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Abstract

This is a survey of some recent work on the spectral properties and
the Fourier asymptotics of self-similar measures defined on R. Given an
IFS {F1, ..., Fm} and a set of probability weights p1, ..., pm, then there is
a unique self-similar probability µ which satisfies

µ =

m∑
j=1

pjµ ◦ F−1
j .

It is known that µ is either purely singular or absolutely continuous.
We will explain how this question is closely related to the asymptotic
properties of its Fourier transform. We also explore the existence of the
orthonormal bases of exponential functions in the L2(µ) space and its
relation to tiling. Some open questions are listed.

1 Self-similar measures

We first review the concept of Hausdorff measure and Hausdorff dimension (see
[5] and [M]). Let E be a subset of R

n and s ≥ 0. For all δ > 0 we define

Hs
δ(E) = inf{

∞∑
i=1

|Ui|s : E ⊂
∞⋃

i=1

Ui and|Ui| < δ}

Key words: Absolute continuity, Fourier transform, Hausdorff dimension, random variable,
PV-number, self-similar measure, singularity, spectral measure, spectral set, tiling.
2000 AMS Mathematics Subject Classification: Primary 42-02; secondary 28-02, 26-02.

23



24 Self-similar Measures and Harmonic Analysis

where |U | = sup{|x − y| : x, y ∈ U} is the diameter of U . As δ decreases, this
infimum increases and approaches a limit as δ → 0, define

Hs(E) = lim
δ→0

Hs
δ(E) = sup

δ>0
Hs

δ(E).

This limit exists, perhaps as 0 or ∞, for all E ⊂ R
n. Hs(E) is called the

s−dimensional Hausdorff measure of E. Hausdorff measure generalizes Lebesgue
measure.

It is easy to see that for every set E ⊂ R
n there is a number dimH E,

called the Hausdorff dimension of E, such that Hs(E) = ∞ if s < dimH E and
Hs(E) = 0 if s > dimH E. Thus

dimH E = inf{s : Hs(E) = 0} = sup{s : Hs(E) = ∞}.

So the Hausdorff dimension of a set E may be thought of as the number s at
which Hs(E) ‘jumps’ from ∞ to 0.

Let D be a closed set in R
n. A map F : D → D is called a contraction on

D if there is a number c with 0 < c < 1 such that |F (x)− F (y)| ≤ c|x− y| for
all x, y in D.

If the equality holds, i.e., |F (x) − F (y)| = c|x − y|, then F (x) = cRx + b,
where R is an orthogonal matrix and b is a vector in R

n. Thus F transforms
sets into geometrically similar ones, and we call F a similarity.

Let {F1, ..., Fm} be a finite set of contractions on D, which is also called
an iterated function system (IFS), then there is a unique compact set E in D
which is invariant under the IFS, i.e.,

E =
m⋃

j=1

Fj(E). (1)

To see this, we define a metric between subsets of D. Let Ψ denote the class
of all non-empty compact subsets of D. For any δ > 0 and any A ∈ Ψ, let
Aδ = {x ∈ D : |x − a| ≤ δ for some a ∈ A} be the δ−parallel body of A. The
Hausdorff metric on Ψ is defined by

d(A, B) = inf{δ : A ⊂ Bδ andB ⊂ Aδ}.

It is easy to check that d is a complete distance on Ψ.
Let F : Ψ → Ψ be defined by F (A) =

⋃m
j=1 Fj(A). Let A be any compact

set in Ψ such that Fj(A) ⊂ A for all j, for example D ∩ Br(0) for large r
will do, where Br(0) is the closed ball centered at the origin. Then the k−th
iterate of F, F k(A) = F ◦ F ◦ · · · ◦ F (A), is a decreasing sequence of non-
empty compact sets and it has a non-empty compact intersection E satisfying
E = F (E) =

⋃m
j=1 Fj(E). It can be checked that such set E is unique and it is

called the attractor or the invariant set of the IFS {F1, ..., Fm}.
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When the union E =
⋃m

j=1 Fj(E) is disjoint we say that {F1, ..., Fm} sat-
isfies the strong separation condition. A weaker version of the separation con-
dition is the open set condition, it means that there is a non-empty bounded
open set U ⊂ D such that

m⋃
j=1

Fj(U) ⊂ U (2)

with the union disjoint. If this holds, then E ⊂ U, where U is the closure of
U, indeed, since F (U) ⊂ U, so F (U) ⊂ F (U) ⊂ U. Thus F k(U) is a decreasing
sequence of compact sets convergent to the F−invariant set E in Hausdorff
metric. We have

E =
∞⋂

k=1

F k(U) ⊂ U.

Clearly, strong separation condition implies the open set condition.
If F1, ..., Fm are similarities, i.e., Fj(x) = ρjRjx + bj, where 0 < |ρj| < 1,

Rj is an orthogonal matrix and bj is a vector in R
n, for j = 1, ..., m, then E

in (1.1) is called a self-similar set since it is made up of a finite copies of itself
of reduced size. Furthermore, if in addition assume that the IFS satisfies the
open set condition, then 0 < Hα(E) < ∞, where α is the unique solution to
the equation

m∑
j=1

ρα
j = 1. (3)

α is called the similarity dimension of the IFS {F1, ..., Fm}, which is also equal
to the Hausdorff dimension of the set E [H].

Example For 0 < ρ < 1, let F1(x) = ρx and F2(x) = ρx + (1 − ρ). If ρ =
1/3, then the attractor of the contractions F1, F2 is the standard middle-third
Cantor set, and F1, F2 satisfy the strong separation condition. If ρ = 1/2, then
the attractor of the contractions F1, F2 is [0,1], and F1, F2 satisfy the open set
condition (1.2) with an open set U = (0, 1). If ρ > 1/2, then the attractor of
the contractions F1, F2 is [0,1], but F1, F2 do not satisfy the open set condition.

We will be interested in measures supported in E. Given an IFS {F1, ..., Fm}
and a set of probability weights p1, ..., pm, where 0 ≤ pj ≤ 1 and

m∑
j=1

pj = 1.

