# BOUNDED $p$-VARIATION IN THE MEAN 

René Erlín Castillo

Department of Mathematics
Ohio University
Athens, OH 45701 , USA
e-mail: rcastill@math.ohiou.edu


#### Abstract

We introduce the notion of bounded $p$-variation in the sense of $L_{p^{-}}$ norm. We obtain a Riesz type result for functions of bounded p-variation, and study conditions under which the Nemytskii operator maps the space of bounded $p$-variation into itself.


## 1 Introduction

The circle group $T$ is defined as the quotient $\mathbb{R} / 2 \pi \mathbb{Z}$, where, as indicated by the notation, $2 \pi \mathbb{Z}$ is the group of integral multiples of $2 \pi$. There is a natural identification between functions on $T$ and $2 \pi$-periodic functions on $\mathbb{R}$, which allows an implicit introduction of notions such as continuity, differentiability, etc for functions on $T$. The Lebesgue measure on $T$ also can be defined by means of the preceding identification: a function $f$ is integrable on $T$ if the corresponding $2 \pi$-periodic function, which we denote again by $f$, is integrable on $[0,2 \pi]$, and we set

$$
\int_{T} f(t) d t=\int_{0}^{2 \pi} f(x) d x
$$

Let $f$ be a real-value function in $L_{1}$ on the circle group $T$. We define the corresponding interval function by $f(I)=f(b)-f(a)$, where $I$ denotes the interval $[a, b]$. Let $0=t_{0}<t_{1}<\cdots<t_{n}=2 \pi$ be a partition of $[0,2 \pi]$ and $I_{k x}=\left[x+t_{k-1}, x+t_{k}\right]$, if

$$
V_{m}(f, T)=\sup \left\{\int_{T} \sum_{k=1}^{n}\left|f\left(I_{k x}\right)\right| d x\right\}<\infty
$$

Key words: functions of bounded p-variation, Nemytskii operator, periodic function, Lebesgue measure, variation in the mean.
2000 AMS Mathematics Subject Classification: 26A45, 26 A16.
where the supremum is taken over all partition of $[0,2 \pi]$, then $f$ is said to be of variation in the mean (or bounded variation in $L_{1}$-norm).

We denote the class of all functions which are of bounded variation in the mean by $B V M$. This concept was introduce by Móricz and Siddiqi [1], who investigated the convergence in the mean of the partial sums of $S[f]$, the Fourier series of $f$.

If $f$ is of bounded variation $(f \in B V)$ with variation $V(f, T)$, then

$$
\int_{T} \sum_{k=1}^{n}\left|f\left(I_{k x}\right)\right| d x \leq 2 \pi V(f, T)
$$

and so it is clear that $B V \subset B V M$. A straightforward calculation shows that $B V M$ is a Banach space with norm

$$
\|f\|_{B V M}=\|f\|_{1}+V_{m}(f, T)
$$

In the present paper we introduce the concept of bounded $p$-variation in the mean in the sense of $L_{p}[0,2 \pi]$ norm (see Definition 2.1) and prove a characterization of the class $B V_{p} M$ in terms of this concept.

In 1910 in [2], F. Riesz defined the concept of bounded $p$-variation $(1 \leq$ $p<\infty)$ and proved that for $1<p<\infty$ this class coincides with the class of functions $f$, absolutely continuous with derivative $f^{\prime} \in L_{p}[a, b]$. Moreover, the $p$-variation of a function $f$ on $[a, b]$ is given by $\left\|f^{\prime}\right\|_{L p[a, b]}$, that is

$$
\begin{equation*}
V_{p}(f ;[a, b])=\left\|f^{\prime}\right\|_{L p[a, b]} \tag{1}
\end{equation*}
$$

In this paper we obtain an analogous result for the class $B V_{p} M$. More precisely we show that if $f \in B V_{p} M$ is such that $f^{\prime}$ is continuous on $[0,2 \pi]$, then $f^{\prime} \in L p[0,2 \pi]$ and

$$
V_{p}^{m}(f)=2 \pi\left\|f^{\prime}\right\|_{L p}^{p}
$$

(See theorem 2.5).

