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Abstract

For S-acts sM and Us, let Ann,, (U) = {(m,m') € M x M|lu@m =
u®m’ for any u € U}. Then Ug is called s M-faithful if Ann,, (U) is
the identity relation on M. If Us is gM-faithful for any S-act sM,
then we call Us completely faithful. The present paper discusses proer-
ties of g M-faithful(completely faithful) S-acts. The structures of gM-
faithful(completely faithful) right S-acts are characterized. Some related
results are also obtained.

1 Preliminaries

In this paper, we shall always let semigroup S mean a monoid and all S-acts
be unitary. We denote the category of all right (left) S-acts by Act — S (S —
Act). Let Ag be a right S-act. An equivalence relation p on A is called an
S-congruence or a congruence on Ag if for any a,a’ € A, (a,a’) € p implies
(as,a’s) € p for any s € S.

If M is a left S-act, then the cartesian product M x M with the operation
s (m,m') = (sm,sm’) for all s € S, m,m’ € M is a left S-act. Let f :
sM —gN be an S-homomorphism. We denote by Imf = {f(m)lm € M}
and kerf = {(m,m') € M x M|f(m) = f(m')}. Tt is clear that (f, f) :
s(M x M) — 4N x N) with (f, /)((m,m")) := (f(m), f(m')), m,m’ € M, is
an S-homomorphism, and kerf is a congruence on gM.

Let X be a set. Denote by Ax = {(z,z)|r € X} and Vx = X x X. For a
subact sN of M, p, = (N x N) N Ay is clearly a congruence on g M which
is called the Rees congruence and we denote the quotient act M/p, by M/N.
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Let Ug, Mg be right S-acts. As in module theory, the trace and the reject
of U in M, respectively, are defined by

Tr,, (U)=U{Imf|f € Homg,(U, M)}

and
Rej,, (U) = N{ker f|f € Hom (M, U)}.

We say that Ug generates (cogenerates) Mg in case Tr,,(U) = M (Rej,, (U) =
Apr). Ug is called a generator (cogenerator) of Act — S in case Tr,, (U) =
M (Rej,,(U) = Ap) for all Mg € Act — S. Denoted by rs(M) := {(s,s') €
Sx S| ms=ms, ¥Ym € M} the annihilator of right S-act Mg. It is clear that
rg(M) is a congruence on Msg.

Let (Aa)acr be a family of right S-acts. Then, the coproduct [[,; Ao of
(Aw)aer is the disjoint union of (A4 )aer-

We call Ag a faithful right S-act if for any s, ¢ € S the equality as = at for
all a € A implies s = ¢. Obviously, Ag is faithful if and only if rg(4) = Ag. Ag
is called a strongly faithful right S-act if for any s, ¢t € S the equality as = at
for some a € A implies s = t.

For other definitions and terminologies not mentioned in this paper, the
reader is refered to [3].

2 Faithfulness

Definition 2.1. Let Us and gM be S-acts, U @ M the tensor product of U
and M. Then

Ann,, (U)={(m,m')e M x M |u@m=u®@m', Vue U}

is called the annihilator in M of U. CallUg to be s M -faithful in case Ann,, (U) =
ANY S

It is obvious that Ann,(U) = rg(U) for any right S-act Ug.

Proposition 2.2. Let Us and sM be S-acts. Then Ann,,(U) is the unique
smallest congruence X\ on sM such that U is M /\-faithful.

Proof Suppose that A = Ann,, (U) = {(m1,m2) € M x M | u® my =
u® mz, Yu € U}. Clearly, A is a congruence on gM.

Assume that (mq,me) € AnnM/A(U). Then, we have u ® M1 = u ® Mo
for all w € U. Thus, there exist x1,x9, -+, 2y, € U, Go,- - ,Gn € M/,
S1,t1,+ , 8n,tn € S such that

u = Ii81,
T1t1 = T9S2, S1M1 = t1Y2,

Tty = u, SnUn = tpMma.
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This implies that (sym1,t1y2), -+, (Sn¥n,tnmz) € A, and then, for any u € U,
UuR@mp = 2151 Q0MmM1 =21 Qs1m1 =1 Q tiyes = T1t1 Q Y2
= x252®92::xn5n®yn:xn®5nyn

