East-West J. of Mathematics: Vol. 7, No 1 (2005) pp.45-49

Inclusions among Multipliers from L^p_r to l_q

S. K. Gupta

Department of Mathematics and Statistics Po Box 36, Al-Khodh 123 Sultan Qaboos University, Sultanate of Oman E-mail: gupta@squ.edu.om

Abstract

Let G be a compact abelian group with dual group Γ . We study multipliers from the space of p-integrable functions on G with Fourier transform in the sequence space $l_r(\Gamma)$ into the sequence space $l_q(\Gamma)$ and prove some new results. We suggest some open problems.

Multipliers from L_r^p to l_q :

For all unexplained notation see the articles [4],[5]. Let G be a compact abelian group with dual Γ . For $1 \leq p < \infty$, define

$$L_{r}^{p}(G) = \{ f : f \in L^{p}(G), \hat{f} \in l_{r}(\Gamma) \}.$$

We will write $L_r^p(G)$ as L_r^p . Note that $L_r^p = L^p$ if $r \ge p' \ge 2$. For p = 1, set $L_r^p = A_r$. A function ϕ on Γ is said to be a multiplier from L_r^p to $l_q(\Gamma)$ if $\phi \hat{f} \in l_q$ for every $f \in L_r^p$. The set of all multipliers from L_r^p to l_q is denoted by (L_r^p, l_q) . It is easily seen that ϕ induces a bounded linear operator from L_r^p to l_q .

We note that (L^p, l_q) and (A_p, A_q) -multipliers have been studied in [1], [3], [5], [8], [9], [10]. Let ϕ be a Young's function (for definition, see [4]or [7]) and $L^{\phi}(G)$ be the corresponding Orlicz space. Let

$$L_r^{\phi}(G) = \{ f : f \in L^{\phi}(G), \hat{f} \in l_r(\Gamma) \}.$$

A simple use of Hölder's inequality shows that

$$l_{(rq/(r-q))} \subseteq (A_r, l_q) \subseteq (L_r^{\phi}, l_q) \subseteq (L_r^p, l_q), r > 2, 1 \le q \le r < \infty, p > 1.$$

Key words:

²⁰⁰⁰ AMS Mathematics Subject Classification: 43A22, 42A45.

Note that if $1 \leq r \leq 2$, then $\hat{L_r^{\phi}} = \hat{A_r} = l_r$ by a simple use of Plancherel Theorem and problems posed in this article are not interesting then.

Let $A \subset B$ denote that A is a proper subset of B. It was shown in [4] that $l_{(rq/(r-q))} \subset (L_r^p, l_q), r > 2, 1 \leq q \leq r < \infty, p > 1.$ (In fact it was proved that $l_{(rq/(r-q))} \subset (L_r^{\phi}, l_q), r > 2, 1 \leq q \leq r < \infty, p > 1$ for $\phi_{\alpha}(t) = t(\ln^+ t)^{\alpha}, \alpha > 1/2$).

Naturally, one may ask whether (A_r, l_q) is properly contained in (L_r^{ϕ}, l_q) for every Young's function ϕ . This remains open. Therefore the following weaker question that (A_r, l_q) is properly contained in (L_r^p, l_q) for every p > 1 is worth exploring. We show that this is so if p = r' (then $L_r^{r'} = L^{r'}$). In fact, we prove a stronger result:

Main Theorem

Let G be a compact abelian, not totally disconnected group, r > 2 and $1 \le p < r'$. Then

$$(L_r^p, l_q) \subset (L^{r'}, l_q), 1 \le q < r < \infty.$$

The proof consists of three steps: In Step 1, we prove Theorem for the case $G = \mathbb{T}$, the circle group. Then the proof of the general case is reduced to the case $G = \mathbb{T}$, by using the fact that there exists a closed subgroup H of G such that G/H is isomorphic with \mathbb{T} . To prove Step 1, we need the following Theorem from (Theorem 8, [5]):

Theorem Let $1 , and <math>\phi$ be a complex-valued function defined on \mathbf{Z} , then $\phi \in (L^p, l_q)$ if

(a)

$$M = \sum_{n \in \mathbf{Z} \setminus \{0\}} \frac{|\phi(n)|^{(pq/(p-q))}}{(|n|)^{((p-2)q/(p-q))}} < \infty \text{ when } q < p;$$

(b)

$$M = \sup_{n \in \mathbf{Z}} |n|^{1/s} |\phi(n)| < \infty$$
 when $p \le q \le p'$ and $1/s = (1/q - 1/p')$.

