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Abstract

Let R be a ring with center C, and let N the set of nilpotent elements.
Suppose that for each x, y ∈ R\N, xny − xyn ∈ N ∩ C, where n > 1
is a fixed integer. We shall present conditions for R to be commutative,
non-commutative, normal and periodic.

Throughout, R will represent a ring with center C. Let N , E be the set of
nilpotent elements of R and the set of idempotents of R, respectively; let N∗

be the subset of N consisting of all elements x such that x2 = 0. The ring R
is called normal if E ⊆ C. For x, y in R, let [x, y]1 = [x, y] = xy − yx, and
define, recursively [x, y]k = [[x, y]k−1, y] for all integers k > 1.

Before stating and proving the main theorems of this paper, we first estab-
lish the following basic lemma.

Lemma 1. Let n > 1 be a fixed integer. Then

n∑
i=0

(−1)i

(
n

i

)
((n − i)n − (n − i)) = n!.
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Proof We start with a polynomial f(X) in Z[X], and define recursively:

Δ1f(X) = f(X + 1) − f(X),

Δkf(X) = Δ1(Δk−1f(X)).

Then we can easily see that Δkf(X) =
∑k

i=0(−1)i
(
k
i

)
(f(X + (k − i)). In

particular,

Δn(Xn) =
n∑

i=0

(−1)i

(
n

i

)
(X + (n − i))n,

Δn(X) =
n∑

i=0

(−1)i

(
n

i

)
(X + (n − i)).

Combining these with [8, Lemma 1], we obtain

n∑
i=0

(−1)i

(
n

i

)
(X + (n − i))n = n!,

n∑
i=0

(−1)i

(
n

i

)
(X + (n − i)) = 0.

So putting X = 0 in the above, we obtain

n∑
i=0

(−1)i

(
n

i

)
(n − i)n = n!,

n∑
i=0

(−1)i

(
n

i

)
(n − i) = 0.

Hence
∑n

i=0(−1)i
(
n
i

)
((n − i)n − (n − i)) = n!. �

We now proceed to prove the main theorems.

Theorem 1. A ring R is normal if and only if there exists an integer n > 1
for which R satisfies the following conditions:

(i) For each x ∈ R\N and e ∈ E, [xn − x, e] ∈ C.

(ii) For each a ∈ N∗ and e ∈ E, n![a, e] = 0 implies [a, e]k = 0 with some
positive integer k.

Proof It suffices to prove the if part only. Let e ∈ E, and x ∈ R. Obviously,
a = ex − exe ∈ N∗ and f = e + a ∈ E. Further, noting that [a, e] = −a, we
see that [a, e]k = (−1)k−1[a, e]. Now, we shall prove that a = 0. First, suppose
that there exists an integer i with 2 ≤ i ≤ n such that if ∈ N , namely imf =
(if)m = 0 for some positive integer m. Then im[a, e] = im[f, e] = [imf, e] = 0,
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and so (n!)m[a, e] = 0. Hence, by (ii), (−1)k−1(n!)m−1[a, e] = (n!)m−1[a, e]k =
0 for some positive integer k, namely (n!)m−1[a, e] = 0. Therefore, we obtain
eventually −a = [a, e] = 0, namely a = 0. On the other hand, if if /∈ N for all
i with 2 ≤ i ≤ n, then by (i)

(in − i)[a, e] = (in − i)[f, e] = [(if)n − if, e] = 0 (0 ≤ i ≤ n).

Hence, by Lemma 1, we obtain n![a, e] = 0. Then, by (ii), (−1)ka = [a, e]k = 0
for some positive integer k. We have thus seen that ex = exe. Similarly,
xe = exe, and therefore ex = xe. �

Corollary 1. Suppose that there exists an integer n > 1 for which R satisfies
the following conditions:

(i)′ For each x, y ∈ R\N, [xn, y] − [x, yn] ∈ C.

(ii) For each a ∈ N∗ and e ∈ E, n![a, e] = 0 implies [a, e]k = 0 with some
positive integer k.

Then R is a normal ring.