= Xp®tumo = Tpt, @Mma = u® ma

which shows that (my,m2) € A and m; = ma. Therefore Ann,, , (U) = Az

Let now o be a congruence on s M with Ann,, _(U) = Apr/e. Assume that
(m,m’) € X\. Then u®@m =u®m’ forallu e U. Let n: M — M/o be the
canonical epimorphism. Then 1y @ n: U M — U ® M/o is surjective and
u® (mo)=1y@n)(ue@m)=(1lydn)(u®@m') =u® (mo) for all u € U.
Thus, (mo,m'c) € Ann,,, (U) = Apyje and mo = m'o, ie., (m,m’) € o.
Hence A Co. O

M/o

Proposition 2.3. Let Us, sM and gN be S-acts and let f € Hom (M, N).
Then

(a) (f, /)(Ann,, (U)) C Ann, (U). In particular, Ann,, (U) is stable under
endomorphisms of sM.

(b) 1If f is epic and Kerf C Ann,,(U), then (f, f)(Ann,,(U)) = Ann (U).

Proof (a) Assume that (m,m’) € Ann,,(U) and v € U. Since u ® m =
u® m’ we have

u® f(m) = (ly @ fluwm) = (ly @ f)lu@m’) =u® f(m).

Thus (f(m), f(m")) € Ann, (U) and therefore, (f, f)(Ann,, (U)) C Ann,, (U).
(b) Tt will suffice to prove that Ann, (U) C (f, f)(Ann,, (U)). Let ¢ :
M — M/Kerf be the canonical epimorphism. Because f is epic there exists
a unique isomorphism f: M/Kerf — N such that f = f¢.
Assume that (m,m’) € Ann,, .. . (U) and u € U. Since u @ m = u®@ m/,

there exist x1,29, +,xn € U, §a, -+ ,Gn € M/Kerf, si1,t1, -+, 8n,tn € S
such that
u = Ii81,

T1t1 = T282, S1m =112,

Tntn = U,  Spln = tam.
Thus (s1m, t1y2), =+, (Sn¥n,tnm’) € Kerf C Ann,,(U) and so

Uu@m = T151QMmM=21@s1m =121 Qt1Y2 = T1t1 Q Y2
= x252®92::xn5n®yn:xn®5nyn

Tp @ tpMa = Tntn @m =u@m’.
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Therefore, (m,m’) € Ann,, (U). Hence (m,m’) = (¢, ¢)((m,m')) € (¢, ¢)(Ann,, (U)),

e, Ann,, .. (U) C(¢,¢)(Ann,, (U)).
Now, for any (n,n’) € Ann,, (U), there exist unique m,m’ € M/Kerf such

that n = f(m) and n’ = f(m’). Noting that f is an isomorphism, we know
that 1y ® f is a bijection. Since (1y ® f)(u®@m) = u® f(M) =u@n =u®n’ =
u® f(m') = 1y @ f)(u ®m'), we have u ® m = u ® m’ for all u € U which
shows that (m,m’) € Ann,, .. (U) C (¢, $)(Ann,, (U)). Hence

(n,n) = (£, H(m,m") € (£, )(Ann,, .., (U)) € (f, H)(¢:6)(Ann,, (U)))
= (fo. fo)(Ann,, (U)) = (, f)(Ann,, (U)).

We complete the proof. [

Lemma 2.4. Let (Aq)acr be a family of right S-acts, (Bg)ges @ family of left
S-acts and a ® b,c @ d in ([[,er Aa) ®s (Iges Bs)- Thena®@b=c®d in
(Huer Aa) ®s (I ges Bp) if and only if a® b= c®d in Aq ®s Bg for some
ael,Bel.

Proof sufficiency is obvious.
Necessity. Suppose a ®b=c®d in ([[,c; Aa) ®s ([[ses Bs)- Then there

exist a1, a2, -+ ,0ap € HaEIAo“ an e ;bn € ng] Bﬂ; UL, V1, Un, Up € Sa
such that
a = a1Uuq,
a1v1 = aguz, U1b=v1by,
AnVp = €,  Upb, = v,d.