Proof of Main Theorem

Step 1($G = \mathbb{T}$) We shall use the following fact: if $\psi \in l_r(r > 2)$, then

$$\sum_{n \in \mathbb{Z}} |n|^{p-2} |\psi(n)|^p < \infty \text{ when } 1 \le p < r'.$$

Indeed, by Hölder's inequality, we get

$$\sum_{n \in \mathbb{Z}} |n|^{p-2} |\psi(n)|^p \le \left(\sum_{n \in \mathbb{Z}} |\psi(n)|^r\right)^{p/r} \left(\sum_{n \in \mathbb{Z}} |n|^{\frac{(p-2)r}{r-p}}\right)^{(r-p)/r} < \infty$$

46

S. K. GUPTA

as
$$\frac{r(2-p)}{r-p} > 1.$$

Case 1. q < r'. We shall construct a ϕ satisfying the condition (a) of Lemma for p = r', and a $\psi \in l_r$ such that ψ is non-negative, even, decreasing and $\phi \psi \notin l_q$. Then $\phi \in (L^{r'}, l_q)$ by Lemma (a) and $\psi \in \hat{L}_r^p$ for $1 \le p < r'$ (see [2]). Hence $\phi \notin (L_r^p, l_q)$.

Define

$$\psi(n) = \begin{cases} \frac{1}{|n|^{1/r} (\ln |n|)^{1/2}}, & |n| \ge 2;\\ 1, & \text{otherwise.} \end{cases}$$
$$\phi(n) = \begin{cases} \frac{|n|^{((q-r)/qr)}}{(\ln |n|)^{((2-q)/2q)}}, & |n| \ge 2;\\ 1, & \text{otherwise.} \end{cases}$$

Since r > 2, ψ satisfies the desired conditions. We show below that ϕ satisfies condition (a) of Lemma for p = r'.

$$\sum_{|n|\geq 2} \frac{|\phi(n)|^{\frac{qr'}{r'-q}}}{|n|^{\binom{r'-2}{r'-q}}q} = 2\sum_{n=2}^{\infty} \frac{n^{(\frac{q-r}{qr})(\frac{qr'}{r'-q})}}{(\ln n)^{\binom{2-q}{2q}(\frac{qr'}{r'-q})}n^{\frac{q(r'-2)}{r'-q}}}$$
$$= 2\sum_{n=2}^{\infty} \frac{1}{n \ln n^{\frac{(2-q)r'}{2(r'-q)}}}$$

as $(\frac{q-r}{qr})(\frac{qr'}{r'-q}) = \left(\frac{(r'-2)q}{r'-q} - 1\right)$. Since $\frac{(2-q)r'}{2(r'-q)} > 1$, ϕ satisfies condition (a) of Theorem. Next we show that $\phi \psi \notin l_q$,

$$\sum_{|n|\geq 2} |\phi(n)|^{q} |\psi(n)|^{q} = 2\sum_{n=2}^{\infty} \frac{n^{\frac{q-r}{r}}}{(\ln n)^{\frac{(2-q)}{2}} n^{q/r} (\ln n)^{q/2}}$$
$$= 2\sum_{n=2}^{\infty} \frac{1}{n \ln n} = \infty$$

Hence the proof of case 1 is complete. Case 2. $r' \leq q$. Define

$$\phi(n) = |n|^{((1/r) - (1/q))} \quad \forall n \in \mathbb{Z}$$

and

$$\psi(n) = \begin{cases} \frac{1}{|n|^{1/r} (\ln |n|)^{1/q}}, & |n| \ge 2; \\ 1, & \text{otherwise.} \end{cases}$$

Then ϕ satisfies condition (b) of Theorem for p = r'. Hence $\phi \in (L^r, l_q)$. Since $q < r, \psi \in l_r$. Therefore, $\psi \in \hat{L}^p_r$ for $1 \le p < r'$ (see, [2]). We show that $\phi \psi \notin l_q$.

$$\sum_{|n|\geq 2} |\phi(n)|^q |\psi(n)|^q = 2 \sum_{n=2}^{\infty} \frac{n^{(q-r)/r}}{n^{q/r} (\ln n)} = 2 \sum_{n=2}^{\infty} \frac{1}{n \ln n} = \infty.$$

Hence $\phi \notin (L_r^p, l_q)$.

