Annihilator of Tensor Product of S-acts

Lili Ni and Yuqun Chen

School of Mathematical Sciences
South China Normal University
Guangzhou 510631, P. R. China
haoyu8004@eyou.com yqchen@scnu.edu.cn

Abstract

For S-acts ${ }_{S} M$ and U_{S}, let $A n n_{M}(U)=\left\{\left(m, m^{\prime}\right) \in M \times M \mid u \otimes m=\right.$ $u \otimes m^{\prime}$ for any $\left.u \in U\right\}$. Then U_{S} is called ${ }_{S} M$-faithful if $A n n_{M}(U)$ is the identity relation on M. If U_{S} is ${ }_{S} M$-faithful for any S-act ${ }_{S} M$, then we call U_{S} completely faithful. The present paper discusses proerties of ${ }_{S} M$-faithful(completely faithful) S-acts. The structures of ${ }_{S} M$ faithful(completely faithful) right S-acts are characterized. Some related results are also obtained.

1 Preliminaries

In this paper, we shall always let semigroup S mean a monoid and all S-acts be unitary. We denote the category of all right (left) S-acts by Act $-S(S-$ $A c t)$. Let A_{S} be a right S-act. An equivalence relation ρ on A is called an S-congruence or a congruence on A_{S} if for any $a, a^{\prime} \in A,\left(a, a^{\prime}\right) \in \rho$ implies $\left(a s, a^{\prime} s\right) \in \rho$ for any $s \in S$.

If $S_{S} M$ is a left S-act, then the cartesian product $M \times M$ with the operation $s \cdot\left(m, m^{\prime}\right)=\left(s m, s m^{\prime}\right)$ for all $s \in S, m, m^{\prime} \in M$ is a left S-act. Let f : ${ }_{S} M \longrightarrow S N$ be an S-homomorphism. We denote by $\operatorname{Imf}=\{f(m) \mid m \in M\}$ and $\operatorname{ker} f=\left\{\left(m, m^{\prime}\right) \in M \times M \mid f(m)=f\left(m^{\prime}\right)\right\}$. It is clear that (f, f) : ${ }_{S}(M \times M) \longrightarrow s(N \times N)$ with $(f, f)\left(\left(m, m^{\prime}\right)\right):=\left(f(m), f\left(m^{\prime}\right)\right), m, m^{\prime} \in M$, is an S-homomorphism, and $\operatorname{ker} f$ is a congruence on ${ }_{S} M$.

Let X be a set. Denote by $\triangle_{X}=\{(x, x) \mid x \in X\}$ and $\nabla_{X}=X \times X$. For a subact ${ }_{S} N$ of ${ }_{S} M, \rho_{N}=(N \times N) \cap \triangle_{M}$ is clearly a congruence on ${ }_{S} M$ which is called the Rees congruence and we denote the quotient act M / ρ_{N} by M / N.

Key words: S-acts, faithful, completely faithful, generator, cogenerator.
2000 AMS Mathematics Subject Classification: 20M50

Let U_{S}, M_{S} be right S-acts. As in module theory, the trace and the reject of U in M, respectively, are defined by

$$
\operatorname{Tr}_{M}(U)=\cup\left\{\operatorname{Im} f \mid f \in \operatorname{Hom}_{S}(U, M)\right\}
$$

and

$$
\operatorname{Rej}_{M}(U)=\cap\left\{\operatorname{ker} f \mid f \in \operatorname{Hom}_{S}(M, U)\right\}
$$

We say that U_{S} generates (cogenerates) M_{S} in case $\operatorname{Tr}_{M}(U)=M\left(\operatorname{Re} j_{M}(U)=\right.$ $\left.\triangle_{M}\right) . U_{S}$ is called a generator (cogenerator) of $A c t-S$ in case $\operatorname{Tr}_{M}(U)=$ $M\left(\operatorname{Re} j_{M}(U)=\triangle_{M}\right)$ for all $M_{S} \in \operatorname{Act}-S$. Denoted by $\mathbf{r}_{\mathbf{S}}(M):=\left\{\left(s, s^{\prime}\right) \in\right.$ $\left.S \times S \mid m s=m s^{\prime}, \forall m \in M\right\}$ the annihilator of right S-act M_{S}. It is clear that $\mathbf{r}_{\mathbf{S}}(M)$ is a congruence on M_{S}.

Let $\left(A_{\alpha}\right)_{\alpha \in I}$ be a family of right S-acts. Then, the coproduct $\coprod_{\alpha \in I} A_{\alpha}$ of $\left(A_{\alpha}\right)_{\alpha \in I}$ is the disjoint union of $\left(A_{\alpha}\right)_{\alpha \in I}$.

We call A_{S} a faithful right S-act if for any $s, t \in S$ the equality $a s=a t$ for all $a \in A$ implies $s=t$. Obviously, A_{S} is faithful if and only if $\mathbf{r}_{\mathbf{S}}(A)=\triangle_{S} . A_{S}$ is called a strongly faithful right S-act if for any $s, t \in S$ the equality $a s=a t$ for some $a \in A$ implies $s=t$.

For other definitions and terminologies not mentioned in this paper, the reader is refered to [3].

