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Abstract

The paper presents a subclass of the class of MD5-algebras and MD5-
groups, i.e., five dimensional solvable Lie algebras and Lie groups such
that their orbits in the co-adjoint representation (K-orbit) are orbit of
zero or maximal dimension. The main results of the paper is the clas-
sification up to an isomorphism of all MD5-algebras G with the derived
ideal G1 := [G,G] is a 3-dimensional commutative Lie algebra.

Introduction

In 1962, studying theory of representations, Kirillov [3] introduced the Or-
bit Method. This method quickly became the most important method in the
theory of representations of Lie groups. The Kirillov’s Orbit Method imme-
diately was expanded by Kostant, Auslander, Do Ngoc Diep,etc. Using the
Kirillov’s Orbit Method, we can obtain all the unitary irreducible representa-
tions of solvable and simply connected Lie groups. The importance of Kirillov’s
Orbits Method is the co-adjoint representation (K-representation). Therefore,
it is meaningful to study the K-representation in the theory of representations
of Lie groups.
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The structure of solvable Lie groups and Lie algebras is not too complicated,
although the complete classification of them is unsolved up to now. In 1980,
studying the Kirillov’s Orbit Method, D. N. Diep [2] introduced the class of
Lie groups and Lie algebras MD. Let G be an n-dimensional real Lie group.
It is called an MDn-group iff its orbits in the K-representation (i.e. K-orbits)
are orbits of dimension zero or maximal dimension. The corresponding Lie
algebra of G is called an MDn-algebra. Thus, classification and studying of
K-representation of the class of MDn-groups and MDn-algebras are problems
of great interest. Because all Lie algebras of n dimension (with n ≤ 3) were
listed easily, we will consider MDn-groups and MDn-algebras with n ≥ 4.

In 1984, Dao Van Tra [5] listed all MD4-algebras. In 1992, all MD4-algebras
were classified up to an isomorphism by the author (see [6], [7], [8]). Until now,
no complete classifications of MDn-algebras with n ≥ 5 are known. Three
examples of MD5 - algebras and MD5 - groups can be found in [9] and some
different MD5 - algebras and MD5 - groups can be found in [10]. In this paper
we shall give a classification up to an isomorphism of all MD5-algebras G with
the derived ideal G1 := [G, G] is a 3-dimensional commutative Lie algebra. The
complete classification of all MD5-algebras will be presented.

1 Preliminaries

At first, we recall some preliminary results and notations which will be used
later. For more details we refer the readers to references [2], [3], [4].

1.1 Lie Groups and Lie Algebras

Definition 1.1. A real Lie group of dimension n is a C∞-manifold G endowed
with a group structure such that the map (g, h) �→ g.h−1 from G× G into G is
C∞-differentiable.

Definition 1.2. A real Lie algebra G of dimension n is an n-dimensional real
vector space together with a skew-symmetric bilinear map (X, Y ) �→ [X, Y ]
from G × G into G (which is called the Lie bracket) such that the following
Jacobi identity is satisfied : [[X, Y ], Z] + [[Y, Z], X] + [[Z, X], Y ] = 0 for every
X, Y, Z ∈ G.

1.2 The co-adjoint Representation, K-orbits MDn-Groups
and MDn-Algebras

Each Lie group G defines a Lie algebra Lie(G) = G as the tangent space TeG of
G at the unitary element e of G with the Lie bracket is defined by commutators.
Conversely, each real Lie algebra G defines only one connected and simply
connected Lie group G such Lie(G) = G. For each g ∈ G, we denote the
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internal automorphism associated with g by A(g). So A(g) : G −→ G is defined
as follows

A(g)(x) := g.x.g−1, ∀x ∈ G.

This automorphism induces the following map

A(g)∗ : G −→ G

X �−→ A(g)∗(X) : =
d

dt
[g.exp(tX)g−1] |t=0

which is called the tangent map of A(g).