This completes the proof of step 1.

Step 2 Let G be a compact abelian group such that Theorem holds for G/H, for some closed subgroup H of G. Then it holds for G.

Proof Let $\phi \in (L_r^p(G/H), l_q(H^{\perp}))$ such that $\phi \notin (L^{r'}(G/H), l_q(H^{\perp}))$. Let $f \in L^{r'}(G/H)$ be such that $\phi \widehat{f} \notin l_q(H^{\perp})$. Define $\phi = 0$ on $\Gamma \setminus H^{\perp}$. We show that $\phi \in (L_r^p, l_q)$ and $\phi \notin (L^{r'}, l_q)$. Let $g \in L_r^p$, then $\pi_H(g) \in L_r^p(G/H)$ and $(\pi_H(g)) = \widehat{g}$ on $H^{\perp}(\pi_H(f) = \int_H f(x+y) dm_H(y)$, where m_H denotes the Haar measure on H). Therefore

$$\phi \widehat{g} = \begin{cases} \phi(\pi_H(g)) & \text{on } H^{\perp}; \\ 0 & \text{otherwise.} \end{cases}$$

Hence $\phi \widehat{g} \in l_q$ as $\phi(\pi_H(g)) \in l_q(H^{\perp})$. Therefore, $\phi \in (L_r^p, l_q)$. Also, $fo\pi_H \in L^{r'}(G)$ and $(fo\pi_H) = \widehat{f}\chi_{H^{\perp}}$. Hence $\phi(fo\pi_H) \notin l_q$ and so $\phi \notin (L^{r'}, l_q)$. This completes the proof of step 2.

Step 3 Since G is not totally disconnected, Γ contains an element of infinite order (see,[6]) say, γ_0 . Let S denote the subgroup generated by γ_0 and $H = S^{\perp}$. Then G/H is isomorphic with the circle group \mathbb{T} . Now the proof of the theorem follows from step 1 and step 2.

Corollary Let r > 2 and $1 \le q < r < \infty$, then

$$(A_r, l_q) \subset (L^{r'}, l_q)$$

Note Let $r > 2, 1 \le q < r < \infty$ and $1 \le p < r'$. It remains open whether

$$(A_r, l_q) \subset (L_{r'}^p, l_q)$$

References

- L.M. Bloom and W.R.Bloom, Multipliers on spaces of functions with p-summable Fourier transforms, Lecture Notes in Mathematics 1359, Springer-Verlag, Berlin, Heidelberg, New York, 1987, 100-112.
- [2] R.E. Edwards, Fourier Series: A modern introduction II, Holt, Rinehart and Winston, 1979.
- [3] Sanjiv Kumar Gupta, Shobha Madan, U. B. Tewari, "Multipliers on Spaces of Functions on Compact Groups with *p*-Summable Fourier Transforms", Bulletin of Australian Mathematical Society, Vol 47(1993).
- [4] Sanjiv Kumar Gupta, "Some Problems on A_p -spaces", Bulletin of Allahabad Mathematical Society, Vol 17(2002), 39-43.

S. K. GUPTA

- [5] Sanjiv Kumar Gupta, "Multipliers from L^p to l_q ", Indian Journal of Mathematics, Vol 45(2)(2003), 151-158.
- [6] E. Hewitt and K.A. Ross, "Abstract Harmonic Analysis", Grundlehren der math. Wiss., Band 152, II, Springer-Verlag, Berlin, Heidelberg, New York, 1970.
- [7] M.A.Krasnoselskii and Ya. B. Rutickii, *Convex functions and Orlicz spaces*, (Translated from Russian), Gronigen, 1961.
- [8] R. Larsen, The algebra of functions with Fourier transforms in L^p: A Survey, Nieuw Archief Voor Wiskunde (3), XXII, 195-240, (1974).
- [9] R. Larsen, T.S. Liu, and J.K. Wang On the fuctions with Fourier transforms in L^p, Michigan Math. J. 11, 369-378, (1964).
- [10] U.B. Tewari and A.K. Gupta, Multipliers between some function spaces on groups, Bull. Austral. Math. Soc. 18 (1978), 1-11.