2 Faithfulness

Definition 2.1. Let U_{S} and ${ }_{S} M$ be S-acts, $U \otimes M$ the tensor product of U and M. Then

$$
A n n_{M}(U)=\left\{\left(m, m^{\prime}\right) \in M \times M \mid u \otimes m=u \otimes m^{\prime}, \forall u \in U\right\}
$$

is called the annihilator in M of U. Call U_{S} to be ${ }_{S} M$-faithful in case $A n n_{M}(U)=$ \triangle_{M}.

It is obvious that $A n n_{S}(U)=\mathbf{r}_{\mathbf{S}}(U)$ for any right S-act U_{S}.
Proposition 2.2. Let U_{S} and ${ }_{S} M$ be S-acts. Then $A n n_{M}(U)$ is the unique smallest congruence λ on ${ }_{S} M$ such that U is M / λ-faithful.

Proof Suppose that $\lambda=A n n_{M}(U)=\left\{\left(m_{1}, m_{2}\right) \in M \times M \mid u \otimes m_{1}=\right.$ $\left.u \otimes m_{2}, \forall u \in U\right\}$. Clearly, λ is a congruence on ${ }_{S} M$.

Assume that $\left(\bar{m}_{1}, \bar{m}_{2}\right) \in \operatorname{Ann}_{M / \lambda}(U)$. Then, we have $u \otimes \bar{m}_{1}=u \otimes \bar{m}_{2}$ for all $u \in U$. Thus, there exist $x_{1}, x_{2}, \cdots, x_{n} \in U, \bar{y}_{2}, \cdots, \bar{y}_{n} \in M / \lambda$, $s_{1}, t_{1}, \cdots, s_{n}, t_{n} \in S$ such that

$$
\begin{aligned}
u= & x_{1} s_{1} \\
x_{1} t_{1}= & x_{2} s_{2}, \quad s_{1} \bar{m}_{1}=t_{1} \bar{y}_{2} \\
& \cdots \cdots \\
& \cdots, \quad s_{n} \bar{y}_{n}=t_{n} \bar{m}_{2} .
\end{aligned}
$$

This implies that $\left(s_{1} m_{1}, t_{1} y_{2}\right), \cdots,\left(s_{n} y_{n}, t_{n} m_{2}\right) \in \lambda$, and then, for any $u \in U$,

$$
\begin{aligned}
u \otimes m_{1} & =x_{1} s_{1} \otimes m_{1}=x_{1} \otimes s_{1} m_{1}=x_{1} \otimes t_{1} y_{2}=x_{1} t_{1} \otimes y_{2} \\
& =x_{2} s_{2} \otimes y_{2}=\cdots=x_{n} s_{n} \otimes y_{n}=x_{n} \otimes s_{n} y_{n} \\
& =x_{n} \otimes t_{n} m_{2}=x_{n} t_{n} \otimes m_{2}=u \otimes m_{2}
\end{aligned}
$$

which shows that $\left(m_{1}, m_{2}\right) \in \lambda$ and $\bar{m}_{1}=\bar{m}_{2}$. Therefore $A n n_{M / \lambda}(U)=\triangle_{M / \lambda}$.
Let now σ be a congruence on ${ }_{S} M$ with $A n n_{M / \sigma}(U)=\triangle_{M / \sigma}$. Assume that $\left(m, m^{\prime}\right) \in \lambda$. Then $u \otimes m=u \otimes m^{\prime}$ for all $u \in U$. Let $n: M \longrightarrow M / \sigma$ be the canonical epimorphism. Then $1_{U} \otimes n: U \otimes M \longrightarrow U \otimes M / \sigma$ is surjective and $u \otimes(m \sigma)=\left(1_{U} \otimes n\right)(u \otimes m)=\left(1_{U} \otimes n\right)\left(u \otimes m^{\prime}\right)=u \otimes\left(m^{\prime} \sigma\right)$ for all $u \in U$. Thus, $\left(m \sigma, m^{\prime} \sigma\right) \in A n n_{M / \sigma}(U)=\triangle_{M / \sigma}$ and $m \sigma=m^{\prime} \sigma$, i.e., $\left(m, m^{\prime}\right) \in \sigma$. Hence $\lambda \subseteq \sigma$.

Proposition 2.3. Let $U_{S},{ }_{S} M$ and ${ }_{S} N$ be S-acts and let $f \in \operatorname{Hom}_{S}(M, N)$. Then
(a) $(f, f)\left(A n n_{M}(U)\right) \subseteq A n n_{N}(U)$. In particular, $A n n_{M}(U)$ is stable under endomorphisms of $S_{S} M$.
(b) If f is epic and $\operatorname{Ker} f \subseteq A n n_{M}(U)$, then $(f, f)\left(A n n_{M}(U)\right)=A n n_{N}(U)$.

Proof (a) Assume that $\left(m, m^{\prime}\right) \in A n n_{M}(U)$ and $u \in U$. Since $u \otimes m=$ $u \otimes m^{\prime}$ we have

$$
u \otimes f(m)=\left(1_{U} \otimes f\right)(u \otimes m)=\left(1_{U} \otimes f\right)\left(u \otimes m^{\prime}\right)=u \otimes f\left(m^{\prime}\right)
$$

Thus $\left(f(m), f\left(m^{\prime}\right)\right) \in A n n_{N}(U)$ and therefore, $(f, f)\left(A n n_{M}(U)\right) \subseteq A n n_{N}(U)$.
(b) It will suffice to prove that $A n n_{N}(U) \subseteq(f, f)\left(A n n_{M}(U)\right)$. Let ϕ : $M \longrightarrow M / \operatorname{Kerf}$ be the canonical epimorphism. Because f is epic there exists a unique isomorphism $\bar{f}: M / \operatorname{Ker} f \longrightarrow N$ such that $f=\bar{f} \phi$.