Proof If x ∈ R\N and e ∈ E, then [xn − x, e] = [xn, e] − [x, en] ∈ C. Hence
R is normal by Theorem 1. �

Another corollary to Theorem 1 involves periodic rings. A ring R is called
periodic if for each x in R, there exist distinct positive integers n, m for which
xn = xm. If 0 < n < m then xn(m−n) ∈ E. By [3, Proposition 2], R is
periodic if and only if for each x in R, there exists f(X) ∈ X2Z[X] such that
x − f(x) ∈ N . We are now in a position to prove the following:

Corollary 2. Suppose that there exists a fixed integer n > 1, and R is a ring
which satisfies the following conditions:

(i)′′ For each x, y ∈ R\N , xny − xyn ∈ N ∩ C.

(ii) For each a ∈ N∗ and e ∈ E, n![a, e] = 0 implies [a, e]k = 0 with some
positive integer k.

Then R is a normal periodic ring.

Proof In fact, if x ∈ R\N and e ∈ E, then [xn − x, e] = (xne − xen) −
(exn − enx) ∈ C and xn+1(x − xn) = xnx2 − xx2n ∈ N . Since (x − xn)n+3 =
(x − xn)(1 − xn−1)n+1xn+1(x − xn), it follows that x − xn ∈ N . Hence, R is
normal and periodic by Theorem 1 and [3, Proposition 2]. �

For the conditions (i), (i)′ and (i)′′, we have the implications (i)′′⇒(i)′⇒(i).
Hence the condition (ii)′′ is most strong.

Another theorem which follows at once from Theorem 1 is the following:
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Theorem 2. Suppose that there exists an integer n > 1 for which R satisfies
the following conditions:

(i) For each x ∈ R\N and e ∈ E, [xn − x, e] ∈ C.

(ii) For each a ∈ N∗ and e ∈ E, n![a, e] = 0 implies [a, e]k = 0 with some
positive integer k.

If R is generated, as a ring, by E, then R is commutative, and isomorphic
to a subdirect sum of rings isomorphic to Z/(pk) for some prime p and some
positive integer k.

This follows by writing R as a subdirect sum of subdirectly irreducible rings,
and by recalling that Z is isomorphic to a subdirect sum of prime fields Z/(p)′s.

Our next result gives a sufficient condition for a ring R to be commutative
and periodic. This result makes an essential use of Corollary 2.

Theorem 3. Suppose that n > 1 is a fixed integer, R is a ring which satisfies
the following conditions:

(i)′′ For each x, y ∈ R\N , xny − xyn ∈ N ∩ C.

(ii)′ For each a ∈ N and x ∈ R, n![a, x] = 0 implies [a, x]k = 0 with some
positive integer k.

(iii) For each a, b ∈ N , there exists an integer m = m(a, b) > 1 such that
[a, b] = [a, b]m.

Then R is a commmutative periodic ring.

Proof By Corollary 2, R is a normal periodic ring. Then, for each x ∈ R,
there exists a positive integer r such that xr ∈ E ⊆ C. Hence, by [5, Theorem
4], the commutator ideal of R is nil, and so N forms an ideal of R. Further, in
view of (iii), [6, Theorem 6] shows that N is commutative.

Claim 1. If R contains 1, then it is commutative.

Proof Let a ∈ N . Then both 1 + a and 1 are in R\N . Then, by (i)′′,
(1 + a)n · 1 − (1 + a) · 1n ∈ C. As was noted above, N is a commutative ideal,
and so N2 ⊆ C. Hence 1 + na − (1 + a) ∈ C, namely (n − 1)[a, x] = 0 for
all x ∈ R. Then n![a, x] = 0, so that [a, x]k = 0 with some positive integer k.
Now, the commutativity of R is clear by [2, Theorem]. �

We now proceed to the general case (1 /∈ R). Let σ : R → R′ be a
homomorphism of R onto a subdirectly irreducible ring R′. To complete the
proof of Theorem 3, it suffices to show that R′ is commutative. By [1,(c)],
σ(N) coincides with the set N ′ of nilpotents in R′. Further, by [8, Lemma 1],
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R′ is a normal periodic ring. Since R′ is subdirectly irreducible, 1 and 0 are
the only idempotents in R′. If 1 /∈ R′, then R′ = N ′ is commutative. In what
follows, we may restrict our attention to the case that R′ contains 1. Then, as
is easily seen, there exists a (central) idempotent e in R such that σ(e) = 1.
Obviously, e is the unity of eR and eR satisfies all the conditions (i)′′, (ii)′ and
(iii) in Theorem 3. Hence eR is commutative, by Claim 1; and so R′ = σ(eR)
is commutative. This completes the proof of Theorem 3. �

Related work also appears in [4].
Next, we shall present a classification theorem of rings which satisfies the

conditions (i)′′ and (ii) in Corollary 2.

