Annihilator of Tensor Product of S-acts

Lili Ni and Yuqun Chen

School of Mathematical Sciences South China Normal University Guangzhou 510631, P. R. China haoyu8004@eyou.com yqchen@scnu.edu.cn

Abstract

For S-acts ${}_{S}M$ and U_{S} , let $Ann_{M}(U) = \{(m,m') \in M \times M | u \otimes m = u \otimes m' \text{ for any } u \in U\}$. Then U_{S} is called ${}_{S}M$ -faithful if $Ann_{M}(U)$ is the identity relation on M. If U_{S} is ${}_{S}M$ -faithful for any S-act ${}_{S}M$, then we call U_{S} completely faithful. The present paper discusses proerties of ${}_{S}M$ -faithful(completely faithful) S-acts. The structures of ${}_{S}M$ -faithful(completely faithful) right S-acts are characterized. Some related results are also obtained.

1 Preliminaries

In this paper, we shall always let semigroup S mean a monoid and all S-acts be unitary. We denote the category of all right (left) S-acts by Act - S (S - Act). Let A_S be a right S-act. An equivalence relation ρ on A is called an S-congruence or a congruence on A_S if for any $a, a' \in A$, $(a, a') \in \rho$ implies $(as, a's) \in \rho$ for any $s \in S$.

If ${}_{S}M$ is a left S-act, then the cartesian product $M \times M$ with the operation $s \cdot (m, m') = (sm, sm')$ for all $s \in S$, $m, m' \in M$ is a left S-act. Let $f : {}_{S}M \longrightarrow_{S}N$ be an S-homomorphism. We denote by $Imf = \{f(m)|m \in M\}$ and $kerf = \{(m, m') \in M \times M | f(m) = f(m')\}$. It is clear that $(f, f) : {}_{S}(M \times M) \longrightarrow_{S}(N \times N)$ with $(f, f)((m, m')) := (f(m), f(m')), m, m' \in M$, is an S-homomorphism, and kerf is a congruence on ${}_{S}M$.

Let X be a set. Denote by $\Delta_X = \{(x, x) | x \in X\}$ and $\nabla_X = X \times X$. For a subact ${}_{S}N$ of ${}_{S}M$, $\rho_N = (N \times N) \cap \Delta_M$ is clearly a congruence on ${}_{S}M$ which is called the Rees congruence and we denote the quotient act M/ρ_N by M/N.

Key words: S-acts, faithful, completely faithful, generator, cogenerator. 2000 AMS Mathematics Subject Classification: 20M50

Let U_S, M_S be right S-acts. As in module theory, the trace and the reject of U in M, respectively, are defined by

$$Tr_{M}(U) = \bigcup \{Imf | f \in Hom_{S}(U, M)\}$$

and

$$Rej_{\mathcal{M}}(U) = \cap \{\ker f | f \in Hom_{s}(M, U)\}.$$

We say that U_S generates (cogenerates) M_S in case $Tr_M(U) = M$ ($Rej_M(U) = \Delta_M$). U_S is called a generator (cogenerator) of Act - S in case $Tr_M(U) = M$ ($Rej_M(U) = \Delta_M$) for all $M_S \in Act - S$. Denoted by $\mathbf{r}_S(M) := \{(s, s') \in S \times S \mid ms = ms', \forall m \in M\}$ the annihilator of right S-act M_S . It is clear that $\mathbf{r}_S(M)$ is a congruence on M_S .

Let $(A_{\alpha})_{\alpha \in I}$ be a family of right S-acts. Then, the coproduct $\coprod_{\alpha \in I} A_{\alpha}$ of $(A_{\alpha})_{\alpha \in I}$ is the disjoint union of $(A_{\alpha})_{\alpha \in I}$.

We call A_S a faithful right S-act if for any $s, t \in S$ the equality as = at for all $a \in A$ implies s = t. Obviously, A_S is faithful if and only if $\mathbf{r}_{\mathbf{S}}(A) = \Delta_S$. A_S is called a strongly faithful right S-act if for any $s, t \in S$ the equality as = at for some $a \in A$ implies s = t.

For other definitions and terminologies not mentioned in this paper, the reader is referred to [3].