Assume that $\left(\bar{m}, \bar{m}^{\prime}\right) \in \operatorname{Ann}_{M / K e r f}(U)$ and $u \in U$. Since $u \otimes \bar{m}=u \otimes \bar{m}^{\prime}$, there exist $x_{1}, x_{2}, \cdots, x_{n} \in U, \bar{y}_{2}, \cdots, \bar{y}_{n} \in M / \operatorname{Kerf}, s_{1}, t_{1}, \cdots, s_{n}, t_{n} \in S$ such that

$$
\begin{aligned}
u= & x_{1} s_{1}, \\
x_{1} t_{1}= & x_{2} s_{2}, \quad s_{1} \bar{m}=t_{1} \bar{y}_{2} \\
& \ldots \cdots \\
x_{n} t_{n}= & u, \quad s_{n} \bar{y}_{n}=t_{n} \bar{m}^{\prime} .
\end{aligned}
$$

Thus $\left(s_{1} m, t_{1} y_{2}\right), \cdots,\left(s_{n} y_{n}, t_{n} m^{\prime}\right) \in \operatorname{Kerf} \subseteq \operatorname{Ann}_{M}(U)$ and so

$$
\begin{aligned}
u \otimes m & =x_{1} s_{1} \otimes m=x_{1} \otimes s_{1} m=x_{1} \otimes t_{1} y_{2}=x_{1} t_{1} \otimes y_{2} \\
& =x_{2} s_{2} \otimes y_{2}=\cdots=x_{n} s_{n} \otimes y_{n}=x_{n} \otimes s_{n} y_{n} \\
& =x_{n} \otimes t_{n} m_{2}=x_{n} t_{n} \otimes m^{\prime}=u \otimes m^{\prime}
\end{aligned}
$$

Therefore, $\left(m, m^{\prime}\right) \in A n n_{M}(U)$. Hence $\left(\bar{m}, \bar{m}^{\prime}\right)=(\phi, \phi)\left(\left(m, m^{\prime}\right)\right) \in(\phi, \phi)\left(A n n_{M}(U)\right)$, i.e., $A n n_{M / K e r f}(U) \subseteq(\phi, \phi)\left(A n n_{M}(U)\right)$.

Now, for any $\left(n, n^{\prime}\right) \in A n n_{N}(U)$, there exist unique $\bar{m}, \bar{m}^{\prime} \in M / \operatorname{Kerf}$ such that $n=\bar{f}(\bar{m})$ and $n^{\prime}=\bar{f}\left(\bar{m}^{\prime}\right)$. Noting that \bar{f} is an isomorphism, we know that $1_{U} \otimes \bar{f}$ is a bijection. Since $\left(1_{U} \otimes \bar{f}\right)(u \otimes \bar{m})=u \otimes \bar{f}(\bar{m})=u \otimes n=u \otimes n^{\prime}=$ $u \otimes \bar{f}\left(\bar{m}^{\prime}\right)=\left(1_{U} \otimes \bar{f}\right)\left(u \otimes \bar{m}^{\prime}\right)$, we have $u \otimes \bar{m}=u \otimes \bar{m}^{\prime}$ for all $u \in U$ which shows that $\left(\bar{m}, \bar{m}^{\prime}\right) \in A n n_{M / K e r f}(U) \subseteq(\phi, \phi)\left(A n n_{M}(U)\right)$. Hence

$$
\begin{aligned}
\left(n, n^{\prime}\right) & =(\bar{f}, \bar{f})\left(\left(\bar{m}, \bar{m}^{\prime}\right)\right) \in(\bar{f}, \bar{f})\left(A n n_{M / K e r f}(U)\right) \subseteq(\bar{f}, \bar{f})\left((\phi, \phi)\left(A n n_{M}(U)\right)\right) \\
& =(\bar{f} \phi, \bar{f} \phi)\left(A n n_{M}(U)\right)=(f, f)\left(\operatorname{Ann}_{M}(U)\right)
\end{aligned}
$$

We complete the proof.
Lemma 2.4. Let $\left(A_{\alpha}\right)_{\alpha \in I}$ be a family of right S-acts, $\left(B_{\beta}\right)_{\beta \in J}$ a family of left S-acts and $a \otimes b, c \otimes d$ in $\left(\coprod_{\alpha \in I} A_{\alpha}\right) \otimes_{S}\left(\coprod_{\beta \in J} B_{\beta}\right)$. Then $a \otimes b=c \otimes d$ in $\left(\coprod_{\alpha \in I} A_{\alpha}\right) \otimes_{S}\left(\coprod_{\beta \in J} B_{\beta}\right)$ if and only if $a \otimes b=c \otimes d$ in $A_{\alpha} \otimes_{S} B_{\beta}$ for some $\alpha \in I, \beta \in J$.