Theorem 4. For a ring R and an integer n > 1, the following conditions (1)
and (2) are equivalent.
(1)(i)′′ For each x, y ∈ R\N , xny − xyn ∈ N ∩ C.

(ii) For each a ∈ N∗ and e ∈ E, n![a, e] = 0 implies [a, e]k = 0 with some
positive integer k.

(2) R is a ring which is one of the following types (a)-(d).

(a) R = N .

(b) R = C and xn − x ∈ N for each x ∈ R.

(c) (c1) {0} �= RE ⊂ C and R = RE + N .
(c2) N is a non-commutative ideal of R.
(c3) xn − x ∈ N for each x ∈ RE.
(c4) xny − xyn ∈ C for each x, y ∈ N .

(d) (d1) RE �⊂ C, E = {e, 0} ⊂ C and R = Re + R(1 − e).
(d2) N is an ideal of R containing R(1 − e).
(d3) The factor ring Re/(Re∩N) is a finite field GF (ps) such that ps−1
is a divisor of n − 1.
(d4) xny − xyn ∈ C for each x, y ∈ R\N .

Proof (1)⇒(2): For each x ∈ R, by (i)′′, we have

xn+1(x − xn) = xnx2 − xx2n, and

(x − xn)n+3 = (x − xn)(1 − xn−1)n+1xn+1(x − xn).

If x /∈ N then xn+1(x − xn) ∈ N ∩ C, whence x − xn ∈ N . Hence

xn − x ∈ N for all x ∈ R.

We assume that R �= N and R �= C. We shall distinguish two cases:
Case 1. RE ⊂ C: By Corollary 2, R is normal and periodic. Hence, for

each x ∈ R, there exists an integer r > 0 such that xr ∈ E ⊂ C. If RE = {0}
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then R = N , and this is a contradiction. Thus, we have {0} �= RE ⊂ C. Now,
we set

A = {x ∈ R | x(RE) = {0}}.
Clearly A is an ideal of R. If A �⊂ N then, for each x ∈ A\N , 0 �= xr ∈ E ∩ A
for some integer r > 0 and A(RE) 
 xrxr = xr �= 0, which is a contradiction.
Hence we have A ⊂ N . Next, let b1, b2 ∈ N . Then bm1

1 = 0 and bm2
2 = 0 for

some integers m1 > 0 and m2 > 0. For each e ∈ E, we have b1e, b2e ∈ RE ⊂ C,
and so

(b1 − b2)m1+m2 e = (b1e − b2e)m1+m2 = 0.

Hence (b1 − b2)m1+m2 ∈ A ⊂ N , and so b1 − b2 ∈ N . By a similar way, we
have b1x, xb1 ∈ N for all x ∈ R. Thus, N is an ideal of R. Next, we shall
prove R = RE + N . Let x ∈ R\N . Then 0 �= xr ∈ E ⊂ C for some integer
r > 0. We set e = xr and consider R = Re + R(1 − e). Then x = x1 + x2

where x1 ∈ Re and x2 ∈ R(1 − e). Since e, x1 ∈ C, we have xr = xr
1 + xr

2.
Since xr = e and xr

1 ∈ Re, it is easily seen that xr
2 = 0 and so x2 ∈ N . Thus,

we obtain x = x1 + x2 ∈ RE + N . Therefore, it follows that R = RE + N .
Since R �= C and RE ⊂ C, N is a non-commutative ideal of R. Now, we shall
prove (c4). Let b1, b2 ∈ N and e �= 0 ∈ E. Then e + b1, e + b2 /∈ N . Obviously
RE ∩N is an ideal of R. Moreover

(e + b1)n(e + b2) − (e + b1)(e + b2)n

= (e + bn
1 )(e + b2) − (e + b1)(e + bn

2 ) (mod RE ∩ N)
= bn

1 b2 − b1b
n
2 (mod RE ∩ N).