2 Faithfulness

Definition 2.1. Let U_S and $_SM$ be S-acts, $U \otimes M$ the tensor product of U and M. Then

$$Ann_{M}(U) = \{ (m, m') \in M \times M \mid u \otimes m = u \otimes m', \forall u \in U \}$$

is called the annihilator in M of U. Call U_S to be ${}_SM$ -faithful in case $Ann_M(U) = \triangle_M$.

It is obvious that $Ann_{s}(U) = \mathbf{r}_{\mathbf{S}}(U)$ for any right S-act U_{s} .

Proposition 2.2. Let U_S and $_SM$ be S-acts. Then $Ann_M(U)$ is the unique smallest congruence λ on $_SM$ such that U is M/λ -faithful.

Proof Suppose that $\lambda = Ann_M(U) = \{(m_1, m_2) \in M \times M \mid u \otimes m_1 = u \otimes m_2, \forall u \in U\}$. Clearly, λ is a congruence on $_SM$.

Assume that $(\bar{m}_1, \bar{m}_2) \in Ann_{M/\lambda}(U)$. Then, we have $u \otimes \bar{m}_1 = u \otimes \bar{m}_2$ for all $u \in U$. Thus, there exist $x_1, x_2, \cdots, x_n \in U, \ \bar{y}_2, \cdots, \bar{y}_n \in M/\lambda$, $s_1, t_1, \cdots, s_n, t_n \in S$ such that

$$u = x_{1}s_{1},$$

$$x_{1}t_{1} = x_{2}s_{2}, \quad s_{1}\bar{m}_{1} = t_{1}\bar{y}_{2},$$

$$\dots$$

$$x_{n}t_{n} = u, \quad s_{n}\bar{y}_{n} = t_{n}\bar{m}_{2}.$$

This implies that $(s_1m_1, t_1y_2), \dots, (s_ny_n, t_nm_2) \in \lambda$, and then, for any $u \in U$,

$$u \otimes m_1 = x_1 s_1 \otimes m_1 = x_1 \otimes s_1 m_1 = x_1 \otimes t_1 y_2 = x_1 t_1 \otimes y_2$$

= $x_2 s_2 \otimes y_2 = \dots = x_n s_n \otimes y_n = x_n \otimes s_n y_n$
= $x_n \otimes t_n m_2 = x_n t_n \otimes m_2 = u \otimes m_2$

which shows that $(m_1, m_2) \in \lambda$ and $\bar{m}_1 = \bar{m}_2$. Therefore $Ann_{M/\lambda}(U) = \Delta_{M/\lambda}$.

Let now σ be a congruence on ${}_{S}M$ with $Ann_{M/\sigma}(U) = \Delta_{M/\sigma}$. Assume that $(m, m') \in \lambda$. Then $u \otimes m = u \otimes m'$ for all $u \in U$. Let $n : M \longrightarrow M/\sigma$ be the canonical epimorphism. Then $1_U \otimes n : U \otimes M \longrightarrow U \otimes M/\sigma$ is surjective and $u \otimes (m\sigma) = (1_U \otimes n)(u \otimes m) = (1_U \otimes n)(u \otimes m') = u \otimes (m'\sigma)$ for all $u \in U$. Thus, $(m\sigma, m'\sigma) \in Ann_{M/\sigma}(U) = \Delta_{M/\sigma}$ and $m\sigma = m'\sigma$, i.e., $(m, m') \in \sigma$. Hence $\lambda \subseteq \sigma$. \Box

Proposition 2.3. Let U_S , ${}_SM$ and ${}_SN$ be S-acts and let $f \in Hom_{S}(M, N)$. Then

- (a) $(f, f)(Ann_M(U)) \subseteq Ann_N(U)$. In particular, $Ann_M(U)$ is stable under endomorphisms of $_SM$.
- (b) If f is epic and $Kerf \subseteq Ann_M(U)$, then $(f, f)(Ann_M(U)) = Ann_N(U)$.

Proof (a) Assume that $(m, m') \in Ann_M(U)$ and $u \in U$. Since $u \otimes m = u \otimes m'$ we have

$$u \otimes f(m) = (1_U \otimes f)(u \otimes m) = (1_U \otimes f)(u \otimes m') = u \otimes f(m').$$

Thus $(f(m), f(m')) \in Ann_N(U)$ and therefore, $(f, f)(Ann_M(U)) \subseteq Ann_N(U)$. (b) It will suffice to prove that $Ann_N(U) \subseteq (f, f)(Ann_M(U))$. Let ϕ :

(b) It will suffee to prove that $Am_N(0) \subseteq (f, f)(Am_M(0))$. Let ϕ . $M \longrightarrow M/Kerf$ be the canonical epimorphism. Because f is epic there exists a unique isomorphism $\overline{f}: M/Kerf \longrightarrow N$ such that $f = \overline{f}\phi$.

