
)

�(im−(q+1))/m�
= 0;

(III) there exists a nonzero solution of system (3.4),

then (3.3) has an N/m order of distributional solution.

Proof. Comparing to the polynomial coefficients of the equation in Theorem 3.1,
we have

ai,j = 0, for all j �= �i/m� and ai,�i/m� = ci.

We only consider all value j = �i/m� in system (3.2) of Theorem 3.1. For
any l ≥ m, we have�(l + jm)/m� �= j and only zero terms appear. Thus, we
consider only the value l = 0, 1, 2, . . . , m− 1. Now system (3.2) is reduced to

r∑
l=0

bl̄−l

n∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

+
m−1∑

l=r+1

bl̄−l

n−1∑
j=0

al+jm,j(−1)j

(
l̄

m
+ 1
)

j

= 0,

for all l̄ = 0, 1, 2, . . . , N + nm + r. To combine the two double summations,
we introduce

al+nm,n = 0, for all l = r + 1, r + 2, . . . , m− 1

into the previous equation. Combining the two double summations, we have

m−1∑
l=0

n∑
j=0

bl̄−lal+jm,j(−1)j

(
l̄

m
+ 1
)

j

= 0,

for all l̄ = 0, 1, 2, . . . , N + nm + r.
Writing new index i, i = l + jm and using Lemma 2.4, we have

(n+1)m−1∑
i=0

bl̄−i+m�i/m�ai,�i/m�(−1)�i/m�
(

l̄

m
+ 1
)

�i/m�
= 0.
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Since ai,�i/m� = ci, the equation becomes

(n+1)m−1∑
i=0

bl̄−i+m�i/m�ci(−1)�i/m�
(

l̄

m
+ 1
)

�i/m�
= 0,

for all l̄ = 0, 1, 2, . . . , N + nm + r. We observe that the equation appeared
when l̄ = N +m, N +m+1, N +m+2, . . . , N +nm+ r, consists of bk, k > N
which are zeros. Therefore, the running index l̄ = 0, 1, 2, . . . , N + m − 1 is
required. Substituting the maximum value of l̄ = N + m − 1 leads to

(n+1)m−1∑
i=0

cibN+m−1−i+m�i/m�(−1)�i/m�
(

N + m − 1
m

+ 1
)

�i/m�
= 0.

The only nonzero term left in the equation is

bN

{
n+1∑
i=1

cim−1(−1)�(im−1)/m�
(

N + 2m − 1
m

)
�(im−1)/m�

}
= 0.

Since bN �= 0, number N satisfies the equation
n+1∑
i=1

cim−1(−1)�(im−1)/m�
(

N + 2m − 1
m

)
�(im−1)/m�

= 0.

Then we show the proof of the sufficient condition for existence of solution
in (3.3).

If there exists the smallest index N which satisfies condition (i) where cim−1

are not all zero for all i = 1, 2, 3, . . . , n +1 and there exists a nonzero solution
of system (3.4), obviously, we will obtain an N/m order of distributional
solution of (3.3). On the other hand, if we use condition (I), then we write the
system (3.4) as

(n+1)m−1∑
i=0

cibl̄−i+m�i/m�(−1)�i/m�
(

l̄

m
+ 1
)

�i/m�
= 0,

for all l̄ = 0, 1, 2, . . . , N + m − (q + 1). The last equation in the system is

bN

(
n+1∑
i=1

cim−(q+1)(−1)�(im−(q+1))/m�
(

N + m − (q + 1)
m

+ 1
)

�(im−(q+1))/m�

)
= 0.

By virtue of (II), we set bN �= 0. Other bk can be expressed in term of bN since

n+1∑
i=1

cim−(q+1)(−1)�(im−(q+1))/m�
(

l̄

m
+ 1
)

�(im−(q+1))/m�
�= 0,

for all l̄ = 0, 1, 2, . . . , N + m − (q + 2). This completes the proof.
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4 Examples

Example 4.1. Consider a fractional differential equation with monomial co-
efficients

3m2t2u(2+6/m) + 9m(m + 7)tu(1+6/m) + 3(m + 10)(m + 11)u(6/m)

− 3m2t2u(2+4/m) − 9m(m + 5)tu(1+4/m) − 3(m2 + 15m + 58)u(4/m)

+ 2m2t2u(2+2/m) + 6m(m + 3)tu(1+2/m) + 2(m + 4)(m + 5)u(2/m) = 0,
(4.1)

where m ≥ 7 is an integer. Suppose that u =
∑N

k=0 bkδ(k/m), bN �= 0, is a
solution of the equation. Substituting the solution into the equation, using
Lemma 2.1 and 2.2, and combining the like term of fractional-order of Dirac
delta function and its derivatives, we find that

N+6∑
k=6

3(k2 − 21k + 110)bk−6δ
(k/m) +

N+4∑
k=4

(−3)(k2 − 15k + 58)bk−4δ
(k/m)

+
N+2∑
k=2

2(k2 − 9k + 20)bk−2δ
(k/m) = 0.