Then there is a unique probability μ which satisfies

μ(A) =
m∑

j=1

pjμ ◦ F−1
j (A) (4)

for all Borel measurable sets A ⊂ E. We call μ a self-similar measure if all F ′
js

are similarities.
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Let IA be the indicator function of a subset A. Then (1.4) is equivalent to∫
IA(x)dμ =

m∑
j=1

pj

∫
IA(Fj(x))dμ.

By approximations by simple functions, it is also equivalent to∫
f(x)dμ =

m∑
j=1

pj

∫
f(Fj(x))dμ (5)

for every μ−integrable function f.
The existence and the uniqueness of μ was proved by Hutchinson [H] using

the contractive mapping principle. To do this we define a metric on the space
of all probability measures supported on E. The Hutchinson metric is defined
by

d(μ, ν) = sup{|
∫

fdμ −
∫

fdν | : f satisfies|f(x) − f(y)| ≤ |x− y|}.

It is not hard to show that this defines a metric and the metric space is complete.
It is also easy to show that the mapping T : μ →

∑m
j=1 pjμ◦F−1

j is contractive
in the Hutchinson metric. Thus we have existence and uniqueness, with μ given
constructively as the limit (in the Hutchinson metric) of iterating T starting
with any probability measure.

Example (Continued from Example 1) We assign equal probability p1 = p2 =
1/2 to F1 and F2, respectively, then the invariant measure μ is the Lebesgue
measure on [0,1] if ρ = 1/2, and μ is the standard middle-third Cantor measure
if ρ = 1/3.

Let μ be the self-similar measure associated with the probability weights
{p1, ..., pm} and the IFS {F1, ..., Fm}, where Fj(x) = ρjRjx+bj , for j = 1, ..., m.
Then there is a natural choice for these weights, under the open set condition
which we call natural weights, given by the identity

pj = ρα
j

where α is the unique value that makes (1.3) hold. Under the open set con-
dition, the value α coincides with the Hausdorff dimension of the attractor
E, and we have 0 < Hα(E) < ∞, and the self-similar measure μ is equal to
a multiple of Hα restricted on the attractor E [H]. If we choose probability
weights pj not equal to the natural weights, we obtain measures that are still
supported in E, but in fact can be supported by a smaller sets. In this sense,
the natural weights give rise to the biggest measure. It was shown in [St1] that
the minimum Hausdorff dimension of a set that supports μ is given by

(
m∑

j=1

pj logpj)/(
m∑

j=1

pj logρj). (6)
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Example As in Example 2, we assign the natural weights p1 = p2 = 1/2 to
F1(x) = x/2 and F2(x) = x/2 + 1/2, then we obtain the Lebesgue measure on
[0,1]. If we choose different weights we obtain a measure supported on a proper
subset of real numbers in [0,1] whose binary expansion has asymptotically a
proportion of p1 zeroes to p2 ones. This set has Lebesgue measure zero (unless
p1 = p2) and Hausdorff dimension given by (1.6).

For the rest of the paper, unless specified, we will only study the case where
R

n = R.
When the IFS are similarities with equal contraction ratio ρ with 0 < |ρ| <

1, i.e., Fj(x) = ρ(x + bj), then |Fj(x) − Fj(y)| = |ρ||x − y| for all j = 1, ..., m,
and the induced self-similar set and the self-similar measure can be viewed as
generated by a sequence of i.i.d. random variables as follows.

Let X1, X2, . . . be a sequence of i.i.d. random variables each taking real
values b1, . . . , bm with probability p1, . . . , pm respectively. For 0 < |ρ| < 1,
define a random variable

S = Sρ =
∞∑

n=1

ρnXn. (7)

Let μρ be the probability measure induced by S, i.e.,

μρ(A) = Pr ob{ω : S(ω) ∈ A}. (8)

The range of S, or the support of μρ, is given by

E = {
∞∑

n=1

ρndn : dn ∈ {b1, . . . , bm}}

= {ρ(d1 +
∞∑

n=1

ρndn) : dn ∈ {b1, . . . , bm}}

=
m⋃

j=1

ρ(bj + E)

=
m⋃

j=1

Fj(E) (9)

where Fj(x) = ρ(x + bj). Thus E is exactly the invariant compact set under
the IFS {F1, ..., Fm}. Note that Fj is bijective from E to Fj(E) and E depends
only on ρ and the set of digits b1, . . . , bm.

It is easy to see that the random variable S in (1.7) satisfies the equation

S = ρ(X1 + S′) (10)

where S′ has the same distribution as S and it is independent of X1.
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It can be verified that the measure μρ also satisfies equation (1.4). In fact,
we use (1.10) along with the total probability formula to obtain

μρ(A) = Pr ob(S ∈ A) = Pr ob(ρ(X1 + S′) ∈ A)

=
m∑

j=1

Pr ob(X1 = bj) Pr ob(ρ(bj + S′) ∈ A)

=
m∑

j=1

pj Pr ob(Fj(S′) ∈ A)

=
m∑

j=1

pj Pr ob(S′ ∈ F−1
j (A))

=
m∑

j=1

pjμρ(F−1
j (A)).

By uniqueness we obtain μ = μρ. In the following we will write μ for μρ if
no confusion will occur.

For any real number x, let

Fμ(x) = μ((−∞, x])

be the distribution function of μ, then Fμ(x) is continuous by a theorem of Lévy
[L]. Furthermore, by Jessen and Wintner’s “the law of pure types” theorem,
the measure μ is either purely singular or absolutely continuous [JW]. This can
also be argued as follows.

Suppose that μ has a nonzero singular component μs with 0 < μs(E) ≤ 1.
Let Es ⊂ E be the support of μs,then μs(Es) = μs(E) and Leb( Es) = 0.

Since Fj is bijective from E to Fj(E), so for any subset A ⊆ E, the restric-
tion of Fj on A is a bijection from A to its image, it follows that

F−1
j (Es) = F−1

j (Fj(Es)) = Es.

For any measurable set A by (1.4) we have

μs(A) = μs(A ∩ Es) = μ(A ∩ Es) =
m∑

j=1

pjμ(F−1
j (A ∩ Es))

and

μs(F−1
j (A)) = μs(F−1

j (A) ∩ Es) = μ(F−1
j (A) ∩ Es)

= μ(F−1
j (A) ∩ F−1

j (Es)) = μ(F−1
j (A ∩ Es)).