Hence C ∩N 
 (e + b1)n(e + b2)− (e + b1)(e + b2)n = bn
1 b2 − b1b

n
2 + c for some

c ∈ RE ∩ N . Since RE ∩ N ⊂ C ∩ N , we obtain bn
1 b2 − b1b

n
2 ∈ C ∩ N ⊂ C.

Thus, we obtain (c4) and the assertion (c).
Case 2. RE �⊂ C: In this case, we shall prove the assertion (d). Let a be an

element of RE\C. Then, there are elements e1, . . . , em ∈ E and a1, . . . , am ∈ R
such that

a1e1 + · · ·+ amem = a.

Since E ⊂ C, there exists an element f �= 0 in E such that f ≥ ei, that is,
eif = ei for i = 1, . . . , m. Then a ∈ Rf . We consider the Peirce decomposition

R = Rf + R(1 − f).

Since a /∈ C, there exists an element b in R such that ab �= ba. We write here

b = b1 + b2, b1 ∈ Rf and b2 ∈ R(1 − f).

Since a ∈ Rf , we have ab = ab1 and ba = b1a, whence ab1 �= b1a. Thus, Rf
is a non-commutative ring, and so is RE. Now, let x ∈ RE\(RE ∩ N). Then,
there is an element g in E such that xg = x. Since g ∈ RE\(RE∩N), we have
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xng − xgn = xn − x ∈ N ∩ C by (i)′′. Hence, it follows that xn − x ∈ C ∩ RE
for all x ∈ RE\(RE ∩ N). Since E ⊂ C ∩ RE, RE is a ring of Type (b) in [7,
Theorem]. Thus, we obtain that E = {e, 0} and Re ∩ N is an ideal of Re. We
consider the Peirce decomposition

R = Re + R(1 − e), Re = RE.

Since R is periodic and E ∩ R(1 − e) = {0}, it follows that

R(1 − e) ⊂ N, N = (Re ∩ N) + R(1 − e)

and so, it is an ideal of R. Thus, we obtain (d2). Next, we shall prove (d3). By
[7, Theorem, Type (b)], the factor ring Re/(Re∩N) is a field which is algebraic
over GF (p), where p is a positive prime integer. Since xn − x ∈ Re∩N for all
x ∈ Re and n is fixed, one will easily see that the factor ring Re/(Re∩N) is a
finite field GF (ps) for an integer s > 0. Let b̄ = b + (Re ∩ N) be a generating
element of the multiplicative cyclic group of non-zero elements in Re/(Re∩N).
Then

bps−1 = e + c, c ∈ Re ∩ N.

On the other hand, since b ∈ Re\(Re ∩ N), we have bn − b ∈ Re ∩ N , and so

bn−1 = e + d, d ∈ Re ∩ N.

Since ps−1 is the order of b̄ = b+(Re∩N), it follows that ps−1 is a divisor of
n− 1. Thus, we obtain (d3). The assertion (d4) follows from (i)′′ immediately.
Therefore, for Case 2, we have the assertion (d). Next, we shall prove the
converse (2) (a,b,c,d) ⇒ (1) in our theorem. Since the implications (a), (b),
(c), (d) ⇒ (ii) in (1) (resp) are trivial, it suffices to prove that (a), (b), (c), (d)
⇒ (i)′′ in (1) (resp).

(a) ⇒ (i)′′: It is trivial.
(b) ⇒ (i)′′: For each x, y ∈ R\N , we have

xny − xyn = (xn − x)y − x(yn − y) ∈ N = N ∩ R = N ∩ C.

(c) ⇒ (i)′′: Let x = x1 + x2, y = y1 + y2 ∈ R\N where x1, y1 ∈ RE and
x2, y2 ∈ N . Then x1, y1 ∈ RE\N . Hence, by (c2), (c3) and (c4), we have

xn
1 y1 − x1y

n
1 ∈ RE ∩ N ⊂ C ∩ N,

xn
2 y2 − x2y

n
2 ∈ C ∩ N.

Moreover

xny − xyn = (x1 + x2)n(y1 + y2) − (x1 + x2)(y1 + y2)n

= (xn
1 + xn

2 )(y1 + y2) − (x1 + x2)(yn
1 + yn

2 ) (mod RE ∩ N)
= (xn

1y1 − x1y
n
1 ) + (xn

2y2 − x2y
n
2 ) (mod RE ∩ N).