Since bN �= 0, we have (N + 6)2 − 21(N + 6) + 110 = 0. Therefore, N = 4 or
N = 5. Choosing N = 4 and replacing it in the recurrence relation, we have

6b3δ
(9/m) + (18b2 − 6b4)δ(8/m) + (36b1 − 6b3)δ(7/m) − 42b0δ

(4/m)

(−24)b1δ
(5/m) + 12b0δ

(2/m) + 4b1δ
(3/m) + (−12b2 + 4b4)δ(6/m) = 0.

Therefore, b0 = b1 = b3 = 0 and b2 = b4/3. The solution is

u =
b4

3

(
2δ(4/m) + δ(2/m)

)
. (4.2)

By applying (2.1), it is easy to verify that (4.2) satisfies (4.1).
For N = 5, we obtain

(6b3 − 12b5)δ(9/m) + (18b2 − 6b4)δ(8/m) − 42b0δ
(4/m) − 24b1δ

(5/m) + 12b0δ
(2/m)

+4b1δ
(3/m) + (−12b2 + 4b4)δ(6/m) + (−6b3 + 12b5)δ(7/m) = 0.

Therefore, b0 = b1 = 0, b2 = b4/3, b3 = 2b5. If we set b4 = 0, then we obtain
another solution

u = b5

(
δ(5/m) + 2δ(3/m)

)
. (4.3)

By applying (2.1), it is easy to verify that (4.3) satisfies (4.1).
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To be specific, let consider for m = 7. We find that the index N = 4 clearly
satisfies Theorem 3.3 (i). In Theorem 3.3 (ii), we have

20∑
i=0

cibl̄−i+7�i/7�(−1)�i/7�
(

l̄

7
+ 1
)

�i/7�
= 0,

for all l̄ = 0, 1, 2, . . . , 10 which are just

b0 = 0, b1 = 0, b2 = b4/3, b3 = 2b5, (4.4)

and b4, b5 are arbitrary constants.
If we consider Theorem 3.3 (I), then we observe that there exists the smallest

index N = 4 which satisfies condition (i) and there exists a nonzero solution
of system (3.4) which is the same as the solution of system (4.4). Therefore,
we obtain a 4/7 order of distributional solution of this fractional differential
equation.

In case of m = 2, the differential equation is

12t2u(5) + (−12t2 + 162t)u(4) + (8t2 − 126t + 468)u(3) + (60t − 276)u(2) + 84u(1) = 0.

By substitution of finite fractional-order form of the solution, we have

(N − 4)(N − 5) = 0.

If we choose N = 4 and by the recurrence relation, we get a solution

u =
b4

3

(
2δ(2) + δ(1)

)
. (4.5)

If we choose N = 5, we get a solution

u = b5

(
δ(5/2) + 2δ(3/2)

)
. (4.6)

By applying (2.1), it is easy to verify that (4.5) and (4.6) satisfy (4.1).

Example 4.2. Consider a fractional differential equation with monomial co-
efficients

t2u(2) + 2tu(3/2) + 3tu(1) + 5u(1/2) + u = 0. (4.7)

Suppose that u =
∑N

k=0 bkδ(k/2), bN �= 0, is a solution of the equation. Substi-
tuting the solution into the equation and using Lemma 2.1 and 2.2, we get

(2 − N)bNδ((N+1)/2) +
N∑

k=1

((3 − k)bk−1 + (k2/4)bk)δ(k/2) = 0.
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Since bN �= 0, we have N = 2. Putting N = 2 into the equation leads to

2∑
k=1

[
(3 − k)bk−1 + (k2/4)bk

]
δ(k/2) = 0.

That is, the recurrence relation is equal to zero, for all k = 1, 2,

bk =
4(k − 3)

k2
bk−1.

That is, b1 = −8b0 and b2 = 8b0. Therefore, we obtain the solution

u = b2

(
δ(1) − δ(1/2) +

1
8
δ

)
. (4.8)

By applying (2.1), it is easy to verify that (4.8) satisfies (4.7).
We find that index N = 2 clearly satisfies Theorem 3.3 (i). Now we consider

Theorem 3.3 (ii) and obtain the system

5∑
i=0

cibl̄−i+2�i/2�(−1)�i/2�
(

l̄

2
+ 1
)

�i/2�
= 0,

for all l̄ = 0, 1, 2, 3. That is

9/4b3 = 0,

b2 + b1 = 0,

(1/4)b1 + 2b0 = 0,

b0 − 3b0 + 2b0 = 0.