It follows that

μs(A) =
m∑

j=1

pjμs(F−1
j (A)).
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Hence the normalized probability measure μs/μs(E) also satisfies the self-
similar equation (1.4), by uniqueness we obtain μ = μs/μs(E) and thus μ
is purely singular. If μs = 0, then μ is absolutely continuous.

If 0 < | ρ | < 1/m, then the support of μ is a set of Cantor type and
has Lebesgue measure zero; hence μ is purely singular. If 1/m ≤ ρ < 1, then
different choice of the values b1, . . . , bm and the probability weights p, . . . , pm

will produce different type of the measure μ. The determination of which type
in general is very difficult, which we will explain in details in the following
sections.

2 Fourier transforms

For convenience, we write et(x) = ei2πtx in the sequel. The study of the measure
μ is closely related to the study of its Fourier transform

μ̂(t) =

∞∫
−∞

ei2πtxdμ(x) =

∞∫
−∞

et(x)dμ(x).

It is known that |μ̂(t)| ≤ μ̂(0) = 1, and μ̂(t) is uniformly continuous on R.
Suppose that μ is a self-similar measure defined by (1.4) with Fj(x) = ρj(x+bj),
0 < |ρj | < 1, associated with probability weights pj for j = 1, ..., m. By
replacing f(x) by et(x) in (1.5) it yields

μ̂(t) =
m∑

j=1

pjet(ρjbj)μ̂(ρjt).

In particular, if ρj = ρ for all j = 1, ..., m, then

μ̂(t) = μ̂(ρt)
m∑

j=1

pjet(ρbj)

= μ̂(ρ2t)
m∑

j=1

pjet(ρ2bj)
m∑

j=1

pjet(ρbj)

= · · ·

= μ̂(ρnt)
n∏

k=1

m∑
j=1

pjet(ρkbj)

Since μ̂(t) is uniform continuous and μ̂(0) = 1, so

μ̂(t) =
∞∏

k=1

m∑
j=1

pjet(ρkbj). (11)



30 Self-similar Measures and Harmonic Analysis

Note that (2.1) can also be obtained from (1.7) by considering convolutions
of i.i.d. random variables. Since ρkXk has a Fourier transform

∑m
j=1 pjet(ρkbj),

thus the Fourier transform of S =
∑∞

k=1 ρkXk is μ̂(t) =
∏∞

k=1

∑m
j=1 pjet(ρkbj).

Using (2.1) and denote μ̂ρ(t) = μ̂(t), it is easy to derive the following identity

μ̂ρ1/n(t) =
∞∏

k=1

m∑
j=1

pjet(ρk/nbj) =
n∏

l=1

μ̂ρ(ρ
l
n−1t). (12)

It is known that the asymptotic behavior of μ̂(t) gives information on the
distribution type of μ. For example, we have the following classical results
(Chapter 11, [Ka]):

(1) If μ̂(t) ∈ L2(R) then μ is absolutely continuous and has a density func-
tion in L2 (This ceases to be true if μ̂(t) ∈ Lp(R) for p > 2. If p > 2, then there
is a Fourier transform μ̂(t) ∈ Lp(R) such that the corresponding probability
measure is purely singular.)

(2) If μ̂(t) · tp ∈ L1(R), where p ≥ 0 is an integer, then μ is absolutely con-
tinuous and its density function has a bounded continuous (p+1)th derivative.

Thus (2.2) gives the asymptotic information of μ̂ρ1/n(t) in terms of μ̂ρ(t).
For example, if we know that μ̂ρ(t) ∈ L4(R), then μ̂ρ1/2 (t) ∈ L2(R).

3 Bernoulli convolutions and Fourier asymptotics

A very basic and nontrivial example is when m = 2 and each Xn takes two
values −1 and 1 with equal probability in (1.7). Then μ is the so called infinitely
convolved Bernoulli measure, or simply Bernoulli convolution. This measure
has been studied for seventy years but is still not completely understood today
(see [PSS] and the references there).

Let m = 2, p1 = p2 = 1/2, 0 < ρ < 1 and b1 = 1, b2 = −1 in (2.1), we
obtain

μ̂ρ(t) =
∞∏

n=1

cos ρn2πt. (13)

We know that measure is singular for 0 < ρ < 1/2. For ρ = 1/2, then

μ̂1/2(t) =
∞∏

n=0

cos(πt/2n).

Using a double angle formula sin 2x = 2 sinx cos x, for any k we have
k∏

n=0

cos(πt/2n) = [2k+1 sin(πt/2k)
k∏

n=0

cos(πt/2n)]/[2k+1 sin(πt/2k)]

=
sin 2πt

2k+1 sin(πt/2k)

=
sin 2πt

2πt

πt/2k

sin(πt/2k)
→ sin 2πt

2πt
, ask → ∞.
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Hence μ̂1/2(t) = sin 2πt
2πt =

∫ 1

−1 ei2πtxd(x
2 ) is the Fourier transform of the prob-

ability measure equals to 1
2Leb on [−1, 1], where Leb denotes the Lebesgue

measure.
Using this, it is not hard to verify that for any fixed k = 1, 2, . . . ., μ2−1/k

is absolutely continuous with a bounded density that has a kth derivative. In
fact, this can be obtained from (2.2) by letting ρ = 1/2. then

μ̂2−1/k (t) =
k∏

j=1

sin(2−j/k4πt)
2−j/k4πt

.

Hence μ̂2−1/k(t) · tk−1 ∈ L1(R) and we obtain the result.
It was conjectured that μ ought to be absolutely continuous for ρ ≥ 1/2.

However, this conjecture is not true and the results are known to be in connec-
tion with the algebraic integers.

Definition 3.1. An algebraic integer β > 1 is called a PV-number (Pisot-
Vijayarahavan number) if all its conjugate roots (i.e., all other roots of its
minimal polynomial), denoted by βi, i = 1, ..., m, satisfy |βi| < 1.