## 2 Bounded $p$-variation in the mean

Definition 2.1. let $f \in L_{p}[0,2 \pi]$ with $1<p<\infty$. Let $P: 0=t_{0}<t_{1}<$ $\cdots<t_{n}=2 \pi$ be a partition of $[0,2 \pi]$ if

$$
\begin{equation*}
V_{p}^{m}(f, T)=\sup \left\{\sum_{k=1}^{n} \int_{T} \frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x\right\}<\infty \tag{2}
\end{equation*}
$$

where the supremum is taken over all partitions $P$ of $[0,2 \pi]$, then $f$ is said to be of bounded $p$-variation in the mean.

We denote the class of all functions which are of bounded $p$-variation in the mean by $B V_{p} M$, that is

$$
\begin{equation*}
B V_{p} M=\left\{f \in L_{p}[0,2 \pi]: V_{p}^{m}(f, T)<\infty\right\} \tag{3}
\end{equation*}
$$

Remark 2.1. For $1<p<\infty$, it is not hard to prove that

$$
\begin{equation*}
\|f\|_{B V_{p} M}=\|f\|_{L_{p}}+\left\{V_{p}^{m}(f, T)\right\}^{1 / p} \tag{4}
\end{equation*}
$$

defines a norm on $B V_{p} M$.
Proposition 2.1. Let $f$ and $g$ be two functions in $B V_{p} M$, then

$$
\begin{aligned}
i) & f+g \in B V_{p} M \\
i i) & k f \in B V_{p} M, \quad \text { for any } \quad k \in \mathbb{R} .
\end{aligned}
$$

In order words, $B V_{p} M$ is a vector space.
Moreover

$$
V_{p}^{m}(f+g, T) \leq 2^{p-1}\left[V_{p}^{m}(f, T)+V_{p}^{m}(g, T)\right]
$$

and

$$
V_{p}^{m}(k f, T)=|k|^{p} V_{p}^{m}(f, T)
$$

Theorem 2.1. For $1<p<\infty, B V_{p} M \subset B V M$ and

$$
\begin{equation*}
V_{m}(f, T) \leq(2 \pi)^{2-\frac{2}{p}}\left[V_{p}^{m}(f, T)\right]^{\frac{1}{p}} \tag{5}
\end{equation*}
$$

Proof Let $P: 0=t_{0}<t_{1}<\cdots<t_{n}=2 \pi$ be a partition of [0, 2 $\pi$ ] and consider $f \in B V_{p} M$, then by Hölder's inequality we obtain

$$
\begin{align*}
& \sum_{k=1}^{n} \int_{0}^{2 \pi}\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right| d x \\
& \quad \leq\left(\sum_{k=1}^{n} \int_{0}^{2 \pi}\left|t_{k}-t_{k-1}\right| d x\right)^{\frac{1}{q}}\left(\sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x\right)^{\frac{1}{p}} \\
& \quad \leq(2 \pi)^{2-\frac{2}{p}}\left[V_{p}^{m}(f, T)\right]^{\frac{1}{p}} \tag{6}
\end{align*}
$$

Thus $f \in B V M$, therefore $B V_{p} M \subset B V M$. By (6) we obtain (5). This completes the proof of Theorem 2.1.

Theorem 2.2. $\operatorname{Lip}[0,2 \pi] \subset B V_{p} M$, where $\operatorname{Lip}[0,2 \pi]$ denotes the class of all functions which are Lipschitz on $[0,2 \pi]$.

Proof Let $f \in \operatorname{Lip}[0,2 \pi]$, then there exists a positive constant $M>0$ such that

$$
|f(x)-f(y)| \leq M|x-y|
$$

for all $x, y \in[0,2 \pi]$.
Let $P: 0=t_{0}<t_{1}<\cdots<t_{n}=2 \pi$ be a partition of $[0,2 \pi]$, thus

$$
\begin{equation*}
\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right| \leq M\left|t_{k}-t_{k-1}\right| \tag{7}
\end{equation*}
$$

from (7) we have

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x \leq 4 \pi M^{p} \tag{8}
\end{equation*}
$$

by (8) we get $f \in B V_{p} M$. This completes the proof of the Theorem 2.2.