Proof sufficiency is obvious.
Necessity. Suppose $a \otimes b=c \otimes d$ in $\left(\coprod_{\alpha \in I} A_{\alpha}\right) \otimes_{S}\left(\coprod_{\beta \in J} B_{\beta}\right)$. Then there exist $a_{1}, a_{2}, \cdots, a_{n} \in \coprod_{\alpha \in I} A_{\alpha}, b_{2}, \cdots, b_{n} \in \coprod_{\beta \in J} B_{\beta}, u_{1}, v_{1}, \cdots, u_{n}, v_{n} \in S$, such that

$$
\begin{aligned}
a= & a_{1} u_{1} \\
a_{1} v_{1}= & a_{2} u_{2}, \quad u_{1} b=v_{1} b_{2} \\
& \cdots \cdots \\
a_{n} v_{n}= & c, \quad u_{n} b_{n}=v_{n} d
\end{aligned}
$$

Since $a \in \coprod_{\alpha \in I} A_{\alpha}$ and $b \in \coprod_{\beta \in J} B_{\beta}$, there uniquely exist $\alpha \in I, \beta \in J$ such that $a \in A_{\alpha}$ and $b \in B_{\beta}$. Now, $a_{1} u_{1}=a \in A_{\alpha}$ implies that $a_{1} \in A_{\alpha}$. Otherwise, if $a_{1} \in A_{\alpha^{\prime}}$ with $\alpha \neq \alpha^{\prime}$, then $a_{1} u_{1} \in A_{\alpha} \cap A_{\alpha^{\prime}}$ which contradicts that $A_{\alpha} \cap A_{\alpha^{\prime}}=\emptyset$. So $a_{2} u_{2}=a_{1} v_{1} \in A_{\alpha}$ and $a_{2} \in A_{\alpha}$. Repeating this process, we conclude $a_{3}, \cdots, a_{n}, c \in A_{\alpha}$. Similarly, we have $b, b_{2}, \cdots, b_{n}, d \in B_{\beta}$. This shows that $a \otimes b=c \otimes d$ in $A_{\alpha} \otimes_{S} B_{\beta}$.

Proposition 2.5. Let I, J be index sets, $U, U_{j} \in A c t-S, j \in J$ and M, $M_{i} \in S-A c t, i \in I$. Then
(a) $A n n_{\amalg_{i \in I} M_{i}}(U)=\coprod_{i \in I} A n n_{M_{i}}(U)$.
(b) $A n n_{M}\left(\coprod_{j \in J} U_{j}\right)=\bigcap_{j \in J} A n n_{M}\left(U_{j}\right)$.

Proof (a) It is obvious that $\coprod_{i \in I} A n n_{M_{i}}(U) \subseteq A n n_{\amalg_{i \in I} M_{i}}(U)$. Also, $\forall\left(m, m^{\prime}\right) \in A n n_{\amalg_{i \in I} M_{i}}(U), \forall u \in U$, we have $u \otimes m=u \otimes m^{\prime}$ in $U \otimes\left(\coprod_{i \in I} M_{i}\right)$. From Lemma 2.4 it follows that $u \otimes m=u \otimes m^{\prime}$ in $U \otimes M_{i}$ for some $i \in I$, and so $\left(m, m^{\prime}\right) \in A n n_{M_{i}}(U) \subseteq \coprod_{i \in I} A n n_{M_{i}}(U)$. This shows (a).
(b) Clearly, $\bigcap_{j \in J} A n n_{M}\left(U_{j}\right) \subseteq A n n_{M}\left(\amalg_{j \in J} U_{j}\right)$. Conversely, if $\left(m, m^{\prime}\right) \in$ $A n n_{M}\left(\amalg_{j \in J} U_{j}\right)$ and $u \in U_{j} \subseteq \amalg_{j \in J} U_{j}, j \in J$, then $u \otimes m=u \otimes m^{\prime}$ in $\left(\coprod_{j \in J} U_{j}\right) \otimes M$. By Lemma 2.4, we get $u \otimes m=u \otimes m^{\prime}$ in $U_{j} \otimes M$. Thus, $A n n_{M}\left(\amalg_{j \in J} U_{j}\right) \subseteq \bigcap_{j \in J} A n n_{M}\left(U_{j}\right)$. This shows (b).

It is well known that each S-act has a unique indecomposable decomposition (see [4] or [2]). Now, by our Lemma 2.4, we have the following lemma.

Lemma 2.6. Let A_{S} and ${ }_{S} B$ be S-acts and $a \otimes b=a^{\prime} \otimes b^{\prime}$ in $A \otimes_{S} B$. Then a, a^{\prime} and b, b^{\prime} are in the same indecomposable subacts of A_{S} and ${ }_{S} B$, respectively.