Assume that $(\bar{m}, \bar{m}') \in Ann_{M/Kerf}(U)$ and $u \in U$. Since $u \otimes \bar{m} = u \otimes \bar{m}'$, there exist $x_1, x_2, \dots, x_n \in U, \ \bar{y}_2, \dots, \bar{y}_n \in M/Kerf, \ s_1, t_1, \dots, s_n, t_n \in S$ such that

$$u = x_{1}s_{1},$$

$$x_{1}t_{1} = x_{2}s_{2}, \quad s_{1}\bar{m} = t_{1}\bar{y}_{2},$$

$$\dots \dots$$

$$x_{n}t_{n} = u, \quad s_{n}\bar{y}_{n} = t_{n}\bar{m}'.$$

Thus $(s_1m, t_1y_2), \cdots, (s_ny_n, t_nm') \in Kerf \subseteq Ann_M(U)$ and so

$$u \otimes m = x_1 s_1 \otimes m = x_1 \otimes s_1 m = x_1 \otimes t_1 y_2 = x_1 t_1 \otimes y_2$$

= $x_2 s_2 \otimes y_2 = \dots = x_n s_n \otimes y_n = x_n \otimes s_n y_n$
= $x_n \otimes t_n m_2 = x_n t_n \otimes m' = u \otimes m'.$

Therefore, $(m, m') \in Ann_M(U)$. Hence $(\bar{m}, \bar{m}') = (\phi, \phi)((m, m')) \in (\phi, \phi)(Ann_M(U))$, i.e., $Ann_{M/Kerf}(U) \subseteq (\phi, \phi)(Ann_M(U))$.

Now, for any $(n, n') \in Ann_N(U)$, there exist unique $\bar{m}, \bar{m}' \in M/Kerf$ such that $n = \bar{f}(\bar{m})$ and $n' = \bar{f}(\bar{m}')$. Noting that \bar{f} is an isomorphism, we know that $1_U \otimes \bar{f}$ is a bijection. Since $(1_U \otimes \bar{f})(u \otimes \bar{m}) = u \otimes \bar{f}(\bar{m}) = u \otimes n = u \otimes n' = u \otimes \bar{f}(\bar{m}') = (1_U \otimes \bar{f})(u \otimes \bar{m}')$, we have $u \otimes \bar{m} = u \otimes \bar{m}'$ for all $u \in U$ which shows that $(\bar{m}, \bar{m}') \in Ann_{M/Kerf}(U) \subseteq (\phi, \phi)(Ann_M(U))$. Hence

$$\begin{array}{ll} (n,n') &=& (\bar{f},\bar{f})((\bar{m},\bar{m}')) \in (\bar{f},\bar{f})(Ann_{_{M/Kerf}}(U)) \subseteq (\bar{f},\bar{f})((\phi,\phi)(Ann_{_{M}}(U))) \\ &=& (\bar{f}\phi,\bar{f}\phi)(Ann_{_{M}}(U)) = (f,f)(Ann_{_{M}}(U)). \end{array}$$

We complete the proof. \Box

Lemma 2.4. Let $(A_{\alpha})_{\alpha \in I}$ be a family of right S-acts, $(B_{\beta})_{\beta \in J}$ a family of left S-acts and $a \otimes b, c \otimes d$ in $(\coprod_{\alpha \in I} A_{\alpha}) \otimes_S (\coprod_{\beta \in J} B_{\beta})$. Then $a \otimes b = c \otimes d$ in $(\coprod_{\alpha \in I} A_{\alpha}) \otimes_S (\coprod_{\beta \in J} B_{\beta})$ if and only if $a \otimes b = c \otimes d$ in $A_{\alpha} \otimes_S B_{\beta}$ for some $\alpha \in I, \beta \in J$.

Proof sufficiency is obvious.