86 Normality conditions and commutativity Theorems for rings

Therefore, it follows that xny − xyn ∈ C ∩N .
(d) ⇒ (i)′′: Let x, y ∈ R\N . Then, we can write as it follows:

x = x1 + x2, y = y1 + y2,

x1, y1 ∈ Re\(Re ∩ N) and x2, y2 ∈ R(1 − e).

Since Re/(Re ∩ N) = GF (ps), we have

xps−1
1 = e + c, c ∈ Re ∩ N,

yps−1
1 = e + d, d ∈ Re ∩ N.

Since ps − 1 is a divisor of n − 1, we have n − 1 = m(ps − 1) for some integer
m > 0. Hence

xn
1 = x1x

n−1
1 = x1(x

m(ps−1)
1 ) = x1(x

ps−1
1 )m = x1(e + c)m = x1(e + c′)

= x1e + x1c
′ = x + c

′′
, c′, c

′′
= x1c

′ ∈ Re ∩ N,

yn
1 = y1 + d

′′
, d

′′ ∈ Re ∩ N.

Then, since x1, y1, e + x2, e + y2 ∈ R\N , we have

xn
1 y1 − x1y

n
1 = (x1 + c

′′
)y1 − x1(y1 + d

′′
)

= c
′′
y1 − x1d

′′ ∈ Re ∩ N ∩ C (by (d2, d4)), and
xn

2 y2 − x2y
n
2 = (e + x2)n(e + y2) − (e + x2)(e + y2)n ∈ C ∩ N (by (d2, d4)).

Therefore, it follows that

xny − xyn = xn
1y1 − x1y

n
1 + xn

2 y2 − x2y
n
2 ∈ C ∩ N.

Thus, we obtain the condition (i)′′. �

Lemma 2. Let R be a ring of Type (d) in Theorem 4 for an integer n > 1,
that is, R a ring which satisfies the conditions (d1)-(d4):

(d1) RE �⊂ C, E = {e, 0} ⊂ C and R = Re + R(1 − e).

(d2) N is an ideal of R containing R(1 − e).

(d3) The factor ring Re/(Re∩N) is a finite field GF (ps) such that ps − 1 is a
divisor of n − 1.

(d4) xny − xyn ∈ C for each x, y ∈ R\N .

Then, there hold the following (1) and (2).

(1) If s = 1 then N is non-commutative.

(2) If s > 1 and p is not a divisor of n − 1 then N is non-commutative.
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Proof (1) We assume that s = 1. The, since e ∈ Ce\(Ce ∩ N), we have

Re/(Re ∩ N) = GF (p) = Ce/(Ce ∩ N).

Hence, it follows that Re = Ce+(Re∩N), and so, R = C+N by (d1) and (d2).
Since Re �⊂ C, R is non-commutative. This implies that N is non-commutative.
(See Examples (3)).

(2) We assume that p is not a divisor of n−1 and N is commutative. Then,
one will easily see that N2 ⊂ C. Moreover, we have R(1 − e) ⊂ C by (d1) and
(d2). Let g + (Re ∩ N) be a generating element of the multiplicative (cyclic)
group of non-zero elements of Re/(Re ∩ N). Then Re is generated by g and
Re ∩N . Hence any subring of Re containing g and Re ∩N coincides with Re.
Let C0 be the center of Re, and N0 = Re ∩ N . Since

R = Re + R(1 − e) and R(1 − e) ⊂ C

we have C0 = Re∩C. First, we shall prove that N0 ∩C0 is an ideal of Re. We
set

A = {x ∈ Re | (N0 ∩ C0)x ⊂ N0 ∩C0}.
Obviously A is a subring of Re. Since N0(N0 ∩ C0) ⊂ N2

0 ⊂ C0, we have
N0 ⊂ A. Let x ∈ N0 ∩ C0. Then xg ∈ N0. We set

B = {y ∈ Re | y(xg) = (xg)y}.
Since N0 is commutative, we have N0 ⊂ B. Moreover, since x ∈ C0, we
have g ∈ B. Hence B = Re, and xg ∈ C0 ∩ N0. Therefore, it follows that
(N0 ∩C0)g ⊂ C0 ∩N0, and so, g ∈ A. Since N0 ⊂ A, we obtain A = Re. Thus,
N0 ∩ C0 is an ideal of Re. Now, since Re/N0

∼= GF (ps) and p is not a divisor
of n − 1, we have (n − 1)e ∈ Re\N0, and so, (n − 1)te ∈ E = {e, 0} for some
integer t > 1. Hence (n−1)te = e. Now, let v ∈ N0. Then v2 ∈ N2

0 ⊂ N0 ∩C0,
and e + v ∈ Re\(Re ∩ N). Hence

Re ∩ N ∩ C 
 (e + v)ne − (e + v)en = (n − 1)v (mod N0 ∩ C0).