For example, every integer greater than one is a PV-number. The golden
ratio (1 +

√
5)/2 is an example of a nontrivial PV-number (It is a root of

x2 − x− 1 = 0, its conjugate root is (1−
√

5)/2, which is strictly less than one
in absolute value.) For any n ≥ 2, the positive root of the equation xn−xn−1−
· · · − x − 1 = 0 is a PV-number, which is called a simple PV-number.

In 1939 Erdös [3] showed that

Theorem 3.1. If 1 < ρ−1 < 2 is a PV-number, then the Fourier transform
μ̂(t) does not tend to zero at infinity.

By the Riemann-Lebesgue lemma (If μ is absolutely continuous then μ̂(t)
tend to zero at infinity) and the “pure theorem”, hence μ is purely singular.

To see why this happens, we first understand an important property of a
PV number.

A fundamental property of a PV number β1 is that dist(βn
1 , Z) tends to

zero at a geometric rate as n → ∞. Hence βn
1 is roughly an integer for all large

n. In fact, let β2, ..., βk be all conjugates of β1 and let

k∏
i=1

(x − βi) = xk − σ1x
k−1 + σ2x

k−2 + · · ·+ (−1)k−1σk−1x + (−1)kσk

be it minimal integral polynomial, where

σ1 =
∑

i

βi, σ2 =
∑
i<j

βiβj , ..., σk =
∏

i

βi

are all integers by the relation between roots and coefficients. Since βn
1 + βn

2 +
· · · + βn

k is a symmetric polynomial (a polynomial remains unchanged when
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all subindexes replaced by any of their permutations), by the Fundamental
Theorem on Symmetric Polynomials, there is a unique integral polynomial
p(x1, x2,..., xk) such that

βn
1 + βn

2 + · · ·+ βn
k = p(σ1, σ2, ..., σk).

Hence βn
1 + βn

2 + · · ·+ βn
k is an integer for all n.

Since β1 is a PV number, by definition, max2≤j≤k |βj| = θ < 1. Note that
βn

1 > 1, we have for all positive integer n

dist(βn
1 , Z) = dist(βn

2 + · · ·+ βn
k , Z) ≤ (k − 1)θn.

Using this property we can prove the Erdös Theorem. Let 1 < β = ρ−1 < 2,
then for all N ≥ 1

μ̂(βN ) =
∞∏

n=1

cos(ρn−N2π) = μ̂(1)
N−1∏
j=1

cos(βj2π).

Since β is an algebraic integer, 2βj �≡ 1
2 (mod1) for all j, which implies that∏N−1

j=0 cos(βj2π) �= 0 for all N. Note that μ̂(1) �= 0, hence μ̂(βN ) �= 0 for all N.
Thus

|μ̂(βN )| ≥ |μ̂(1)|
∞∏

j=0

cos((k − 1)θj2π) = δ > 0

for some δ. This proves that μ̂(t) does not tend to zero as t → ∞.
Salem [S] showed that

Theorem 3.2. For 0 < ρ < 1 with ρ �= 1/2, μ̂(t) � →0 as t → ∞ only if ρ−1 is
a PV-number.

Note that μ is purely singular for 0 < ρ < 1/2, the Erdös-Salem’s theorem
gives a large family of singular measures whose Fourier transforms tend to zero
at infinity, as is opposed to the Riemann-Lebesgue lemma.

It is known that the set of all PV-numbers is closed and bounded below,
hence it has a least element. Siegel [Si] showed that the positive root of β3−β−
1 = 0, denoted by β0 ≈ 1.3247179572... and β−1

0 ≈ 0.754877666..., is this least
element. This number is also called the silver number or plastic number. Pisot
and Dufresnoy [PD] showed that the golden ratio (1 +

√
5)/2 is the smallest

limit point of such numbers.
Thus by Erdös-Salem’s theorem if β−1

0 < ρ < 1, then μ̂(t) → 0 as t → ∞.
But it is unknown whether μ is absolutely continuous when ρ is in this interval.
Nevertheless, Erdös (1940) showed that

Theorem 3.3. There exists a sequence ρk → 1 such that μ has k derivatives
for almost all ρ ∈ (ρk, 1).
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The proof ideas is as follows.
Erdös use a combinatorial argument to show that there exists γ > 0 such

that
|μ̂ρ(t)| = O(|t|−γ) fora.e. ρ ∈ (2−1, 2−1/2).

Replacing ρ1/k by ρ in (2.2) we get

|μ̂ρ(t)| =
k∏

j=1

|μ̂ρk(ρj−1t)| = O(|t|−kγ) fora.e. ρ ∈ (2−1/k, 2−1/(2k)). (14)

If we let ρk = 2−γ/(k+1), then ρ > ρk implies that |μ̂ρ(t)| = O(|t|−(k+1)) for
a.e. ρ ∈ (2−γ/(k+1), 2−γ/(2k+2)). Thus μ̂ρ(t) · tk−1 ∈ L1, hence μ is absolutely
continuous and its density function is bounded and has k derivative.

Garsia [7] conjectured that μ is absolutely continuous for almost all 1/2 < ρ
< 1. This conjecture has been confirmed recently by Solomyak [So]. He showed
that μ is absolutely continuous and has a L2−density for almost all 1/2 < ρ
< 1. By Plancherel’s theorem, a function is in L2(R) if and only if its Fourier
transform is in L2(R), thus the Fourier transform μ̂(t) is in L2(R) for almost
all 1/2 < ρ < 1.

However, the only explicit values of ρ for which μ is known to be abso-
lutely continuous are ρ = 2−1/n, for n = 1, 2, . . . , and ρ = β−1 satisfies
β

∏
|βi|>1 |βi| = 2 [7], i.e., this set consists of reciprocals of algebraic integers in

(1,2) whose minimal polynomial has other roots outside the unit circle and the
constant coefficients ±2. For instance, the polynomials xn+p − xn − 2 where
p, n ≥ 1 and max{p, m} ≥ 2. Another of such examples is x3 − 2x− 2.

On the other hand, all PV-numbers are the only numbers for which μ is
known to be purely singular.

