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Abstract

New criterion of solvability of boundary value problem for system of
ordinary differential equations with functional boundary conditions are
constructed by method of a priori estimates.

Introduction

In this paper we will apply our result in [1] to get a new effective criterion for
the existence and the uniqueness of the solutions of the following problem A:

xi(t) = filt,x1,...,xn) (i=1,...,n) (1)
Doi(z;) = pi(x1, .. 2n) (E=1,...,n) (2)

where, for each i € {1,...,n} f; :[a,b] x R™ — R™ satisfies the Carathéodory
conditions, ®g; - the linear nondecreasing continuous functional on C([a, b]) -
is concentrated on [as, b;] C [a,b] (i.e., the value of ®¢; depends only on func-
tions restricted to [a;, b;] and the segment can be degenerated a point) and ¢;
is a continuous functional on Cy, ([a, b]). In general ®¢;(1) =C; (i=1,...,n).
Without loss of generality we can suppose that ®o;(1) =1 (i =1,...,n) to
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simplify the notation.

We adopt the following notations:
[a,b]- a segment, —oc0 < a < a; < b < b < 400, (i = 1,...,n), R" -
n
n-dimensional real space with point z = (2;);_, normed by ||lz|| = 3 |a.
i=1
Cy([a, b]) is the spaces of continuous n-dimensional vector-valued functions
on [a, b] with the norm

n

|| = max{z zi(t)] sa<t< b}

C+([a, b]) = {x € C([a, b]) cx(t) > 0,a <t < b}.

L?([a,b]) is the space of integrable functions on [a,b] in p-power with the
norm

b 1
[ — [f lu(t)]P dt} : for 1<p<+oo
(a,b]) a

vrai max {|u(t)| :a <t <b} for p=+oo

LP([a,b],Ry) = {u € L*([a,b]) s u(t) > 0,a <t < b}

1 if 1 <gqand g=qp or ¢g=+00

1 1

Ha,0) = (q—o— 1) " (q—osmﬁ)“ if 1<g<qo< +00
q qm do

Let us consider the Problem A. By a solution we mean an absolutely contin-

uous n-dimensional vector-valued function on [a, b], which satisfies the equation

(1) for almost ¢ € [a, b] and fulfills the boundary conditions (2) of Problem A.

2. Results

Definition Let G = (g;)"
and

U = (¢3)i : Cp(a,b) — RY is a positively homogeneous nondecreasing oper-
ator. We say that

1 C([a,0]) = R, H = (hj)}t—y : la,b] — RP"

(G,H,\IJ)ENico([a,b];al,...,an,bl,...,bn) (3)

if the system of differential inequalities (we call the Problem B)

|23(t) — gi(t)ai(t)] < Zhu(t)lxj(t)l fora<t<b (i=1...,n) (4)
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with boundary conditions
min {|2;(t)] : a; <t < b} <Pi(lza(t)],. .., |zn®)]) (=1,...,n) (5)
has only one trivial solution.

The following Theorem 1 and Theorem 2 have been proved in [1] and we state
here for the convenience of hte readers.

Theorem 1. Suppose that the following inequalities hold:

|) (61)

n)

= J

[fi(t,xl, ey T) —gi(t)xi] sign x; < '21 hij(t)|x;] —|—w¢(t, Zl|
Ji =
ift €lag, b, zeR™ (i=1,..

Ty
]

[Filt,wa, ) —gult)a] sign s > — 32 hig(t)| it zl|xj|)
j= j=
ift €la,b), z€R™ (i=1,...,n)

(62)

itwr, ozl S vl leal) + i (3 Ja51)
j=1

forallz = (z;)j—q € Cn([a,b]) (i=1,...,n), (7)

where G = (gi)i=y, H = (hij)is—1, and ¥ = (Y;)i, satisfy the condition (3),
the functions w; : [a,b] x R™ — R are measurable with regard to the first and
nondecreasing to the second argument, r; : R, — Ry are nondecreasing and

1[0 1
lim — [ wi(t,p)dt=0= lim —r;(p) (i=1,...,n). (8)
p—oo p J, p—00 P
Then the problem (1), (2) has at least one solution.

Theorem 2. Suppose that the following inequalities hold:

{[fi(t; T11, - Tn)— fi(t, Ta1, - o, @on) | — gi(8) (w1 — le)} sign (x1; — T24) <
n
<D0 hi)|z1y — 224, if ai <t <b,wy = (1), 72 = (725)]-, €R"
i=1

(i=1,...,n)
(91)

{[fi(t; T11, .. T1n)—fi(t, T21, . . -,xQn]_gi(t)(xli - le)} sign (z1; — T2;) >
n
> =3 hij(t)|wry — 2ojl, if @i <t <byx1 = (215)]g, 12 = (295)f=; €R”
j=1

(t=1,...,n)
(92)
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and

|<,0¢($11, .- -,Jiln) - %’(le, .- -,$2n)| < ¢¢(|$11 - $12|, ceey |$1n - $2n|)
for all x1 = (1)1 1, 22 = (2;)i-1 € Cp([a,b]) (i=1,...,n) (10)

where G = (g:)7—y, H = (hij)};—1, and ¥ = (¥;)i_, satisfy the condition (3).
Then the Problem A has a unique solution.