Since a € [[,c;Aa and b € HﬂeJ Bg, there uniquely exist o« € I,3 € J
such that a € A, and b € Bg. Now, aju1 = a € A, implies that a1 € A,.
Otherwise, if a1 € Ay with a # o, then aju; € Ay, N Ay which contradicts
that AoN Ay = 0. So asus = a1v1 € A, and as € A,. Repeating this process,
we conclude ag, -+, an, ¢ € Ay. Similarly, we have b, b, ---, by, d € Bg.
This shows that a ® b=c®d in A, ®g Bg. O

Proposition 2.5. Let I, J be index sets, U, U; € Act — S, j € J and M,
M; € S— Act, i€ I. Then

(a) Ann]_[iy M, (U) = Hie[ AnnMi(U)'

(b) Ann,, (I;es Us) = MNjes Anny, (Uj)-

Proof (a) It is obvious that [[;c; Ann,, (U) C Ann, IMi(U). Also,
Y(m,m’) € Anny (U), Yu € U, we have u®m =u®m' in U®(H1€I i)

From Lemma 2.4 it follows that u® m = u® m’ in U ® M; for some ¢ € I, and
so (m,m') € Ann,, (U) C [l;c; Ann,, (U). This shows (a).
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b) Clearly, (.., Ann,, (U;) C Ann - U;). Conversely, if (m,m') €
jeJ M\YJ M _JGJ J

Anny, (I1;e,U;) and w € U; C [1;c,U;, j € J, then u®@m = u®@m’ in
(I;e,U;) ® M. By Lemma 2.4, we get u®m = u®m' in U; ® M. Thus,
Anny, (I1;e5U;j) € Njes Ann,, (Uj). This shows (b). [

It is well known that each S-act has a unique indecomposable decomposition
(see [4] or [2]). Now, by our Lemma 2.4, we have the following lemma.

Lemma 2.6. Let Ag and gB be S-acts and a®b = o’ Qb in AQgB. Thena,ad
and b,b’ are in the same indecomposable subacts of As and sB, respectively.

Theorem 2.7. If I is an ideal of S and M € S — Act, then
Ann,, (S/I) C (IM x IM)U A .
Moreover, Ann,,(S/I) = (IM x IM)UA if and only if M is indecomposable.
Proof If we define
S/I x M/IM —s M/IM, (5,1n)— s,
then M/IM is an S/I-act and s(M/IM) =g/(M/IM). Let
¢: S/ T®s M — M/IM, 3§ mr— sm.

Then ¢ is well-defined. In fact, suppose that § @ m = & @ m’ for some 35, § €
S/I, m, m'" € M. Then there exist T1,ZTo, - ,Zn € S/I, Yo, -+ ,yn € M,
r1,t1, ,Tn,tn €S such that

S - .’El'f’l,

Tity = Taore, T1M = 11Y2,

= ) _ ’

Tptn = S, ThYn =1tym .

Thus
SM = SM=Tirim = T1rm = T1t1Y2

- ~ = ~ I~ o
= T1hgo =+ =Tptym =5m = s'm/,

i.e., ¢ is well-defined.

If (m1,me) € Annp(S/I), then 5 ® m; = § ® my and smy = smp for all
s € S, in particular, (my,ma) € (IM x IM) U Ap. Thus, Ann,, (S/I) C
(IM X IM) U A

Suppose that Ann,, (S/I) = (IM x IM) U Aps. Then, for any (my,ms) €
M x M and a € I, we have (amy, amz) € Ann,, (S/I), in particular, 1 ®@am; =
1 ® amy. By Lemma 2.6, am;, ams is in the same indecomposable subact of
M. This implies that mq, ms is in the same indecomposable subact. Hence, M
is indecomposable.



56 Annihilator of Tensor Product of S-acts

Conversely, suppose M is indecomposable. It will suffice to prove that
(IM xIM) C Ann,, (S/I). For any (a1mq, asmsg) € IM x IM, where ay,as €
I, mi,me € M, and for any § € S/I, we have

S®aim; =38a1 ®mq =35a; ®myp =0 my,

S®asmo = 8as @ Mo = S @ Mo = 0 @ ma.

Since M is indecomposable, there exist yo, -+ ,y, € M, r1,t1,- -+ ,"n,ty € S
such that

rimy = tiye,

roy2 = lays,

TnYn = tpMma.

It follows from this that 0 ® m; = 0 ® mg, i.e., §® agm; = § ® azmso. Hence,
(axmi,aams) € Ann,,(S/I). We complete the proof. O

Theorem 2.8. Let Us and sM be S-acts and M = [[,c; Ma the indecompos-
able decomposition of M. Then the following statements are equivalent:

(a) Ug is sM-faithful.
(b) Yae I, U is M,-faithful.