There was a renewed interest in Bernoulli convolutions since the 1980’s, after
the discoveries of their importance in various problems in dynamical system [1]
and the calculation of the Hausdorff dimensions of some self-affine graphs and
self-affine sets ([PU], [PSS], [HL1].)

Questions (The first two have been open for a long time):
(3-1) If ρ−1 is not a PV-numbers, can μ be purely singular?
Obviously, by the Erdös-Salem’s theorem, we could not use the Fourier

theory to prove or disprove this question.
(3-2) Other than the explicit values mentioned above, can we find another

value of ρ so that the corresponding measure μ is absolutely continuous?
Recall that μ is absolutely continuous if and only if the lower derivative

D(μ, x) < ∞ for μ−almost x ∈ R, where

D(μ, x) = limr→0(2r)−1μ(Br(x))
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and Br(x) = [x − r, x + r] [M]. It was shown [PS2] that D(μρ, x) < ∞ for
μρ−almost x ∈ R and for Leb−almost all ρ ∈ (1/2, 1). Other than the examples
provided by Garsia, can we produce a nontrivial example so that D(μρ, x) < ∞
for μρ−almost x ∈ R for some ρ ∈ (1/2, 1)?

(3-3) By a result from [So], μ̂ρ(t) ∈ L2(R) for Leb−almost all ρ ∈ (1/2, 1).
Can we produce a nontrivial example so that μ̂ρ(t) ∈ L2(R) for some ρ ∈
(1/2, 1)?

(3-4) If β = ρ−1(�= 2) is a PV-number, how to find lim supt→∞ μ̂(t) and
lim inft→∞ μ̂(t) (it was proved that if ρ−1 = n, for n = 3, 4, ..., then lim supt→∞ |μ̂(t)| =
μ̂(π) [HL2]).

Recently, Huang and Strichartz [HS] studied the limit

g(x) = lim sup
n→∞

μ̂(Rnx) (15)

where R ≥ 4 is an even integer. They showed that g(x) is different from zero
when x = 0 or x = p/Rm for integers m ≥ 0 and even integers p not divisible
by R, and 0 otherwise. Thus g(x) is nowhere continuous.

(3-5) Study the properties of g(x) (continuity, supremum, infmum, etc.)
defined by (3.3) with R replaced by an odd integer, or by any PV number.

The properties of μ̂(t) and its square average asymptotic rate
∫ T

−T
|μ̂(t)|2dt

as T → ∞ were studied extensively by Strichartz [St1-St4], Lau [L1-L2], Lau
and Wang [LWa]. It was proved that if the open set condition is assumed then∫ T

−T |μ̂(t)|2dt ∼ O(T 1−α) as T → ∞, where α = (log
∑m

k=1 p2
k)/ logρ. In [JRS]

the following questions are raised:
(3-6) What is the asymptotic rate of

∫ T

−T |μ̂(t)|qdt as T → ∞ for q > 0?
(3-7) If β = ρ−1 is not a PV-number, what is the pointwise asymptotic rate

of μ̂ρ(t) → 0 as t → ∞?
It was shown [PSS] that if β = ρ−1 is a Salem-number (An algebraic integer

β > 1 is called a Salem-number if all its conjugate roots, denoted by βi, i =
1, ..., m, satisfy |βi| ≤ 1 and at least one of the conjugates has absolute value
equal to one. For example, the positive root of the polynomial x4−x3−x2−x+1
is a Salem number), then

lim sup
t→∞

|μ̂ρ(t)||t|ε = ∞ forallε > 0.

Thus as t → ∞, the upper limit of μ̂ρ(t) → 0 at a speed slower than 1/tε for
all ε > 0.

Note that if ρ−1 is a PV-number, then ρ must be a root of a polynomial
with coefficients ±1 [7]. Thus the points in the range of the finite sum of S
will have multiple representations. This causes the weight distribution of μ to
be extremely irregular [H1], [6]. It has been conjectured that the singularity
of μ may only occur when ρ is an algebraic integer and satisfies a polynomial
equation with coefficients ±1 [7]. But this conjecture has not been proved or
disproved.
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We now consider the biased Bernoulli convolutions. In the classical Bernoulli
convolution if we use the probability weights (p, 1 − p), where p ∈ (0, 1), to
replace the equal probability weights (1/2, 1/2), then we obtain the biased
Bernoulli convolutions μp = μp

ρ.

It was shown that [PS1] μp is purely singular if 0 < ρ < pp(1 − p)(1−p) and
it is absolutely continuous for a.e.-Leb ρ ∈ (pp(1− p)(1−p), 0.64). Note that the
interval (pp(1 − p)(1−p), 0.64) is nonempty for p ∈ (0.165, 0.835).

In the unbiased case, at least we know absolute continuity for Garsia num-
bers as above, but no such example is known in the biased case! Also, the
Fourier asymptotics for biased Bernoulli convolutions are unknown either.

(3-8) Find a specific ρ and p �= 1/2 so that μp
ρ is absolutely continuous.

(3-9) Fixed a specific ρ, find out the values of p ∈ (0, 1) so that μ̂p(t) → 0,
as t → ∞, and then study the pointwise asymptotic rate of μ̂p(t) as t → ∞
and the asymptotic rate of

∫ T

−T
|μ̂(t)|qdt as T → ∞ for q > 0.

There are some partial results on the problem. Let μ̂(t) be defined by (2.1).
The Erdös-Salem’s theorem is generalized to m ≥ 2 : if bi = i and pi = 1/m for
all i = 1, ..., m, then lim supt→∞ |μ̂(t)| > 0 if and only if ρ−1 is a PV-number
and it is not a factor of m [H2]. It is unknown that what happens if b′is are
not consecutive integers.

It was also proved that if ρ−1 is an irrational PV-number and b′is are ra-
tional, then lim supt→∞ |μ̂(t)| > 0 for any probability weights p′is [LNR]. But
what happens if ρ−1 = 3, 4, ...? For example, let ρ−1 = 3, b1 = 0, b2 = 1 and
b3 = 3, then we have the (0,1,3)-problem. For what choices of the probability
weights we will have limsupt→∞ |μ̂(t)| > 0? If m = 2, then, up to an affine
change of variable, we can assume that b1 = −1 and b2 = 1. It follows that
if ρ−1 is an irrational PV-number, then for any probability weights we have
lim supt→∞ |μ̂(t)| > 0 and hence μ is purely singular.