The main results in our note are Theorems 3, 4, 5 and 6. For clarity, we
state our theorems first before sketching their proofs.

Theorem 3. Consider [a,b] x R"™ and for each i =1,...,n, let
filt,x1, ..., zp) sign x; < z“: |x3|—|—w1( ,zn:|xj|) ifa; <t<b
= ~ (114)
filt,x1, ..., zy,) sign x; > —zn:hij(t)|xj| —wi(t,zn: |xJ|) ifa<t<b;
= - (115)

and in Cp([a, b]),

|<pi(x1,...,xn)|gZmnxjnm([mm+7~¢(Z|xj|) (i=1,...,n) (12)
j=1 j=1

1 1
Pij 1 S
where h S L([ b),R4)’ Dij = 1, — i + 4 =1, Gi; < qo, Tij € Ry (’L,] =
1,...,m), w; : [a,b] x Ry — Ry and r; : Ry — Ry, satisfy the conditions of

Theorem 1, and the spectral radius of the matriz S = (si;)};_1,
a a .
sij = (b—a)wry + (b—a) (g, q)-hi; (,j=1,...,n)

iy = max {{Ihgll o Mhgllyz, boGd=1m)

15 less than 1. Then the Problem A has at least one solution.

Theorem 4. Consider [a,b] x R™ and for each i =1,...,n, let

[fi(t, T11y - - -yxln) — fl(t 21, .- .,Jjgn)] stgn (xu — x%) <
Z (O)|z1j — 224, ifa; <t < b (131)
filt,x

[fi(t,z11, -, 21p) — Ta1,. .., T2n)| sign (w1 — 2;) >

Z ()] — 2], ifa <t <b;  (13)
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and in Cy([a,b]),

n
[pi(z11, s 2in) = @il@21, - 20| < Zlﬂ'jﬂxlj — a2l (14)
J:
where h;; € LY and ri; € Ry (4,5 =1,...,n) satisfy the conditions of

[a,b],R4
Theorem 3. Then the Problem A has a unique solution.

The following theorem shows the existence of our problem.

Theorem 5. Let in [a,b] x R™ and for eachi=1,...,n

filt,x1, ..., 2p) sign x; < gi(t)|x¢|—|—z hij(t)|@;] + wi (2, Z |z;])

Jj=1 j=1
ifa; <t <b (151)

fi(taxla .. '7'1:11) SZgn i 2 gl(t)|xl|_zhlj(t)|xj| _wi(taz |xJ|)
j=1

j=1
ifa <t < (152)

and in Cp(la,b]),i=1,...,n

pier )l < 3wl +ri(Clayl) (G=1...m)  (16)

iy 1 1 .
where h’L] € L?E;,b],R+)’ DPij > 1;7] =+ a = 1;Q1J < q0, (Z)] = 1)"'7n);
gi € L([a,b]) (i=1,...,n), w; : [a,b] x Ry - Ry and r; : Ry — Ry, (i=
1,...,n) satisfy the conditions of Theorem 1, the continuous functionals
¥ij + CT([a,b]) — Ry are sublinear non-decreasing and the spectral radius

of the matrices
n

U = (W})Zj:l = (%‘Wj(l))iyj:l (171)

and

S = (si)1,1 = (B — )" (b= @)™ yupy (DRI +

1,j=1

+((b = @)™ Uqij, q0)h5} )

n

(172)

1,j=1

are less than 1 where

b by
i zmax{exp/|g¢(7')|d7',exp/|g¢(7')|d7'}, (i=1,...,n)
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b

his(t)exp [ Jou(s)lds|

a;

hi; = max{’

ds’

Pij }
Larbi

b;
o fsre [l
([a;.])
a
(i,j=1,...,n)
Then Problem A has a solution.
And now for the uniqueness, we get

Theorem 6. Consider [a,b] x R"™ and for each i =1,...,n, let

[.fi(t; 11,5 T1in)—fi(t, To1, . . -,Jizn)] sign (1, — T2;) < gi(t)| w1 — T2+

+ 3" hij ()| w1y — o], ifas <t < b, (181)
j=1
[.fi(t; 11y ey T1n)— fi(t, Ta1, - - -,JJQn)] sign (z1; — T2:) > gi(t)|x1s — T24|—
B Zhlﬂ(t”xlj - x2j|a ZfCL <t<b (182)
j=1

and in Cp(la,b]), i=1,...,n)
pi(@11, s 1n) = i@, -, man)| <Y i (Jwny — way)) (19)
j=1

where g;, hij and ;5 (i, = 1,...,n) satisfy the conditions in Theorem 5.
Then the Problem A has a unique solution.