Necessity. Suppose $a \otimes b = c \otimes d$ in $(\coprod_{\alpha \in I} A_{\alpha}) \otimes_S (\coprod_{\beta \in J} B_{\beta})$. Then there exist $a_1, a_2, \dots, a_n \in \coprod_{\alpha \in I} A_{\alpha}, b_2, \dots, b_n \in \coprod_{\beta \in J} B_{\beta}, u_1, v_1, \dots, u_n, v_n \in S$, such that

$$a = a_1u_1,$$

$$a_1v_1 = a_2u_2, \quad u_1b = v_1b_2,$$

$$\dots$$

$$a_nv_n = c, \quad u_nb_n = v_nd.$$

Since $a \in \prod_{\alpha \in I} A_{\alpha}$ and $b \in \prod_{\beta \in J} B_{\beta}$, there uniquely exist $\alpha \in I, \beta \in J$ such that $a \in A_{\alpha}$ and $b \in B_{\beta}$. Now, $a_1u_1 = a \in A_{\alpha}$ implies that $a_1 \in A_{\alpha}$. Otherwise, if $a_1 \in A_{\alpha'}$ with $\alpha \neq \alpha'$, then $a_1u_1 \in A_{\alpha} \cap A_{\alpha'}$ which contradicts that $A_{\alpha} \cap A_{\alpha'} = \emptyset$. So $a_2u_2 = a_1v_1 \in A_{\alpha}$ and $a_2 \in A_{\alpha}$. Repeating this process, we conclude $a_3, \dots, a_n, c \in A_{\alpha}$. Similarly, we have $b, b_2, \dots, b_n, d \in B_{\beta}$. This shows that $a \otimes b = c \otimes d$ in $A_{\alpha} \otimes_S B_{\beta}$. \Box

Proposition 2.5. Let I, J be index sets, U, $U_j \in Act - S$, $j \in J$ and M, $M_i \in S - Act$, $i \in I$. Then

- (a) $Ann_{\prod_{i \in I} M_i}(U) = \prod_{i \in I} Ann_{M_i}(U).$
- (b) $Ann_{M}(\coprod_{j\in J}U_{j}) = \bigcap_{j\in J}Ann_{M}(U_{j}).$

Proof (a) It is obvious that $\coprod_{i \in I} Ann_{M_i}(U) \subseteq Ann_{\coprod_{i \in I} M_i}(U)$. Also, $\forall (m, m') \in Ann_{\coprod_{i \in I} M_i}(U), \forall u \in U$, we have $u \otimes m = u \otimes m'$ in $U \otimes (\coprod_{i \in I} M_i)$. From Lemma 2.4 it follows that $u \otimes m = u \otimes m'$ in $U \otimes M_i$ for some $i \in I$, and so $(m, m') \in Ann_{M_i}(U) \subseteq \coprod_{i \in I} Ann_{M_i}(U)$. This shows (a).

(b) Clearly, $\bigcap_{j \in J} Ann_M(U_j) \subseteq Ann_M(\coprod_{j \in J} U_j)$. Conversely, if $(m, m') \in Ann_M(\coprod_{j \in J} U_j)$ and $u \in U_j \subseteq \coprod_{j \in J} U_j$, $j \in J$, then $u \otimes m = u \otimes m'$ in $(\coprod_{j \in J} U_j) \otimes M$. By Lemma 2.4, we get $u \otimes m = u \otimes m'$ in $U_j \otimes M$. Thus, $Ann_M(\coprod_{i \in J} U_j) \subseteq \bigcap_{i \in J} Ann_M(U_j)$. This shows (b). \Box

It is well known that each S-act has a unique indecomposable decomposition (see [4] or [2]). Now, by our Lemma 2.4, we have the following lemma.

Lemma 2.6. Let A_S and $_SB$ be S-acts and $a \otimes b = a' \otimes b'$ in $A \otimes_S B$. Then a, a' and b, b' are in the same indecomposable subacts of A_S and $_SB$, respectively.

Theorem 2.7. If I is an ideal of S and $_{S}M \in S - Act$, then

$$Ann_M(S/I) \subseteq (IM \times IM) \cup \triangle_M$$

Moreover, $Ann_M(S/I) = (IM \times IM) \cup \triangle_M$ if and only if M is indecomposable.