Theorem 2.7. If I is an ideal of S and ${ }_{S} M \in S$ - Act, then

$$
A n n_{M}(S / I) \subseteq(I M \times I M) \cup \triangle_{M} .
$$

Moreover, $A n n_{M}(S / I)=(I M \times I M) \cup \triangle_{M}$ if and only if M is indecomposable.
Proof If we define

$$
S / I \times M / I M \longrightarrow M / I M, \quad(\bar{s}, \tilde{m}) \longmapsto \widetilde{s m},
$$

then $M / I M$ is an S / I-act and $S(M / I M)=S_{S / I}(M / I M)$. Let

$$
\phi: S / I \otimes_{S} M \longrightarrow M / I M, \quad \bar{s} \otimes m \longmapsto \widetilde{s m} .
$$

Then ϕ is well-defined. In fact, suppose that $\bar{s} \otimes m=\bar{s}^{\prime} \otimes m^{\prime}$ for some $\bar{s}, \bar{s}^{\prime} \in$ $S / I, m, m^{\prime} \in M$. Then there exist $\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{n} \in S / I, y_{2}, \cdots, y_{n} \in M$, $r_{1}, t_{1}, \cdots, r_{n}, t_{n} \in S$ such that

$$
\begin{aligned}
\bar{s}= & \bar{x}_{1} r_{1}, \\
\bar{x}_{1} t_{1}= & \bar{x}_{2} r_{2}, \quad r_{1} m=t_{1} y_{2}, \\
& \cdots \cdots . \\
\bar{x}_{n} t_{n}= & \bar{s}^{\prime}, \quad r_{n} y_{n}=t_{n} m^{\prime} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
\widetilde{s m} & =\bar{s} \tilde{m}=\bar{x}_{1} r_{1} \tilde{m}=\bar{x}_{1} \widetilde{r_{1} m}=\bar{x}_{1} \widetilde{t_{1} y_{2}} \\
& =\bar{x}_{1} t_{1} \tilde{y}_{2}=\cdots=\bar{x}_{n} t_{n} \tilde{m}^{\prime}=\bar{s}^{\prime} \tilde{m}^{\prime}=\widetilde{s^{\prime} m^{\prime}}
\end{aligned}
$$

i.e., ϕ is well-defined.

If $\left(m_{1}, m_{2}\right) \in A n n_{M}(S / I)$, then $\bar{s} \otimes m_{1}=\bar{s} \otimes m_{2}$ and $\widetilde{s m_{1}}=\widetilde{s m_{2}}$ for all $s \in S$, in particular, $\left(m_{1}, m_{2}\right) \in(I M \times I M) \cup \triangle_{M}$. Thus, $\operatorname{Ann}_{M}(S / I) \subseteq$ $(I M \times I M) \cup \triangle_{M}$.

Suppose that $A n n_{M}(S / I)=(I M \times I M) \cup \triangle_{M}$. Then, for any $\left(m_{1}, m_{2}\right) \in$ $M \times M$ and $a \in I$, we have $\left(a m_{1}, a m_{2}\right) \in A n n_{M}(S / I)$, in particular, $\overline{1} \otimes a m_{1}=$ $\overline{1} \otimes a m_{2}$. By Lemma 2.6, $a m_{1}, a m_{2}$ is in the same indecomposable subact of M. This implies that m_{1}, m_{2} is in the same indecomposable subact. Hence, M is indecomposable.

Conversely, suppose M is indecomposable. It will suffice to prove that $(I M \times I M) \subseteq A n n_{M}(S / I)$. For any $\left(a_{1} m_{1}, a_{2} m_{2}\right) \in I M \times I M$, where $a_{1}, a_{2} \in$ $I, m_{1}, m_{2} \in M$, and for any $\bar{s} \in S / I$, we have

$$
\begin{aligned}
& \bar{s} \otimes a_{1} m_{1}=\bar{s} a_{1} \otimes m_{1}=\overline{s a_{1}} \otimes m_{1}=0 \otimes m_{1} \\
& \bar{s} \otimes a_{2} m_{2}=\bar{s} a_{2} \otimes m_{2}=\overline{s a_{2}} \otimes m_{2}=0 \otimes m_{2}
\end{aligned}
$$

Since M is indecomposable, there exist $y_{2}, \cdots, y_{n} \in M, r_{1}, t_{1}, \cdots, r_{n}, t_{n} \in S$ such that

$$
\begin{aligned}
r_{1} m_{1} & =t_{1} y_{2} \\
r_{2} y_{2} & =t_{2} y_{3} \\
& \cdots \\
r_{n} y_{n} & =t_{n} m_{2}
\end{aligned}
$$

It follows from this that $0 \otimes m_{1}=0 \otimes m_{2}$, i.e., $\bar{s} \otimes a_{1} m_{1}=\bar{s} \otimes a_{2} m_{2}$. Hence, $\left(a_{1} m_{1}, a_{2} m_{2}\right) \in A n n_{M}(S / I)$. We complete the proof.

Theorem 2.8. Let U_{S} and ${ }_{S} M$ be S-acts and $M=\coprod_{\alpha \in I} M_{\alpha}$ the indecomposable decomposition of M. Then the following statements are equivalent:
(a) U_{S} is ${ }_{S} M$-faithful.
(b) $\forall \alpha \in I, U$ is M_{α}-faithful.
(c) For any ${ }_{S} N \in S$-Act and every homomorphism $f:{ }_{S} M \longrightarrow_{S} N$, if $1_{U} \otimes f$ is monic then f is monic.
(d) For any ${ }_{S} N \in S$-Act and every homomorphism $f:{ }_{S} N \longrightarrow_{S} M$, $A n n_{N}(U) \subseteq K e r f$.