Another interesting question is the convolution of singular measures.

For i = 1, ..., m, let ρ−1
i be PV-numbers and let μ̂ρi be the Fourier transform

of the Bernoulli measure μρi . Then μ̂ρi (cit), where ci are constants , does not
tend to zero at infinity.

(3-10) When does the product
∏m

j=1 μ̂ρj (cjt), where ρ−1
j are PV-numbers,

tend to zero at infinity and at what rate? If this product does not tend to zero
at infinity, then what are the upper limit and the lower limit?

In 1973, Senge and Strauss [SS] showed that limt→∞ μ̂ρ1(t)μ̂ρ2 (t) �= 0 if and
only if log ρ1/ logρ2 is a rational number. Hu and Lau [HL2] showed that if
q ≥ 3 is an integer and cj ’s are constants, then ci/cj is an irrational number
for some i, j implies that

∏m
j=1 μ̂1/q(cjt) → 0 as t → ∞ and the converse is also

true if q �≡ 0 (mod 4).
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4 Spectral measures, spectral sets and tiling

Let μ be a finite positive Borel measure in R
n. We say that μ is a spectral

measure if there exists a discrete set Λ ⊆ R
n such that the set of exponentials

E(Λ) = {eλ(x) : λ ∈ Λ}, where eλ(x) = ei2πλ·x, forms an orthogonal basis for
L2(μ). In this case we call Λ a spectrum of μ, and (μ, Λ) a spectral pair. Since
any of the (μ, Λ), (μ,−Λ), (μ, t+ Λ) with t ∈ R

n fixed is a spectral pair implies
the other two are also spectral pairs, for simplicity we assume that 0 ∈ Λ. If μ is
a spectral measure and equals the n-dimensional Lebesgue measure restricted
on a measurable set Ω ⊂ R

n, then we say that Ω is spectral set. Thus spectral
measures are a natural extension of spectral sets.

The inner product and norm on L2(μ) are

〈f, g〉 =
∫

fgdμ and||f ||2 =
∫

|f |2dμ.

We have
〈eλ, eη〉 =

∫
ei2π(λ−η)·xdμ = μ̂(λ − η).

Hence E(Λ) is orthogonal in L2(μ) if and only if

μ̂(λ − η) = 0 forallλ, η ∈ Λ withλ �= η. (16)

For E(Λ) to be complete as well we must in addition have

Foranyf ∈ L2(μ) : ||f ||2 =
∑
λ∈Λ

| 〈f, eλ〉 |2.

It suffices to have (4.1) valid for f(x) = et(x) for all t ∈ R
n, since the closed

linear span of these functions is all of L2(μ), i.e., for all t ∈ R
n,∑

λ∈Λ

| μ̂(t − λ)|2 = 1. (17)

Definition 4.1. Let B and Λ be finite subsets in R with the same cardinality
q. Suppose that the q × q matrix

{ 1
√

q
eb(λ)}b∈B,λ∈Λ (18)

is unitary, then {B, Λ} is called a compatible pair.

Let δb denote the probability measure concentrated on the single point b.

Proposition 4.2. Let B and Λ be finite subsets in R with the same cardinality
q. Let

μ =
1
q

∑
b∈B

δb (19)

be a discrete probability measure supported by the set B. Suppose that {B, Λ}
is a compatible pair, then (μ, Λ) a spectral pair, i.e., Λ is a spectrum for μ.
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Proof. From (4.3) we have

μ̂(t) =
1
q

∑
b∈B

ei2πbt =
1
q

∑
b∈B

eb(t).

Then for λ, η ∈ Λ

μ̂(λ − η) =
1
q

∑
b∈B

eb(λ − η).

The condition (4.1) is exactly the orthogonality of the rows of the matrix (4.3),
providing the orthogonality of the family E(Λ) = {ei2πλx : λ ∈ Λ}. To show the
completeness, we verify (4.2). Indeed, using the orthogonality of the columns
of the matrix (4.3),∑

λ∈Λ

| μ̂(t − λ)|2 =
∑
λ∈Λ

μ̂(t − λ)μ̂(t − λ)

= q−2
∑
λ∈Λ

∑
b∈B

∑
b′∈B

eb(t − λ)e(−b′)(t − λ)

= q−2
∑
λ∈Λ

∑
b∈B

∑
b′∈B

e(b−b′)(t − λ)

= q−2
∑
b∈B

∑
b′∈B

e(b−b′)(t)
∑
λ∈Λ

e(b−b′)(λ)

= q−1
∑
b∈B

∑
b′∈B

e(b−b′)(t)δb,b′

= q−1
∑
b∈B

e0(t) = q−1q = 1.

Example Let Bn = {0, 1/n, ..., (n− 1)/n} and Λn(modn) = {0, 1, ..., n− 1},
then it is easy to verify that {Bn, Λn} is a compatible pair, thus if we let μn =
1
n

∑n−1
j=0 δj/n, then (μn, Λn) is a spectral pair (Hence a spectral measure is not

necessary a self-similar measure.) For example, let n = 3, B3 = {0, 1/3, 2/3},
Λ3 = {0, 1, 5}, then

{ 1√
3
eb(λ)}b∈B3,λ∈Λ3 =

1√
3

⎛
⎝ 1 1 1

1 ei2π/3 ei4π/3

1 ei4π/3 ei2π/3

⎞
⎠ = U

so that UT U equals an identity and thus U is unitary. We also have μ3 =
1
3 (δ0 + δ1/3 + δ2/3), μ̂3(t) = 1

3 (1 + ei2πt/3 + ei4πt/3) and
∑

λ∈Λ3
| μ̂(t− λ)|2 = 1.

In particular, if we replace n by 2n, then B2n is the range of the partial sum
Sn =

∑n
j=1 2−jXj , where Xj takes two values 0 and 1 with equal probability.