Remark 2.2 By Theorem 2.1 and 2.2, we can observe the following embedding:

$$
\operatorname{Lip}[0,2 \pi] \subset B V_{p} M \subset B V M
$$

Theorem 2.3. Let $f \in \operatorname{Lip}[0,2 \pi]$ and $g \in B V_{p} M$. Then $f \circ g \in B V_{p} M$.
Proof Let $P: 0=t_{0}<t_{1}<\cdots<t_{n}=2 \pi$ be a partition of $[0,2 \pi]$ then

$$
\begin{aligned}
& \sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|f\left(g\left(x+t_{k}\right)\right)-f\left(g\left(x+t_{k-1}\right)\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x \\
& \leq M^{p} \sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|g\left(x+t_{k}\right)-g\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|f\left(g\left(x+t_{k}\right)\right)-f\left(g\left(x+t_{k-1}\right)\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x \leq M^{p} V_{p}^{m}(g, T) \tag{9}
\end{equation*}
$$

for all partitions of $[0,2 \pi]$. By (9) we obtain

$$
V_{p}^{m}(f \circ g, T) \leq M^{p} V_{p}^{m}(g, T)
$$

Hence $f \circ g \in B V_{p} M$.
Theorem 2.4. $B V_{p} M$, equipped with the norm defined in Remark 2.1. is a Banach space.

Proof Let $\left\{f_{n}\right\}_{n}$ be a Cauchy sequence in $B V_{p} M$. Then for any $\epsilon>0$ there exists a positive integer no such that

$$
\begin{equation*}
\left\|f_{n}-f_{m}\right\|_{B V_{p} M}<\epsilon \quad \text { whenever } \quad n, m \geq n_{0} \tag{10}
\end{equation*}
$$

From (3) and (9) we have

$$
\left\|f_{n}-f_{m}\right\|_{L_{p}} \leq\left\|f_{n}-f_{m}\right\|_{B V_{p} M}<\epsilon
$$

Whenever $n, m \geq n_{0}$, this implies that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is Cauchy sequence in $L p$ since this space is complete, thus $\lim _{n \rightarrow \infty} f_{n}$ exits, call it $f$. By Fatou's lemma and (3) we obtain

$$
\left\|f_{n}-f_{m}\right\|_{B V_{p} M} \leq \liminf _{m \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{L_{p}}+\liminf _{m \rightarrow \infty}\left\{V_{p}^{m}\left(f_{n}-f_{m}, T\right)\right\}^{1 / p}<\epsilon
$$

whenever $n \geq n_{0}$.
Finally we need to prove that $f \in B V_{p} M$. In other to do that we invoke Fatou's lemma again.

$$
\|f\|_{B V_{p} M} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{L_{p}}+\liminf \left\{V_{p}^{m}\left(f_{n}, T\right)\right\}^{1 / p}<\infty
$$

Thus $f \in B V_{p} M$.
This completes the proof of Theorem 2.4
Theorem 2.5. Let $f \in B V_{p} M$ such that $f^{\prime}$ is continuous on $[0,2 \pi]$, then $f^{\prime} \in L_{p}[0,2 \pi]$ and

$$
\begin{equation*}
V_{m}^{p}(f)=2 \pi\left\|f^{\prime}\right\|_{L_{p}}^{p} \tag{11}
\end{equation*}
$$

Proof Let $P: 0=t_{0}<t_{1}<\ldots<t_{n}=2 \pi$ be a partition of [0,2 $2 \pi$. By the Mean value theorem there exists $\epsilon_{k} \in\left(x+t_{k-1}, x+t_{k}\right)$ for any $x \in[0,2 \pi]$ such that for $1<p<\infty$

$$
\begin{equation*}
\frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}}=\left|f^{\prime}\left(\epsilon_{k}\right)\right|^{p}\left(t_{k}-t_{k-1}\right) \tag{12}
\end{equation*}
$$

by (12) we obtain

$$
\begin{equation*}
2 \pi \lim _{\|p\| \rightarrow 0} \sum_{k=1}^{n}\left|f^{\prime}\left(\epsilon_{k}\right)\right|^{p}\left(t_{k}-t_{k-1}\right) \leq \sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x \tag{13}
\end{equation*}
$$

from (13) we have

$$
\begin{equation*}
2 \pi \int_{0}^{2 \pi}\left|f^{\prime}(x)\right|^{p} d x \leq V_{p}^{m}(f) \tag{14}
\end{equation*}
$$