Proof (a) \Leftrightarrow (b). By Proposition 2.5, we have $A n n_{M}(U)=\coprod_{\alpha \in I} A n n_{M_{\alpha}}(U)$. Thus, ${A n n_{M}}(U)=\triangle_{M}=\coprod_{\alpha \in I} \triangle_{M_{\alpha}} \Longleftrightarrow \operatorname{Ann}_{M_{\alpha}}(U)=\triangle_{M_{\alpha}}(\forall \alpha \in I) \Longleftrightarrow$ $\forall \alpha \in I, U$ is M_{α}-faithful.
$(\mathrm{a}) \Rightarrow(\mathrm{c})$. Suppose that $\operatorname{Ann}_{M}(U)=\triangle_{M}, f \in \operatorname{Hom}_{S}(M, N)$ and $1_{U} \otimes f$ is monic. If $\left(m_{1}, m_{2}\right) \in \operatorname{Kerf} f$, then $f\left(m_{1}\right)=f\left(m_{2}\right) \in N$ and we have $u \otimes f\left(m_{1}\right)=$ $u \otimes f\left(m_{2}\right)$ for all $u \in U$, i.e., $\left(1_{U} \otimes f\right)\left(u \otimes m_{1}\right)=\left(1_{U} \otimes f\right)\left(u \otimes m_{2}\right)$. This implies $u \otimes m_{1}=u \otimes m_{2}(\forall u \in U)$. Thus $\left(m_{1}, m_{2}\right) \in A n n_{M}(U)=\triangle_{M}$ and hence $m_{1}=m_{2}$. So, $\operatorname{Kerf}=\triangle_{M}$, i.e., f is monic.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Assume (c). If $\left(m_{1}, m_{2}\right) \in A n n_{M}(U)$, then $u \otimes m_{1}=u \otimes m_{2}(\forall u \in$ $U)$. Let $f: M \longrightarrow M / \lambda\left(m_{1}, m_{2}\right)$ be canonical epimorphism where $\lambda\left(m_{1}, m_{2}\right)$ is a congruence on ${ }_{S} M$ generated by $\left(m_{1}, m_{2}\right)$. Then
$1_{U} \otimes f: U \otimes M \longrightarrow U \otimes M / \lambda\left(m_{1}, m_{2}\right), \quad u \otimes m \longmapsto u \otimes f(m)=u \otimes \bar{m}$
is monic. In fact, for any $u \otimes m, u^{\prime} \otimes m^{\prime} \in U \otimes M$, if $u \otimes \bar{m}=u^{\prime} \otimes \bar{m}^{\prime}$, then there exist $x_{1}, x_{2}, \cdots, x_{n} \in U, \bar{y}_{2}, \cdots, \bar{y}_{n} \in M / \lambda\left(m_{1}, m_{2}\right) s_{1}, t_{1}, \cdots, s_{n}, t_{n} \in S$ such that

$$
\begin{aligned}
u= & x_{1} s_{1}, \\
x_{1} t_{1}= & x_{2} s_{2}, \quad s_{1} \bar{m}=t_{1} \bar{y}_{2} \\
& \ldots \cdots \\
x_{n} t_{n}= & u^{\prime}, \quad s_{n} \bar{y}_{n}=t_{n} \bar{m}^{\prime} .
\end{aligned}
$$

Thus, we get $\left(s_{1} m, t_{1} y_{2}\right), \cdots,\left(s_{n} y_{n}, t_{n} m^{\prime}\right) \in \lambda\left(m_{1}, m_{2}\right)$. If $s_{1} m=t_{1} y_{2}$, then

$$
u \otimes m=x_{1} s_{1} \otimes m=x_{1} \otimes s_{1} m=x_{1} \otimes t_{1} y_{2}
$$

If $s_{1} m \neq t_{1} y_{2}$, then there exist $p_{1}, \cdots, p_{k} \in S$, such that

$$
\begin{aligned}
& s_{1} m=p_{1} c_{1}, \quad p_{2} d_{2}=p_{3} c_{3}, \cdots, \quad p_{k-1} d_{k-1}=p_{k} c_{k} \\
& \quad p_{1} d_{1}=p_{2} c_{2}, \cdots, p_{k-1} d_{k-1}=p_{k} c_{k}, p_{k} d_{k}=t_{1} y_{2}
\end{aligned}
$$

where $\left(c_{j}, d_{j}\right) \in\left\{\left(m_{1}, m_{2}\right),\left(m_{2}, m_{1}\right)\right\}, j=1, \cdots, k$. So

$$
\begin{aligned}
u \otimes m & =x_{1} s_{1} \otimes m=x_{1} \otimes s_{1} m=x_{1} \otimes p_{1} c_{1} \\
& =x_{1} p_{1} \otimes c_{1}=x_{1} p_{1} \otimes d_{1}=x_{1} \otimes p_{1} d_{1} \\
& =\cdots=x_{1} \otimes p_{k} d_{k}=x_{1} \otimes t_{1} y_{2}
\end{aligned}
$$

By repeating the above arguments, we have

$$
\begin{aligned}
u \otimes m & =x_{1} \otimes t_{1} y_{2}=x_{1} t_{1} \otimes y_{2}=x_{2} s_{2} \otimes y_{2} \\
& =x_{2} \otimes s_{2} y_{2}=x_{2} \otimes t_{2} y_{3}=\cdots \\
& =x_{n} \otimes t_{n} m^{\prime}=x_{n} t_{n} \otimes m^{\prime}=u^{\prime} \otimes m^{\prime}
\end{aligned}
$$