Proof If we define

$$S/I \times M/IM \longrightarrow M/IM, \ (\bar{s}, \tilde{m}) \longmapsto \tilde{sm},$$

then M/IM is an S/I-act and $_S(M/IM) =_{S/I}(M/IM)$. Let

$$\phi: S/I \otimes_S M \longrightarrow M/IM, \quad \overline{s} \otimes m \longmapsto \widetilde{sm}.$$

Then ϕ is well-defined. In fact, suppose that $\bar{s} \otimes m = \bar{s}' \otimes m'$ for some $\bar{s}, \bar{s}' \in S/I, m, m' \in M$. Then there exist $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_n \in S/I, y_2, \dots, y_n \in M, r_1, t_1, \dots, r_n, t_n \in S$ such that

$$\bar{s} = \bar{x}_1 r_1, \bar{x}_1 t_1 = \bar{x}_2 r_2, r_1 m = t_1 y_2, \dots \dots \\ \bar{x}_n t_n = \bar{s}', r_n y_n = t_n m'.$$

Thus

$$\widetilde{sm} = \overline{s}\widetilde{m} = \overline{x}_1 r_1 \widetilde{m} = \overline{x}_1 \widetilde{r_1 m} = \overline{x}_1 t_1 \overline{y}_2$$
$$= \overline{x}_1 t_1 \overline{y}_2 = \dots = \overline{x}_n t_n \widetilde{m}' = \overline{s'} \widetilde{m}' = \widetilde{s'} \widetilde{m}'$$

i.e., ϕ is well-defined.

If $(m_1, m_2) \in Ann_M(S/I)$, then $\bar{s} \otimes m_1 = \bar{s} \otimes m_2$ and $\widetilde{sm_1} = \widetilde{sm_2}$ for all $s \in S$, in particular, $(m_1, m_2) \in (IM \times IM) \cup \triangle_M$. Thus, $Ann_M(S/I) \subseteq (IM \times IM) \cup \triangle_M$.

Suppose that $Ann_M(S/I) = (IM \times IM) \cup \Delta_M$. Then, for any $(m_1, m_2) \in M \times M$ and $a \in I$, we have $(am_1, am_2) \in Ann_M(S/I)$, in particular, $\overline{1} \otimes am_1 = \overline{1} \otimes am_2$. By Lemma 2.6, am_1, am_2 is in the same indecomposable subact of M. This implies that m_1, m_2 is in the same indecomposable subact. Hence, M is indecomposable.

Conversely, suppose M is indecomposable. It will suffice to prove that $(IM \times IM) \subseteq Ann_M(S/I)$. For any $(a_1m_1, a_2m_2) \in IM \times IM$, where $a_1, a_2 \in I$, $m_1, m_2 \in M$, and for any $\bar{s} \in S/I$, we have

$$\bar{s} \otimes a_1 m_1 = \bar{s}a_1 \otimes m_1 = \overline{sa_1} \otimes m_1 = 0 \otimes m_1,$$
$$\bar{s} \otimes a_2 m_2 = \bar{s}a_2 \otimes m_2 = \overline{sa_2} \otimes m_2 = 0 \otimes m_2.$$

Since M is indecomposable, there exist $y_2, \dots, y_n \in M, r_1, t_1, \dots, r_n, t_n \in S$ such that

$$r_1m_1 = t_1y_2,$$

 $r_2y_2 = t_2y_3,$
 \dots
 $r_ny_n = t_nm_2.$

It follows from this that $0 \otimes m_1 = 0 \otimes m_2$, i.e., $\bar{s} \otimes a_1 m_1 = \bar{s} \otimes a_2 m_2$. Hence, $(a_1 m_1, a_2 m_2) \in Ann_M(S/I)$. We complete the proof. \Box

Theorem 2.8. Let U_S and $_SM$ be S-acts and $M = \coprod_{\alpha \in I} M_\alpha$ the indecomposable decomposition of M. Then the following statements are equivalent:

- (a) U_S is $_SM$ -faithful.
- (b) $\forall \alpha \in I, U \text{ is } M_{\alpha}\text{-faithful.}$
- (c) For any $_{S}N \in S$ -Act and every homomorphism $f : _{S}M \longrightarrow_{S} N$, if $1_{U} \otimes f$ is monic then f is monic.
- (d) For any $_{S}N \in S$ -Act and every homomorphism $f : _{S}N \longrightarrow_{S} M$, Ann $_{N}(U) \subseteq Kerf$.