Let n → ∞, then Sn converges to the Bernoulli convolution
∑∞

j=1 2−jXj , which
has a range [0, 1], and μn converges weakly to the Lebesgue measure on [0, 1]
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and its spectrum Λ = {0, 1, ..., n, ...}. This is a classical result (In the limit case,
the proof for (μ, Λ) to be a spectral pair is nontrivial [JP].) In particular, [0, 1]
is a spectral set.

Example The first fractal spectral measure (A Cantor measure with scale
four) was produced by Jorgensen and Pedersen in 1998 [JP]. Define a scale four
Bernoulli convolution by (1.7) and (1.8) with partial sum Sn =

∑n
j=1 4−jXj ,

where Xj take two values 0 and 2 with equal probability. Then the range of
Sn is Bn = {

∑n
j=1 4−jεj : εj = 0, 2}. Let Λn = {

∑n−1
j=0 4jεj : εj = 0, 1},

then {Bn, Λn} is a compatible pair, and (μn, Λn) is a spectral pair for μn =
2−n

∑
b∈Bn

δb. Passing to the limit (a nontrivial proof, see [JP],[St5]), we obtain
a Cantor set and a Cantor measure μ on [0,1] of scale four, and its spectrum
Λ = {

∑n
j=0 4jεj : εj = 0, 1, n = 0, 1, ...}= {0, 1, 4, 5, 16, 17, 20, 21, ...}.

It is often nontrivial to prove the exponentials E(Λ) = {eλ(x) : λ ∈ Λ} to be
complete in L2(μ). See [JP], [St5-6], and [LaW] for various methods employed
to achieve this goal.

Example For the Bernoulli convolution μ induced by S =
∑∞

j=0 N−jXj , where
N > 1 is an odd integer and Xj take two values 0 and b with equal probability.
Then any set of μ−orthogonal exponentials contains at most two elements [JP].
The proof is simple. Indeed, using 1

2 (1+ei2x) = eix cos x we obtain the Fourier
transform of μ

μ̂(t) =
∞∏

j=0

1
2
(1 + e

i2πbt

Nj ) = e
iπbNt
N−1

∞∏
j=0

cos(
πbt

N j
).

It is easy to see that μ̂(t) = 0 if and only if t is a root of a factor in the
right-hand side product. Thus the zero set of μ̂(t) is

Z(μ̂) = {Nk

2b
(2Z + 1) : k = 0, 1, ...}.

If λj, j = 1, 2, 3, are such that the e′λj
s are mutually orthogonal in L2(μ), by

(4.1) μ̂(λi − λj) = 0 for i �= j. Let η1 = λ1 − λ2, η2 = λ2 − λ3 and η3 = λ1 − λ3

and

ηj =
Nkj

2b
(2zj + 1), zj ∈ Z.

Since η1 + η2 = η3, we obtain

Nk1(2z1 + 1) + Nk2(2z2 + 1) = Nk3(2z3 + 1)

which is impossible since the left-hand side is even while the right-hand side is
odd.

By generalizing the original work of Jorgensen and Pedersen [JP], Several
authors [St5-6], [LaW] have studied the spectral properties of self-similar mea-
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sure μD induced by the following random variable

S =
∞∑

j=1

N−jXj

where N is an integer with |N | > 1, and Xj take m integral values in D =
{b1, ..., bm} ⊆ Z with equal probability 1

m . For any finite set A of R, let

Λ(A) = {
k∑

j=0

N jaj : aj ∈ A andk ≥ 1}.

Laba and Wang [LaW] showed that

Theorem 4.1. Let S ⊆ Z be such that 0 ∈ S and ( 1
N D, S) is a compatible

pair. Then μD is a spectral measure. If moreover gcd(D − D) = 1, and S ⊆
[2 − |N |, |N | − 2], then Λ(S) is a spectrum for μD.

The self-similar spectral measures founded so far are all have equal weights
and with contraction ratio 1/N with some integer N. It is not clear whether
this must be in general true. In [LaW], the following conjecture was raised.

Conjecture 1 Let Sρ be the random variable defined by (1.7) with each Xn

taking values in B = {b1, b2, . . . , bm} with positive probability p1, p2, . . . , pm

respectively. Let μρ be the self-similar measure defined by (1.8). Suppose that
μ is a spectral measure. Then

(4-1) ρ = 1/N for some integer N.

(4-2) p1 = p2 = . . . = pm = 1/m.

(4-3) Suppose that 0 ∈ B. Then αB ⊆ Z for some α ∈ R.

The conjecture has not be settled even in the simple case where μρ is the
Bernoulli convolution. Recently, Hu [H3] studied the spectral properties of
Bernoulli convolutions (with equal probability weights) and show that any or-
thogonal set of exponential functions in L2(μρ) contains only finite members if
and only if ρ is NOT a kth root of a fraction with an even integer as denominator
and an odd integer as numerator.

(4-4) Can the result be generalized to the self-similar measure defined by
(1.8) with equal probability weights?

The main interest for studying spectral sets comes from its mysterious con-
nection to tiling, first formulated by B. Fuglede [4] in 1974, known today as
the Fuglede Conjecture:

Conjecture 2 A measurable set Ω ⊆ R
n with positive Lebesgue measure is a

spectral set if and only if it tiles R
n by translation.

To understand the conjecture, we first review some concepts in tiling.
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A Borel set Ω in R
n of positive measure is said to tile R

n by translation
if there is a discrete set T in R

n such that, up to sets of Lebesgue measures 0,
the sets Ω + t are disjoint and

R
n =

⋃
t∈T

(Ω + t).

Then we call Ω a tile, T a translation set and (Ω, T ) a tiling of R
n. If Ω tiles R

n

by translation, by the Baire Category Theorem, then Ω has nonempty interior.
If further, there is λ �= 0 such that T + λ = T , then we say that (Ω, T ) is a
periodic tiling with period λ.