The proofs of our Theorems are based on the followoing two lemmas.

| 1 1
Lemma 7 Let g;(t) = 0,h;; € L?f;7b]7R+), pij > 1, p_ + q_ =1, ¢;j < qo,
i i

(ij=1,...,n)
wl(|x1|a7|xﬂ|):ZT1JHxJHLL(I[?lbDa (z=1,,n) (20)
j=1

where each m;; € Ry (i, = 1,...,n) and the spectral radius of the matriz
S with elements defined in Theorem 3 is less than 1. Then (3) holds for
(G, H, ).

Proof Let the vector function x(t) = (x;(¢))"_; be the solution of the problem
(4), (5). We shall prove that this solution is zero. Choose t; € [a;, b;] such that

|lzi(t;)| = min {|z;(t)| 1 a; <t < b}, (i=1,...,n) (21)
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Then by intergrating relations (4) and using relations (5), (20) and Holder
inequality, we obtain

0] < Jolt |+Z]/hm (e <

Jlt

< |zi(t; |—|—Z’/hp” Ydr|”

/ (1)

and

(Ol <(b—a QOZTUH%HL%

+Zh / ’ / |2;(7)
Jj=1
By a lemma of Levin (see [2] lemma 4.7)

b t
[a/’t/|xj(7)

Consequently we obtain from (23) that
(B - S)(||$¢||Lgpayb]))?:1 <0 (25)

o 1%
Y] < (b -a) T ilgig, o)l (24)

qij dr

where the E-matrix unit S = (s;;)7';_; , is defined in Theorem 3. Since the
spectral radius of the matrix is less than 1, it follows from (25) that
||x1||LL(1[0 = 0 (i=1,...,n)

Therefore z; =0 (i=1,...,n), proving our Lemma 7. O

Lemma 8 Letg; : [a,b] = R, g; € L([a,b]) (i=1,...,n), hij € LP%([a,b],Ry),

! + ! =1, ¢q; < (1, 1,...,n)
—_ - — ) ;>\ -
P 4 qij = qo Jj=
Gillzal s lal) = > wig(layl) (i=1,....n) (26)
j=1
where each ;; : C*([a,b]) — Ry (i=1,...,n) are sublinear nondecreasing

continuous functionals and the spectral mdzus of the matrices ¥* and S defined
in (17) is less than 1. Then (3) holds for (G, H, ).



76 An effective criterion of solvability...

Proof Let the vector function z(t) = (z;(t))?_; be the solution of the Problem
B. We shall prove that this solution is zero.
Choose t; € [a;, b;] such that

|lzi(t:)| = min {|z;(t)] 1 a; <t < b}, (i=1,...,n) (27)

The by integrating (4) and using (5), Holder inequality and Lemma of Levin
(see [3], Lemma 1.7) we obtain

t

|z; (8)] < (exp/gi(T) sign (1 — ti)dT)|$¢(t¢)|+

+ il ’/hij(T) exp (/9(8) sign (s — T)ds)|xj(7')|d7", (i=1,...,n)
ti T (28)

t

H /hij(T) exp (/gl(s) sign (s — T)ds)|xj(7')|d7"

T

) -
([a,b])

P” q”

/|x )i dr w0
L a5

1
< (b—a) i l(g;, QO)||xj||L‘(7[2LYthrf

¢
< H| /hp” T) exp (p”/gl( ) sign (s — 7)ds)dr

Jro

<hi @i g

q17

Lao([a,b])
and

n
1 L £ .
leillgao < (0= a)Wylai(ts)| + (b a)™ Uaij, )b sl e | (i=1,...n)
j=1

(29)

Substituting the inequality (28) into boundary condition (5) and using (26),
(27) we have

n
|i(t:) Z j(lz5]) < lai(t)lvy; +

1
n ¢
pw _ 1117 qi
—|—Z ’/h ) exp ( p”/gl( ) sign(s T)ds)dT dr J) <
R .
< |x1 i |¢1J+Z b_a‘ qu QOWJ'( ) i ||'7;J||Lq0 By (Z: 1,...,7’1).

j=1



N. ANH TUAN 7

Since the spectral radius of the matrix U* is less than 1, we get

(st < (B =) (0= a)™ 0 9y0h5) . (losllog, )5y (30)

n
i,j=1 ([a,b))/ J=1

Consequently, from (29), (30) we obtain

n

)icy < Slllpm | )i (31)

(HxiHqu i

([ab])

Since spectral of radius of the matrix S is less than 1, we obtain

n
(HxiHL((I[?Lb]))izl < Oa

and our Lemma has been proved. ([

Proofs of our Theorems We now can sketch the proofs of our results. By
the above two Lemmas and using Theorem 1 and Theorem 2, we can get
Theorem 3 and Theorem 4 easily. Applying Theorem 3 and Theorem 4, we can
get Theorem 5 and Theorem 6 immediately as corollaries of Theorem 3 and
Theorem 4.
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