Proof (a) \Leftrightarrow (b). By Proposition 2.5, we have $Ann_M(U) = \coprod_{\alpha \in I} Ann_{M_\alpha}(U)$. Thus, $Ann_M(U) = \bigtriangleup_M = \coprod_{\alpha \in I} \bigtriangleup_{M_\alpha} \iff Ann_{M_\alpha}(U) = \bigtriangleup_{M_\alpha} (\forall \alpha \in I) \iff \forall \alpha \in I, U \text{ is } M_\alpha\text{-faithful.}$

(a) \Rightarrow (c). Suppose that $Ann_M(U) = \triangle_M$, $f \in Hom_S(M, N)$ and $1_U \otimes f$ is monic. If $(m_1, m_2) \in Kerf$, then $f(m_1) = f(m_2) \in N$ and we have $u \otimes f(m_1) = u \otimes f(m_2)$ for all $u \in U$, i.e., $(1_U \otimes f)(u \otimes m_1) = (1_U \otimes f)(u \otimes m_2)$. This implies $u \otimes m_1 = u \otimes m_2(\forall u \in U)$. Thus $(m_1, m_2) \in Ann_M(U) = \triangle_M$ and hence $m_1 = m_2$. So, $Kerf = \triangle_M$, i.e., f is monic.

(c) \Rightarrow (a). Assume (c). If $(m_1, m_2) \in Ann_M(U)$, then $u \otimes m_1 = u \otimes m_2 (\forall u \in U)$. Let $f: M \longrightarrow M/\lambda(m_1, m_2)$ be canonical epimorphism where $\lambda(m_1, m_2)$ is a congruence on $_SM$ generated by (m_1, m_2) . Then

$$1_U \otimes f: U \otimes M \longrightarrow U \otimes M / \lambda(m_1, m_2), \ u \otimes m \longmapsto u \otimes f(m) = u \otimes \bar{m}$$

is monic. In fact, for any $u \otimes m$, $u' \otimes m' \in U \otimes M$, if $u \otimes \overline{m} = u' \otimes \overline{m'}$, then there exist $x_1, x_2, \dots, x_n \in U$, $\overline{y}_2, \dots, \overline{y}_n \in M/\lambda(m_1, m_2) \ s_1, t_1, \dots, s_n, t_n \in S$ such that

$$u = x_{1}s_{1},$$

$$x_{1}t_{1} = x_{2}s_{2}, \quad s_{1}\bar{m} = t_{1}\bar{y}_{2},$$

$$\dots$$

$$x_{n}t_{n} = u', \quad s_{n}\bar{y}_{n} = t_{n}\bar{m'}.$$

Thus, we get $(s_1m, t_1y_2), \dots, (s_ny_n, t_nm') \in \lambda(m_1, m_2)$. If $s_1m = t_1y_2$, then

$$u \otimes m = x_1 s_1 \otimes m = x_1 \otimes s_1 m = x_1 \otimes t_1 y_2.$$

If $s_1m \neq t_1y_2$, then there exist $p_1, \dots, p_k \in S$, such that

$$s_1m = p_1c_1, \quad p_2d_2 = p_3c_3, \cdots, \quad p_{k-1}d_{k-1} = p_kc_k,$$

$$p_1d_1 = p_2c_2, \cdots, p_{k-1}d_{k-1} = p_kc_k, p_kd_k = t_1y_2,$$

where $(c_j, d_j) \in \{(m_1, m_2), (m_2, m_1)\}, j = 1, \dots, k$. So

$$u \otimes m = x_1 s_1 \otimes m = x_1 \otimes s_1 m = x_1 \otimes p_1 c_1$$

= $x_1 p_1 \otimes c_1 = x_1 p_1 \otimes d_1 = x_1 \otimes p_1 d_1$
= $\cdots = x_1 \otimes p_k d_k = x_1 \otimes t_1 y_2.$

By repeating the above arguments, we have

$$u \otimes m = x_1 \otimes t_1 y_2 = x_1 t_1 \otimes y_2 = x_2 s_2 \otimes y_2$$

= $x_2 \otimes s_2 y_2 = x_2 \otimes t_2 y_3 = \cdots$
= $x_n \otimes t_n m' = x_n t_n \otimes m' = u' \otimes m'.$

Therefore $1_U \otimes f$ is monic. Now, by (c), f is monic and so $\lambda(m_1, m_2) = Kerf = \triangle_M$, i.e., $m_1 = m_2$, whence $Ann_M(U) = \triangle_M$.