Therefore $1_{U} \otimes f$ is monic. Now, by (c), f is monic and so $\lambda\left(m_{1}, m_{2}\right)=\operatorname{Ker} f=$ \triangle_{M}, i.e., $m_{1}=m_{2}$, whence $A n n_{M}(U)=\triangle_{M}$.
$(\mathrm{a}) \Rightarrow(\mathrm{d})$. Suppose that $A n n_{M}(U)=\triangle_{M}$. For any $f \in \operatorname{Hom}_{S}(N, M)$, $\left(n_{1}, n_{2}\right) \in A n n_{N}(U)$, we have $u \otimes n_{1}=u \otimes n_{2}$ for all $u \in U$. Thus

$$
u \otimes f\left(n_{1}\right)=\left(1_{U} \otimes f\right)\left(u \otimes n_{1}\right)=\left(1_{U} \otimes f\right)\left(u \otimes n_{2}\right)=u \otimes f\left(n_{2}\right)
$$

for all $u \in U$. This means $\left(f\left(n_{1}\right), f\left(n_{2}\right)\right) \in A n n_{M}(U)=\triangle_{M}$ and $f\left(n_{1}\right)=$ $f\left(n_{2}\right)$. Hence $\left(n_{1}, n_{2}\right) \in \operatorname{Kerf}$. This shows that $\operatorname{Ann_{N}}(U) \subseteq \operatorname{Kerf}$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$. Assume (d). If we take $f=i d_{M}: M \longrightarrow M$, then $A n n_{M}(U) \leq$ $\operatorname{Kerf}=\triangle_{M}$ and the result follows.

3 Completely faithfulness

Definition 3.1. An S-act U_{S} is said to be completely faithful in case $A n n_{M}(U)=$ \triangle_{M} for every left S-act M.

For example, since S_{S} is a generator in $\operatorname{Act}-S, S_{S}$ is completely faithful (see Proposition 3.7).

Theorem 3.2. For an S-act U_{S}, the following statements are equivalent:
(a) U_{S} is completely faithful.
(b) For every indecomposable left S-act T, U is ${ }_{S} T$-faithful.
(c) For any ${ }_{S} N,{ }_{S} M \in S$-Act and every homomorphism $f:{ }_{S} M \longrightarrow_{S} N$, if $1_{U} \otimes f$ is monic, then f is monic.
(d) For any ${ }_{S} N,{ }_{S} M \in S$-Act and every homomorphism $f:{ }_{S} M \longrightarrow{ }_{S} N$, $A n n_{M}(U) \subseteq \operatorname{ker} f$.

Proof The proof is similar to the one of Theorem 2.8
Let $Z=\{z\}$ be a set of one-element. Then Z is an S-act with only one way. Such an S-act is called the zero S-act.

Proposition 3.3. Let Z be the zero right S-act and M a left S-act. Then M is indecomposable S-act if and only if $\operatorname{Ann}_{M}(Z)=\nabla_{M}$.

Proof It is obvious that M is indecomposable $\Longleftrightarrow|Z \otimes M|=1 \Longleftrightarrow$ $A n n_{M}(Z)=M \times M=\nabla_{M}$.

Theorem 3.4. The following statements are equivalent:
(a) Each right S-act is completely faithful.
(b) The zero right S-act is completely faithful.
(c) $S=\{1\}$.

Proof $(a) \Rightarrow(b)$ is clear.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$. Let Z be the zero right S-act. Since ${ }_{S} S=S 1$ is indecomposable, we have, by Proposition 3.3, $A n n_{S}(Z)=\nabla_{S}$. Now, $A n n_{S}(Z)=\triangle_{S}$ implies $S=\{1\}$.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Suppose that $S=\{1\}$. Then, for any ${ }_{S} M \in S-A c t, U_{S} \in A c t-S$, we have $U \otimes M=U \times M$. Hence, $A n n_{M}(U)=\triangle_{M}$, i.e., U is ${ }_{S} M$-faithful.

The proof of the following proposition is straightforward.
Proposition 3.5. Let S and T be monoids, and let $A_{S},{ }_{S} B_{T}$ be acts. Then
(a) If A_{S} and B_{T} are completely faithful, then $(A \otimes B)_{T}$ is completely faithful.
(b) If $(A \otimes B)_{T}$ is completely faithful, then B_{T} is completely faithful.

Proposition 3.6. Let U_{S}, V_{S}, and ${ }_{S} M$ be S-acts. If U_{S} generates V_{S}, then $A n n_{M}(U) \subseteq A n n_{M}(V)$.

Proof For any $\left(m_{1}, m_{2}\right) \in A n n_{M}(U)$ and $x \in V$, there exist $f \in H_{S o m}(U, V)$ and $u \in U$ such that $x=f(u)$ since $\operatorname{Tr}_{V}(U)=\cup\left\{\operatorname{Imf} \mid f \in \operatorname{Hom}_{S}(U, V)\right\}=V$. So $x \otimes m_{1}=f(u) \otimes m_{1}=\left(f \otimes 1_{M}\right)\left(u \otimes m_{1}\right)=\left(f \otimes 1_{M}\right)\left(u \otimes m_{2}\right)=f(u) \otimes m_{2}=$ $x \otimes m_{2}$, and thus $\left(m_{1}, m_{2}\right) \in A n n_{M}(V)$. Hence $A n n_{M}(U) \subseteq A n n_{M}(V)$.