We give some examples in one dimensional case.
For any integer m ≥ 2, let ρ = 1/m in (1.7) with associated IFS {F1, ..., Fm}

consisting Fj(x) = 1
m (x+bj), j = 1, ..., m, then the attractor Ω in (1.9) satisfies

Ω =
⋃m

j=1
1
m(Ω + bj), or

mΩ =
m⋃

j=1

(Ω + bj). (20)

If Leb(Ω) > 0, then we say that Ω is a self-similar tile. Since Leb(mΩ + b) =
mLeb(Ω), hence (4.5) implies Leb((Ω + bi) ∩ (Ω + bj)) = 0 for i �= j. If the b′js
are integers, then we say that Ω is an integral self-similar tile.

It is known that any self-similar tile Ω tiles R by translation [GH]. Thus if
Ω is a self-similar tile, then Leb(Ω) > 0 if and only if Ω tiles R by translation.
In particular, its interior Ωo is nonempty, using the similarity, it is easy to
show that Ω = Ωo. Furthermore, since Leb(Fi(Ω)∩Fj(Ω)) = 0, hence Fi(Ωo)∩
Fj(Ωo) = φ, for i �= j. Note that Fj is a bijection on Ω, it sends open set to open
set, this along with Fj(Ωo) ⊆ Fj(Ω) ⊆ Ω implies that Fj(Ωo) ⊆ Ωo. Thus if Ω
is a self-similar tile then the IFS {F1, ..., Fm} satisfies the open set condition.

Kenyon, Lagarias and Wang [K], [LW] showed that every 1-dimensional self-
similar tile is an integral self-similar tile in essence: there is a real number α
such that α{b1, ..., bm} ⊆ Z. Thus the study of self-similar tiling can be reduced
to the study of integral self-similar tiling. On the other hand, a translation of
the digit set {b1, ..., bm} will result in a translation of the tile Ω, hence, without
loss of generality, we can always assume that

0 ∈ {b1, ..., bm} ⊆ Z andg.c.d.(b1, ..., bm) = 1.

For the structure of the translation set T , it was showed that [K], [LW]
self-similar tiling implies that (Ω, T ) is a periodic tiling, Lau and Rao [LR]
further showed that T = T + mk for some integer k.

A fundamental problem: Given m, find the digit set {b1, ..., bm} so that Ω
is a self-similar tile.

This question is still largely unsettled. The most basic result is due to Bandt
[2]: If {b1, ..., bm} is a complete residue set modulo m, then Ω is a self-similar
tile. This is also a necessary condition for Ω to be a self-similar tile if m is
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prime [LW]. Lau and Rao [LR] showed that if bj �≡ 0 (modm) for all bj �= 0,
then Ω is a self-similar tile if and only if {b1, ..., bm} is a complete residue set
modulo m.

When m is a power of a prime or is a product of two primes, then sufficient
and necessary conditions on the digit set {b1, ..., bm} for Ω to be a self-similar
tile are given [LW], [LR]. But it is still unknown in general.

(4-5) Find a sufficient and necessary condition on the digit set {b1, ..., bm}
for Ω to be a self-similar tile if m is any integer (You may first try the case
where m = pqr with p, q and r are primes, for example, let m = 12.)

If we assign equal probability weights pj = 1/m to each map Fj for j =
1, ..., m, then we obtain a self-similar measure μ satisfying μ = 1

m

∑m
j=1 μ◦F−1

j .
It is easy to verify that Ω is a self-similar tile if and only if μ equals the
normalized restriction of the Lebesgue measure on Ω, i.e., μ = Leb|Ω

Leb(Ω). In fact,
if Ω is a self-similar tile, then Leb(Fi(Ω)∩ Fj(Ω)) = 0. This, together with the
fact that Fj is bijective from Ω to Fj(Ω), implies that Leb|Ω, the restriction of
the Lebesgue measure on Ω also satisfies this equation, so does its normalization
Leb|Ω
Leb(Ω) . By uniqueness, μ = Leb|Ω

Leb(Ω). Conversely, if μ = Leb|Ω
Leb(Ω) , then Leb(Ω) > 0

and Ω is a self-similar tile.
We now come back to the Fuglede conjecture.
It was disproved very recently that the conjecture is not true in higher

dimension. Tao [T] exhibited a spectral set in dimension n ≥ 5 that is not a
tile, and Kolountzakis and Matolsci [KM] exhibited tiles that are not spectral
sets in dimension n ≥ 5. Despite the counterexamples, the connection between
spectral sets and tiling is strongly evident, especially in lower dimension. For
example, it was proved [IP], [LRW] that if Ω = (−1/2, 1/2)n is the unit cube
in R

n and Λ ⊆ R
n, then Λ is a spectrum of Ω if and only if Ω + Λ = R

n. The
conjecture has also been verified for the convex regions in R

2, namely, the only
convex regions in R

2 which are both spectral and tiles are the parallelograms
and the symmetric hexagons [IKT]. However, even in the one dimensional case,
the conjecture is still unsettled. Let’s consider the sets of the type

Ω = A + (0, 1), whereA isafinitesubsetofintegers.

Laba [La1], [La2] showed that the conjecture is true for #A = 2 and 3.
(4-6) Is the Fuglede conjecture true for any finite set A?
Another way to look at the problem is to consider the regions of self-similar

tile. We know that a self-similar tile may have infinitely many connected com-
ponents (For example, try the case m = 3 with the digit set {b1, b2, b3} =
{0, 1, 5}, a complete residue set modulo 3.) If {b1, ..., bm} is a complete residue
set modulo m, then Ω is a self-similar tile. We can verify that in this case Ω
is also a spectral set. In fact, let Bm = {0, 1/m, ..., (m− 1)/m}, Λm(modm) =
{b1, ..., bm}(modm) = {0, 1, ..., m− 1} and 0 ∈ Λm, then {Bm, Λm} is a com-
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patible pair. By Theorem 2 (Laba and Wang), the self-similar measure

μ =
1
m

m∑
j=1

μ ◦ F−1
j

is a spectral measure, where Fj(x) = 1
m

(x + bj), j = 1, ..., m. We know that
μ = Leb|Ω

Leb(Ω), thus Leb|Ω is a spectral measure, so Ω is a spectral set.
(4-7) Prove or disprove that if Ω is a self-similar tile, then Ω is a spectral

set.
If the answer to (4-7) is negative, then the Fuglede conjecture fails even in

one dimensional.
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