(¢) For any sN € S-Act and every homomorphism f : sM —gN, if
1y ® f is monic then f is monic.

(d) For any sN € S-Act and every homomorphism f : sN —g M,
Ann,(U) C Kerf.

Proof (a)& (b). By Proposition 2.5, we have Ann,, (U) = [[,c; Ann,,_ (U).
Thus, ATLTLM(U) = Ay = H Ay, = ATLTI,M& (U) = AM(X(VO[ S I) —
Va € 1, U is M, -faithful.

(a)=(c). Suppose that Ann,, (U) = Ay, f € Homg(M,N) and 1y @ f is
monic. If (my,mg) € Kerf, then f(m1) = f(mg) € N and we have u® f(m1) =
u® f(mg) for allu € U, ie., 1y @ f)(u®@mi) = (1y ® f)(u®ms). This implies
u®@m; = u®me(Vu € U). Thus (my1,me) € Ann,,(U) = Ap and hence
my = ma. So, Kerf = Ay, i.e., f is monic.

(¢)=(a). Assume (c¢). If (m1,m2) € Ann,, (U), then u®mi = u@ma(Yu €
U). Let f: M — M/A(my, m2) be canonical epimorphism where A(mq, ms2)
is a congruence on gM generated by (m1, ms). Then

acl

lyf: UM —UQM/AX(mi,m2), u@mr—u® f(m)=u®m
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is monic. In fact, for any u®m, v @m' € U® M, if u® m = v’ ® m/, then

there exist x1,z9, - ,Xn € U, §a, -+ ,Jn € M/ N1, ma) 81,61, , Spytn €S
such that
u = I8,
T1t1 = T2S82, S1m = 1Yo,
Tptn = U, Splin = tam/.
Thus, we get (s1m,t1y2), -+, (Sn¥n, tnm’) € A(m1, m2). If s1m = t1ys, then

URM=x151 @M =21 Q@ s1m =71 Q t1Y2.
If sym # t1ys, then there exist p1,--- ,pr € S, such that
sim = pic1, pada =p3cs, -, Pr—1dk—1 = PkCk,
p1d1 = pac2, -, Prk—1dg—1 = PrCk, Prdr = t1Y2,
where (¢;,d;) € {(m1,m2), (m2,m1)}, j=1,--- .,k So

u®m = x1510m=x1Q®s1m =21 ®piCy
= T1p1®c1 = T1p1 ®dy = 21 @ p1dy
=21 @prdr = 21 @ 1Yo,

By repeating the above arguments, we have

u@m = x1Qtiys = T1l1 ® Y2 = T252 ® Yo
T2 @ SolYo = T2 ® toys = -+ -
= xn®tnm/:xntn®m/ :'U//®m/-

Therefore 1y ® f is monic. Now, by (c), f is monic and so A(m1,ms) = Kerf =
Ay, e, mp = mg, whence Ann,, (U) = Ay

(a)=(d). Suppose that Ann,, (U) = Apy. For any f € Hom (N, M),
(n1,n2) € Ann,, (U), we have u ® n; = u ® ngy for all uw € U. Thus

u® f(ni1) = (1o @ flluen) = (lu @ f)(u@n2) =u® f(n2)

for all w € U. This means (f(n1), f(n2)) € Ann,,(U) = Ay and f(ny) =
f(n2). Hence (n1,n2) € Kerf. This shows that Ann, (U) C Kerf.

(d)=(a). Assume (d). If we take f =idpy; : M — M, then Ann,, (U) <
Kerf = A and the result follows. [
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3 Completely faithfulness

Definition 3.1. An S-act Ug is said to be completely faithful in case Ann,, (U) =
Ny for every left S-act M.

For example, since Sg is a generator in Act-S, Sg is completely faithful (see
Proposition 3.7).

Theorem 3.2. For an S-act Ug, the following statements are equivalent:
(a) Us is completely faithful.
(b) For every indecomposable left S-act T, U is gT-faithful.

(¢) For any sN, sM € S-Act and every homomorphism f: sM —gN, if
1y ® f is monic, then f is monic.

(d) For any sN, sM € S-Act and every homomorphism f: sM —gN,
Ann,, (U) C ker f.