Thus (14) implies that $f^{\prime} \in L_{p}[0,2 \pi]$ and also we have

$$
\begin{equation*}
2 \pi\left\|f^{\prime}\right\|_{L_{p}}^{p} \leq V_{p}^{m}(f) \tag{15}
\end{equation*}
$$

on the other hand

$$
\begin{equation*}
f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)=\int_{x+t_{k-1}}^{x+t_{k-1}} f^{\prime}(t) d t \tag{16}
\end{equation*}
$$

by Hölder's inequality we obtain

$$
\left|\int_{x+t_{k-1}}^{x+t_{k-1}} f^{\prime}(t) d t\right|^{p} \leq\left(\int_{x+t_{k-1}}^{x+t_{k-1}}\left|f^{\prime}(t)\right|^{p} d t\right)\left|t_{k}-t_{k-1}\right|^{p-1}
$$

hence by (16) we get

$$
\frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} \leq \int_{x+t_{k-1}}^{x+t_{k-1}}\left|f^{\prime}(t)\right|, d t
$$

then

$$
\begin{equation*}
\sum_{k=1}^{n} \int_{0}^{2 \pi} \frac{\left|f\left(x+t_{k}\right)-f\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} \leq 2 \pi \int_{0}^{2 \pi}\left|f^{\prime}(x)\right|^{p} d x \tag{17}
\end{equation*}
$$

From (17) we finally have

$$
\begin{equation*}
V_{p}^{m}(f) \leq 2 \pi\left\|f^{\prime}\right\|_{L_{p}}^{p} \tag{18}
\end{equation*}
$$

Combining (15) and (16) we obtain (11)

## 3 Substitution Operators

Let $\Omega \subset \mathbb{R}$ be a bounded open set. A function $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is said to satisfy the Carathéodory conditions if
i) For every $t \in \mathbb{R}$, the function $f(\cdot, t): \Omega \rightarrow \mathbb{R}$ is Lebesgue measurable
ii) For a.e. $\quad x \in \Omega$, the fuction $f(x, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

Set

$$
\mathcal{M}=\{\varphi: \Omega \rightarrow \mathbb{R}: \varphi \quad \text { is Lebesgue measurable }\}
$$

for each $\varphi \in \mathcal{M}$ define the operator

$$
\left(N_{f} \varphi\right)(t)=f(t, \varphi(t))
$$

The operator $N_{f}$ is said to be the substitution or Nemytskii operator generated by the function $f$.
The purpose of this section is to present one condition under which the operator $N_{f}$ maps $B V_{p} M$ into itself.

Lemma 3.1. $N_{f}: B V_{p} M \rightarrow B V_{p} M$ if there exits a constant $L>0$ such that $\mid f(s, \varphi(s)-f(t, \varphi(t))|\leq L| \varphi(s)-\varphi(t) \mid$ for every $\varphi \in \mathcal{M}$.

Proof Let $\varphi \in B V_{p} M$, then

$$
\begin{aligned}
& \sup \left\{\sum_{k=1}^{n} \int_{\Gamma} \frac{\left|\left(N_{f} \varphi\right)\left(x+t_{k}\right)-\left(N_{f} \varphi\right)\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x\right\} \\
= & \sup \left\{\sum_{k=1}^{n} \int_{\Gamma} \frac{\left|f\left(x+t_{k}, \varphi\left(x+t_{k}\right)\right)-f\left(x+t_{k-1}, \varphi\left(x+t_{k-1}\right)\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x\right\} \\
\leq & L \sup \left\{\sum_{k=1}^{n} \int_{\Gamma} \frac{\left|\varphi\left(x+t_{k}\right)-\varphi\left(x+t_{k-1}\right)\right|^{p}}{\left|t_{k}-t_{k-1}\right|^{p-1}} d x\right\}<\infty .
\end{aligned}
$$

Thus $N_{f} \in B V_{p} M$.

## References

[1] F. Móricz and A. H. Siddiqi, A quatified version of the Dirichlet-Jordan test in $L_{1}$-norm, Rend. Circ. Mat. Palermo (2), 45, (1996), 19-24.
[2] Riesz, F., Untersuchungen über system intergrierbarer function, Mathematische Annalen 69, (1910), 1449-1497.