Hence (n − 1)v = 0 (mod N0 ∩ C0), and so

v = (n − 1)t−1(n − 1)v = 0 (mod N0 ∩ C0).

Therefore, it follows that N0 ⊂ N0 ∩ C0 ⊂ C0. Since Re is generated by g
and N0, Re is generated by g and C0. Hence Re is commutative, and so, R is
commutative. This is a contradiction. Thus, we obtain our assertion (2). �

Now, by virtue of Theorem 4 and Lemma 2, we shall prove a commutativity
theorem in which the condition of R is weaker than that of R in Theorem 3.

Theorem 5. Suppose that there exists an integer n > 1 for which R satisfies
the following conditions:
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(i)′′ For each x, y ∈ R\N , xny − xyn ∈ N ∩ C.

(ii) For each a ∈ N∗ and e ∈ E, n![a, e] = 0 implies [a, e]k = 0 with some
positive integer k.

(iii) For each a, b ∈ N , there exists an integer m = m(a, b) > 1 such that
[a, b] = [a, b]m.

Then, R is normal periodic and N is commutative. Moreover,
(1) R is commutative, provided that n is in the following: {2, 3, 4, 5, 6/8,

9, 10, 11, 12/14/16, 17, 18/20, 21, 22, 23, 24/26, 27, 28/30, and integers t
such that t− 1 is not a multiple of p(ps − 1) for all positive prime divisors p of
t − 1 and all positive integers s > 1}.

(2) R is not always commutative, that is, there exists an example of R which
is a non-commutative ring, provided that n is in the following: {7, 13, 15, 19,
25, 29, and integers t′ such that t′−1 is a multiple of p(ps−1) for some positive
prime divisor p of t′ − 1 and some positive integer s > 1} (Examples (1) and
(4)).

Proof By Corollary 2, R is a normal periodic ring. Moreover, by Theorem 4,
N is an ideal of R. Let a, b ∈ N . Then, we have [a, b] ∈ N . Hence, it follows
from (iii) that

[a, b] = [a, b]m = [a, b]m
2

= · · · = [a, b]m
u

= 0

for some positive integers m > 1 and u, and so, ab = ba. Thus, N is commuta-
tive. By Examples (1) and (4), it suffices to prove the assertion (1). Let n be
an integer such that n − 1 is not a multiple of p(ps − 1) for all positive prime
divisors p of n − 1 and all positive integers s > 1. Now, we assume that R is
non-commutative. Then, since N is commutative, it is easily seen that R is a
ring of the Type (d) in Theorem 4. Hence

E = {e, 0} ⊂ C, Re �⊂ C, R = Re + R(1 − e), R(1 − e) ⊂ N,

and the factor ring Re/(Re ∩ N) is a finite field GF (ps) such that ps − 1 is a
divisor of n − 1. Hence n − 1 = q(ps − 1) for some integer q. If s = 1 then N
is non-commutative by Lemma 2(1). Hence we have s > 1. By the condition
on n, p is not a divisor of q. This implies that p is not a divisor of n − 1.
Therefore, it follows from Lemma 2(2) that N is non-commutative. This is a
contradiction. Thus, R is commutative. �

Examples 1. We shall present some examples of rings of Types (b), (c) and
(d) in Theorem 4. In what follows, {eij | 1 ≤ i, j ≤ 3} means the set of matrix
units in (GF (2))3, the complete matrix ring of order 3 over GF (2).

(1) Type (b) for any integer n > 1: R = GF (2) where N = {0}.
(2) Type (c) for any integer n > 2: R = GF (2) ⊕ GF (2) ⊕ N where

N = {e12x + e13y + e23z | x, y, z ∈ GF (2)}.
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(3) Type (d) for n = 5 (the case such that N is non-commutative): R =
{(e11 + e22 + e33)u + e12x + e13y + e23z | u, x, y, z ∈ GF (2)} where N =
{e12x + e13y + e23z | x, y, z ∈ GF (2)}.