Proof The proof is similar to the one of Theorem 2.8 [

Let Z = {z} be a set of one-element. Then Z is an S-act with only one
way. Such an S-act is called the zero S-act.

Proposition 3.3. Let Z be the zero right S-act and M a left S-act. Then M
is indecomposable S-act if and only if Ann,,(Z) = V.

Proof It is obvious that M is indecomposable <= |Z @ M| = 1 <=
ATLTLM(Z)ZMXMZVM. O

Theorem 3.4. The following statements are equivalent:
(a) Each right S-act is completely faithful.
(b) The zero right S-act is completely faithful.
(c) S=A{1}.

Proof (a)= (b) is clear.

(b)=(c). Let Z be the zero right S-act. Since ¢S = S1 is indecomposable,
we have, by Proposition 3.3, Ann,(Z) = Vs. Now, Ann,(Z) = Ag implies
S ={1}.

(c)=(a). Suppose that S = {1}. Then, for any sM € S—Act, Ug € Act—S,
we have U® M = U x M. Hence, Ann,, (U) = A, ie., U is gM-faithful. O

The proof of the following proposition is straightforward.

Proposition 3.5. Let S and T be monoids, and let As, sBr be acts. Then
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(a) If As and By are completely faithful, then (AQB)r is completely faithful.

(b) If (A® B)r is completely faithful, then Br is completely faithful.
Proposition 3.6. Let Ug, Vs, and sM be S-acts. If Ug generates Vs, then
Ann,,(U) C Ann,, (V).

Proof Forany (m1,ma) € Ann,,(U) and x € V, there exist f € Hom (U, V)
and u € U such that = f(u) since Tr, (U) = U{Imf|f € Homg,(U,V)} =V.
Sox®@my = flu)@mi = (fRly)(u@m) = (f&lym)(u®@ms) = flu)@mg =
x ® mg, and thus (m1, mg) € Ann,, (V). Hence Ann,, (U) C Ann,, (V). O
Proposition 3.7. FEvery generator in Act — S is completely faithful.

Proof Suppose that Gg is a generator in Act — S. Since Tr (G) = 5,
there exist f € Hom (G, S) and = € G such that f(z) = 1. Let M be an
arbitrary left S-act and (mq, ma) € Ann,,(G). Then £ ® m; = x ® ma. So

lom; = f(z)@my = (fRly)(z@my) = (fOly)(@@me) = f(z)®@me = 1@ms
which shows that m; = mg. Hence Ann,, (G) = Apy. O

Theorem 3.8. Let T and S be monoids, 7Ug the S — T-biact, sM € S-Act
and 7C € T-Act. Let U* = Hom.(U,C) € S — Act. Then

(a) Ann, (U) C Rej,, (U").
(b) If rC cogenerates U @ M, then Ann,,(U) = Rej,, (U*).

(¢) If 7C is a cogenerator, then Ug is completely faithful if and only if sU*
is a cogenerator in S — Act.

Proof By [3] Proposition 2.5.19,
¢: Homy(M,Hom,(U,C)) — Hom, (U ®s M, C)

defined by
oMz @m) = (v(m))(x)

for any x € U, m € M and v € Hom (M, Hom, (U, C)), is a bijection.

(a) For any v € Homg (M,U*), (mi,me) € Ann,, (U) and z € U, we
have © ® m; = = ® mg, and then ¢(v)(z ® m1) = ¢(v)(z ® my). Thus,
(v(m1))(z) = (y(m2))(x) for all x € U which shows that y(m1) = v(mz), that
is, (my, mg) € Kery. Therefore, Ann,,(U) C Rej,, (U*).

(b) It will suffice to prove that Rej,,(U*) C Ann,, (U). For any h €
Hom, (U®g M, C), there exists a unique v € Hom (M, U™*) such that ¢(v) =
h. Also, for any (m,m') € Rej,,(U*) and u € U, we have

hw@m) = ¢()(u®@m) = (v(m))(w) = (v(m"))(u)
= o(Nuem)=huxm)
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since y(m) = y(m'). This implies that (v ® m,u ® m’) € Rej, g ,,(C). By
noting that C' cogenerates U®@ M, Rej, o ,,(C) = Ay g m- So, u@m = u@m/
for all u € U. Hence (m,m’) € Ann,,(U).

(c) This part follows (b). O
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