(a) \Rightarrow (d). Suppose that $Ann_M(U) = \triangle_M$. For any $f \in Hom_S(N, M)$, $(n_1, n_2) \in Ann_N(U)$, we have $u \otimes n_1 = u \otimes n_2$ for all $u \in U$. Thus

$$u \otimes f(n_1) = (1_U \otimes f)(u \otimes n_1) = (1_U \otimes f)(u \otimes n_2) = u \otimes f(n_2)$$

for all $u \in U$. This means $(f(n_1), f(n_2)) \in Ann_M(U) = \Delta_M$ and $f(n_1) = f(n_2)$. Hence $(n_1, n_2) \in Kerf$. This shows that $Ann_N(U) \subseteq Kerf$.

(d) \Rightarrow (a). Assume (d). If we take $f = id_M : M \longrightarrow M$, then $Ann_M(U) \le Kerf = \triangle_M$ and the result follows. \Box

3 Completely faithfulness

Definition 3.1. An S-act U_S is said to be completely faithful in case $Ann_M(U) = \triangle_M$ for every left S-act M.

For example, since S_S is a generator in Act-S, S_S is completely faithful (see Proposition 3.7).

Theorem 3.2. For an S-act U_S , the following statements are equivalent:

- (a) U_S is completely faithful.
- (b) For every indecomposable left S-act T, U is $_{S}T$ -faithful.
- (c) For any $_{S}N$, $_{S}M \in S$ -Act and every homomorphism $f : _{S}M \longrightarrow _{S}N$, if $1_{U} \otimes f$ is monic, then f is monic.
- (d) For any $_{S}N, _{S}M \in S$ -Act and every homomorphism $f : _{S}M \longrightarrow_{S}N, Ann_{M}(U) \subseteq \ker f.$

Proof The proof is similar to the one of Theorem 2.8 \Box

Let $Z = \{z\}$ be a set of one-element. Then Z is an S-act with only one way. Such an S-act is called the zero S-act.

Proposition 3.3. Let Z be the zero right S-act and M a left S-act. Then M is indecomposable S-act if and only if $Ann_M(Z) = \nabla_M$.

Proof It is obvious that M is indecomposable $\iff |Z \otimes M| = 1 \iff Ann_M(Z) = M \times M = \nabla_M.$

Theorem 3.4. The following statements are equivalent:

- (a) Each right S-act is completely faithful.
- (b) The zero right S-act is completely faithful.
- (c) $S = \{1\}.$

Proof (a) \Rightarrow (b) is clear.

(b) \Rightarrow (c). Let Z be the zero right S-act. Since ${}_{S}S = S1$ is indecomposable, we have, by Proposition 3.3, $Ann_{S}(Z) = \nabla_{S}$. Now, $Ann_{S}(Z) = \Delta_{S}$ implies $S = \{1\}$.

(c)⇒(a). Suppose that $S = \{1\}$. Then, for any $_{S}M \in S-Act$, $U_{S} \in Act-S$, we have $U \otimes M = U \times M$. Hence, $Ann_{M}(U) = \Delta_{M}$, i.e., U is $_{S}M$ -faithful. □

The proof of the following proposition is straightforward.

Proposition 3.5. Let S and T be monoids, and let A_S , $_{S}B_T$ be acts. Then

- (a) If A_S and B_T are completely faithful, then $(A \otimes B)_T$ is completely faithful.
- (b) If $(A \otimes B)_T$ is completely faithful, then B_T is completely faithful.

Proposition 3.6. Let U_S , V_S , and $_SM$ be S-acts. If U_S generates V_S , then $Ann_{_M}(U) \subseteq Ann_{_M}(V)$.

Proof For any $(m_1, m_2) \in Ann_M(U)$ and $x \in V$, there exist $f \in Hom_S(U, V)$ and $u \in U$ such that x = f(u) since $Tr_V(U) = \bigcup \{Imf | f \in Hom_S(U, V)\} = V$. So $x \otimes m_1 = f(u) \otimes m_1 = (f \otimes 1_M)(u \otimes m_1) = (f \otimes 1_M)(u \otimes m_2) = f(u) \otimes m_2 = x \otimes m_2$, and thus $(m_1, m_2) \in Ann_M(V)$. Hence $Ann_M(U) \subseteq Ann_M(V)$. \Box

Proposition 3.7. Every generator in Act - S is completely faithful.