(4.9)

Therefore, we obtain a nontrivial solution of the system which is

b0 = −1/8b2, b1 = −b2, b3 = 0.

where b2 is an arbitrary constant.
If we consider Theorem 3.3 (I), then we observe that there exists the smallest

index N = 2 which satisfies condition (i) and there exists a nonzero solution of
system (3.4) which is just the solution of system (4.9). Therefore, we obtain
a 2/2 order of distributional solution of this fractional differential equation.

Example 4.3. Consider a Cauchy-Euler equation

m2t2u(2) +(3m2 +m− am)tu(1) +(m2 +m− am−n(n + a− 1))u = 0. (4.10)

where m, n ∈ N with m ≥ 2, and a ∈ R \ (Z− ∪ {0}).
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Suppose u = bNδ(N/l), bN �= 0, is a solution of the equation. Substituting
the solution into the equation and using Lemma 2.1 and 2.2, we get(

mN

l
− n

)(
mN

l
+ (n + a − 1)

)
bNδ(N/l) = 0,

Therefore, we obtain N = nl/m or N = −(n + a− 1)l/m. Since N is supposed
to be a non-negative integer, m|nl is needed. For example, we pick l = 3,
m = 3, n = 2, and a = −1/2 in (4.10), we get an equation

18t2u(2) + 69tu(1) + 35u = 0. (4.11)

and upon substitution, we have

(N − 2)(N − 1/2)bNδ(N/3) = 0.

Therefore, N = 1/2 and 2. Thus, we obtain the solution of the differential
equation

u = b2δ
(2/3). (4.12)

Note that u = cδ(1/6) is also a solution of (4.11) for any constant c.
We find that the index N = 2 clearly satisfies the equation in Theorem 3.3

(i). Now we consider Theorem 3.3 (ii) and obtain the system

6∑
i=0

cibl̄−i+3�i/3�(−1)�i/3�
(

l̄

3
+ 1
)

�i/3�
= 0,

for all l̄ = 0, 1, 2, and 3. Here the system is reduced to 3 equations,

5b3 = 0, −b1 = 0, 2b0 = 0, (4.13)

Therefore, we obtain a nontrivial solution of the system, which is

b0 = b1 = b3 = 0

and b2 which is an arbitrary constant. Next, we consider Theorem 3.3 (I), we
observe that q = 2 and then we obtain the equation,

3∑
i=1

c3i−3(−1)�(3i−3)/3�
(

N + 3
3

)
�(3i−3)/3�

= 0.

Hence, we get N = 2. After that we substitute l̄ = 0, 1, and 2 into the system
(6) and find that there exists a solution of the system (6) which is just the
solution of system (4.13). Therefore, we obtain a 2/3 order of distributional
solution of this fractional differential equation.
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Example 4.4. Consider a fractional differential equation with monomial co-
efficients

4t2u(5/2) + 18tu(3/2) + (12 + ε)u(1/2) = 0, (4.14)

where ε is a nonpositive integer.
Suppose u(t) =

∑N
k=0 bkδ(k/2), bN �= 0, is a solution of the equation. Sub-

stituting the solution into the equation and using Lemma 2.1 and 2.2, we get

N∑
k=0

(k2 − k + ε)bkδ((k+1)/2) = 0.

Choosing ε = −6, we have

N∑
k=0

(k + 2)(k − 3)bkδ((k+1)/2) = 0.

Since bN �= 0, we have (N + 2)(N − 3) = 0 and thus N = 3. Therefore, we
obtain the solution of (4.15) as

u = b3δ
(3/2). (4.15)

By applying (2.1), it is easy to verify that (4.15) satisfies (4.14).
We find that the index N = 3 clearly satisfies the equation in Theorem 3.3

(i). Now we consider Theorem 3.3 (ii) and obtain the system

5∑
i=0

cibl̄−i+2�i/2�(−1)�i/2�
(

l̄

2
+ 1
)

�i/2�
= 0,

for all l̄ = 0, 1, 2, 3, and 4. We reduce the system into 3 equations and then
we obtain a nontrivial solution of the system which is

−4b2 = 0, 21b1 = 0, −6b0 = 0, (4.16)

and b3 which is an arbitrary constant.
If we consider Theorem 3.3 (I), then we observe that there exists the smallest

index N = 3 which satisfies condition (i) and there exists a nonzero solution of
system (3.4) which is just the solution of system (4.16). Therefore, we obtain
a 3/2 order of distributional solution of this fractional differential equation.

5 Conclusions

We prove the necessary conditions for the existence of finite fractional-order
solutions of the fractional differential equation (3.1) in Theorem 3.1 and the
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sufficient conditions for that in Theorem 3.2. We then apply both theorems
for the case of monomial coefficients (3.3) and provide a simplified result in
Theorem 3.3. Four examples are then provided to support our theorems.
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