Proposition 3.7. Every generator in Act $-S$ is completely faithful.
Proof Suppose that G_{S} is a generator in Act $-S$. Since $\operatorname{Tr}_{S}(G)=S$, there exist $f \in \operatorname{Hom}_{S}(G, S)$ and $x \in G$ such that $f(x)=1$. Let M be an arbitrary left S-act and $\left(m_{1}, m_{2}\right) \in A n n_{M}(G)$. Then $x \otimes m_{1}=x \otimes m_{2}$. So
$1 \otimes m_{1}=f(x) \otimes m_{1}=\left(f \otimes 1_{M}\right)\left(x \otimes m_{1}\right)=\left(f \otimes 1_{M}\right)\left(x \otimes m_{2}\right)=f(x) \otimes m_{2}=1 \otimes m_{2}$
which shows that $m_{1}=m_{2}$. Hence $\operatorname{Ann}_{M}(G)=\triangle_{M}$.
Theorem 3.8. Let T and S be monoids, ${ }_{T} U_{S}$ the $S-T$-biact, ${ }_{S} M \in S$-Act and ${ }_{T} C \in T$-Act. Let $U^{*}=\operatorname{Hom}_{T}(U, C) \in S-$ Act. Then
(a) $A n n_{M}(U) \subseteq R e j_{M}\left(U^{*}\right)$.
(b) If ${ }_{T} C$ cogenerates $U \otimes M$, then $A n n_{M}(U)=R e j_{M}\left(U^{*}\right)$.
(c) If $T_{T} C$ is a cogenerator, then U_{S} is completely faithful if and only if ${ }_{S} U^{*}$ is a cogenerator in $S-A c t$.

Proof By [3] Proposition 2.5.19,

$$
\phi: \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{T}(U, C)\right) \longrightarrow \operatorname{Hom}_{T}\left(U \otimes_{S} M, C\right)
$$

defined by

$$
\phi(\gamma)(x \otimes m)=(\gamma(m))(x)
$$

for any $x \in U, m \in M$ and $\gamma \in \operatorname{Hom}_{S}\left(M, \operatorname{Hom}_{T}(U, C)\right)$, is a bijection.
(a) For any $\gamma \in \operatorname{Hom}_{S}\left(M, U^{*}\right),\left(m_{1}, m_{2}\right) \in \operatorname{Ann}_{M}(U)$ and $x \in U$, we have $x \otimes m_{1}=x \otimes m_{2}$, and then $\phi(\gamma)\left(x \otimes m_{1}\right)=\phi(\gamma)\left(x \otimes m_{2}\right)$. Thus, $\left(\gamma\left(m_{1}\right)\right)(x)=\left(\gamma\left(m_{2}\right)\right)(x)$ for all $x \in U$ which shows that $\gamma\left(m_{1}\right)=\gamma\left(m_{2}\right)$, that is, $\left(m_{1}, m_{2}\right) \in \operatorname{Ker} \gamma$. Therefore, $\operatorname{Ann}_{M}(U) \subseteq \operatorname{Rej}_{M}\left(U^{*}\right)$.
(b) It will suffice to prove that $\operatorname{Rej} j_{M}\left(U^{*}\right) \subseteq A n n_{M}(U)$. For any $h \in$ $\operatorname{Hom}_{T}\left(U \otimes_{S} M, C\right)$, there exists a unique $\gamma \in \operatorname{Hom}_{S}\left(M, U^{*}\right)$ such that $\phi(\gamma)=$ h. Also, for any $\left(m, m^{\prime}\right) \in R e j_{M}\left(U^{*}\right)$ and $u \in U$, we have

$$
\begin{aligned}
h(u \otimes m) & =\phi(\gamma)(u \otimes m)=(\gamma(m))(u)=\left(\gamma\left(m^{\prime}\right)\right)(u) \\
& =\phi(\gamma)\left(u \otimes m^{\prime}\right)=h\left(u \otimes m^{\prime}\right)
\end{aligned}
$$

since $\gamma(m)=\gamma\left(m^{\prime}\right)$. This implies that $\left(u \otimes m, u \otimes m^{\prime}\right) \in R e j_{U \otimes M}(C)$. By noting that C cogenerates $U \otimes M, \operatorname{Rej}_{U \otimes M}(C)=\triangle_{U \otimes M}$. So, $u \otimes m=u \otimes m^{\prime}$ for all $u \in U$. Hence $\left(m, m^{\prime}\right) \in A n n_{M}(U)$.
(c) This part follows (b).

References

[1] F. W. Anderson and Kent R. Fuller, "Rings and Categories of Modules", Spring-Verlag, New York, 1995.
[2] Y. Q. Chen and K. P. Shum, Projective and indecomposable S-acts, Science in China, Ser. A, 42(1999), 593-599.
[3] M. Kilp, U. Knauer and A. V. Mikhalev: "Monoids, Acts and Categories with Applications to Wreath Products and Graphs", Walter de Gruyter, Berlin, 2000.
[4] U. Knauer, Projectivity of acts and Morita equivalence on monoids, Semigroup Forum, 3(1972), 359-370.