Proof Suppose that G_S is a generator in Act - S. Since $Tr_S(G) = S$, there exist $f \in Hom_S(G, S)$ and $x \in G$ such that f(x) = 1. Let M be an arbitrary left S-act and $(m_1, m_2) \in Ann_M(G)$. Then $x \otimes m_1 = x \otimes m_2$. So

$$1 \otimes m_1 = f(x) \otimes m_1 = (f \otimes 1_M)(x \otimes m_1) = (f \otimes 1_M)(x \otimes m_2) = f(x) \otimes m_2 = 1 \otimes m_2$$

which shows that $m_1 = m_2$. Hence $Ann_M(G) = \triangle_M$. \Box

Theorem 3.8. Let T and S be monoids, ${}_{T}U_{S}$ the S - T-biact, ${}_{S}M \in S$ -Act and ${}_{T}C \in T$ -Act. Let $U^{*} = Hom_{T}(U, C) \in S - Act$. Then

- (a) $Ann_M(U) \subseteq Rej_M(U^*).$
- (b) If $_TC$ cogenerates $U \otimes M$, then $Ann_M(U) = Rej_M(U^*)$.
- (c) If $_TC$ is a cogenerator, then U_S is completely faithful if and only if $_SU^*$ is a cogenerator in S Act.

Proof By [3] Proposition 2.5.19,

 $\phi: Hom_{S}(M, Hom_{T}(U, C)) \longrightarrow Hom_{T}(U \otimes_{S} M, C)$

defined by

$$\phi(\gamma)(x \otimes m) = (\gamma(m))(x)$$

for any $x \in U$, $m \in M$ and $\gamma \in Hom_s(M, Hom_T(U, C))$, is a bijection.

(a) For any $\gamma \in Hom_s(M, U^*)$, $(m_1, m_2) \in Ann_M(U)$ and $x \in U$, we have $x \otimes m_1 = x \otimes m_2$, and then $\phi(\gamma)(x \otimes m_1) = \phi(\gamma)(x \otimes m_2)$. Thus, $(\gamma(m_1))(x) = (\gamma(m_2))(x)$ for all $x \in U$ which shows that $\gamma(m_1) = \gamma(m_2)$, that is, $(m_1, m_2) \in Ker\gamma$. Therefore, $Ann_M(U) \subseteq Rej_M(U^*)$.

(b) It will suffice to prove that $Rej_M(U^*) \subseteq Ann_M(U)$. For any $h \in Hom_T(U \otimes_S M, C)$, there exists a unique $\gamma \in Hom_S(M, U^*)$ such that $\phi(\gamma) = h$. Also, for any $(m, m') \in Rej_M(U^*)$ and $u \in U$, we have

$$h(u \otimes m) = \phi(\gamma)(u \otimes m) = (\gamma(m))(u) = (\gamma(m'))(u)$$
$$= \phi(\gamma)(u \otimes m') = h(u \otimes m')$$

since $\gamma(m) = \gamma(m')$. This implies that $(u \otimes m, u \otimes m') \in \operatorname{Rej}_{U \otimes M}(C)$. By noting that C cogenerates $U \otimes M$, $\operatorname{Rej}_{U \otimes M}(C) = \triangle_{U \otimes M}$. So, $u \otimes m = u \otimes m'$ for all $u \in U$. Hence $(m, m') \in \operatorname{Ann}_M(U)$.

(c) This part follows (b). \Box

References

- F. W. Anderson and Kent R. Fuller, "Rings and Categories of Modules", Spring-Verlag, New York, 1995.
- [2] Y. Q. Chen and K. P. Shum, Projective and indecomposable S-acts, Science in China, Ser. A, 42(1999), 593-599.
- [3] M. Kilp, U. Knauer and A. V. Mikhalev: "Monoids, Acts and Categories with Applications to Wreath Products and Graphs", Walter de Gruyter, Berlin, 2000.
- [4] U. Knauer, Projectivity of acts and Morita equivalence on monoids, Semigroup Forum, 3(1972), 359-370.