(4) Type (d) for n = rp(ps − 1) + 1 with any positive prime integer p and
any positive integers r and s > 1 (the case such that N is commutative): We
shall present an example which is a non-commutative ring of Type (d) and
satisfies the condition (i)′′, (ii) and (iii) in Theorem 5 for n = rp(ps − 1) + 1
with the above p, r and s. Now, we set h = ps (s > 1), and consider the finite
field GF (h). It is well known that GF (h)\{0} is a multiplicative cyclic group
of order h − 1. Hence vh−1 = 1 for each v ∈ GF (h)\{0}. We set

T = GF (h)⊗GF (p) GF (h) (tensor product).

Then T is a right GF (h)-module by the multiplication

(a ⊗ b)v = a ⊗ (bv), v ∈ GF (h).

Moreover, T is a left GF (h)-module by the multiplication

v(a ⊗ b) = (va) ⊗ b, v ∈ GF (h).

Next, we consider the module

R = GF (h)× T ; (v, t) + (v′, t′) = (v + v′, t + t′).

Since T is a left-right-GF (h)-module, we can define a product in R by the
following

(v, t)(v′, t′) = (vv′, vt′ + tv′).

Then R is a non-commutative ring such that for any v ∈ GF (h)\GF (p) (�= ∅),
(v, 0)(1, 1⊗ 1) = (v, v ⊗ 1) �= (v, 1 ⊗ v) = (1, 1⊗ 1)(v, 0).

Obviously, (1, 0) is the identity of R. Now, we set N = {(0, t) | t ∈ T}. Then
N is a commutative ideal of R such that N2 = {(0, 0)}. If (v, t) ∈ R\N then
v �= 0 and

(v, t)p(h−1) = ((v, t)h−1)p = (vh−1, t′)p = (1, t′)p = (1, pt′) = (1, 0)

for some t′ ∈ N . Now, let r be a positive integer, and d = rp(h − 1). Let
x, y ∈ R\N . Then xd = (1, 0), xd+1 = x and yd+1 = y. Therefore, it follows
that

xny − xyn = xd+1y − xyd+1 = xy − xy = (0, 0) ∈ N ∩C.

Moreover, it is easily seen that N is the set of all nilpotent elements of R and
{(1, 0), (0, 0)} is the set E of all idempotent elements of R. Further, N∗ = N
and it is commutative. Therefore, one will see that R satisfies the conditions
(i)′′, (ii) and (iii) in Theorem 5 for n = d + 1 = rp(h − 1) + 1.
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Remark. We shall present an alternative proof of Theorem 3 in virtue of
Theorem 4. Let R be a ring which satisfies the conditions (i)′′, (ii)′ and (iii)
in Theorem 3. Obviously R satisfies the conditions (i)′′ and (ii) in Corollary
2. Hence R is normal and periodic. By Theorem 4, N is an ideal of R. Hence
by (iii), N is commutative and N2 ⊂ C. Now, we assume that R is non-
commutative. Then, it follows that R is a ring of Type (d) in Theorem 4 such
that

E = {e, 0} ⊂ C, R = Re + R(1 − e) and R(1 − e) ⊂ N ∩ C.

Let a ∈ Re ∩ N . Then e + a, e ∈ Re\(Re ∩ N). Hence

C 
 (e + a)ne − (e + a)en = (n − 1)a + c, c ∈ C.

This implies that (n − 1)a ∈ C, and so, (n − 1)[a, x] = 0 for all x ∈ Re. Then
n![a, x] = 0, so that [a, x]k = 0 for some positive integer k (by (ii)′). Hence
by [2, Theorem], Re is commutative, and so, R is commutative. This is a
contradiction. Thus, R is commutative.

In Example 1(4), we set n = 7 = 2(22−1)+1 and GF (22) = {0, g, g2, g3 =
1}. Then, one will easily see that 7![(0, 1 ⊗ 1), (g, 0)] = 0 and

0 �= (0, 1 ⊗ g − g ⊗ 1) = [(0, 1 ⊗ 1), (g, 0)]1+3n

Hence, this example does not satisfy (ii)′, while it satisfies (ii).
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