Definition 1.3. The action

Ad : G −→ Aut(G)

g �−→ Ad(g) : = A(g)∗
is called the adjoint representation of G in G.

Definition 1.4. The action

K : G −→ Aut(G∗)

g �−→ K(g)

such that
〈K(g)F, X〉 : = 〈F, Ad(g−1)X〉; (F ∈ G∗, X ∈ G)

is called the co-adjoint representation of G in G∗.

Definition 1.5. Each orbit of the co-adjoint representation of G is called a
K-orbit of G.

Thus, for every F ∈ G∗, the K-orbit containing F is defined as follows

ΩF := {K(g)F/g ∈ G}.

The dimension of every K-orbit of G is always even. In order to define the di-
mension of the K-orbits ΩF , it is useful to consider the skew-symmetric bilinear
form BF on G as follows

BF (X, Y ) := 〈F, [X, Y ]〉; ∀X, Y ∈ G.

Denote the stabilizer of F under the co-adjoint representation of G in G∗ by
GF and GF := Lie(GF ). We shall need in the sequel the following assertion.

Proposition 1.6 (see [3]). KerBF = GF and dimΩF = dimG − dimGF . �
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Definition 1.7. (see [2]) An MDn-group is an n-dimensional real solvable Lie
group such that its K-orbits are orbits of dimension zero or maximal dimension.
The Lie algebra of an MDn-group is called an MDn-algebra.

The following proposition give us a necessary condition in order that a Lie
algebra belongs to the class of all MD-algebras.

Proposition 1.8 (see [4]). Let G be an MD-algebra. Then its second derived
ideal G2 := [[G, G], [G, G]] is commutative. �

Note, however, that the converse of this statement in general does not hold.
In other words, the above necessary condition is not the sufficient one.

2 The Main Result

From now on, G will denote a Lie algebra of dimension 5. We always choose
a suitable basis (X1, X2, X3, X4, X5) in G. Then G isomorphic to R

5 as a real
vector space. The notation G∗ will mean the dual space of G. Clearly G∗ can
be identified with R

5 by fixing in it the basis (X∗
1 , X∗

2 , X∗
3 , X∗

4 , X∗
5 ) dual to the

basis (X1, X2, X3, X4, X5).

Theorem 2.1. Let G be an MD5-algebra with G1 := [G, G] ∼= R
3 ( the 3-

dimensional commutative Lie algebra ).

I. Assume that G is decomposable. Then G ∼= H ⊕ R, where H is an MD4-
algebra.

II. Assume that G is indecomposable. Then we can choose a suitable basis
(X1, X2, X3, X4, X5) of G such that G1 = R.X3 ⊕ R.X4 ⊕ R.X5 ≡ R

3,
adX1 = 0, adX2 ∈ End(G1) ≡ Mat3(R); [X1, X2] = X3 and G is iso-
morphic to one and only one of the following Lie algebras:

1. G5,3,1(λ1,λ2) :

adX2 =

⎛
⎝λ1 0 0

0 λ2 0
0 0 1

⎞
⎠ ; λ1, λ2 ∈ R \ {1}, λ1 = λ2 = 0.

2. G5,3,2(λ) :

adX2 =

⎛
⎝1 0 0

0 1 0
0 0 λ

⎞
⎠ ; λ ∈ R \ {0, 1}.
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3. G5,3,3(λ) :

adX2 =

⎛
⎝λ 0 0

0 1 0
0 0 1

⎞
⎠ ; λ ∈ R \ {1}.

4. G5,3,4 :

adX2 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ .

5. G5,3,5(λ) :

adX2 =

⎛
⎝λ 0 0

0 1 1
0 0 1

⎞
⎠ ; λ ∈ R \ {1}.

6. G5,3,6(λ) :

adX2 =

⎛
⎝1 1 0

0 1 0
0 0 λ

⎞
⎠ ; λ ∈ R \ {0, 1}.

7. G5,3,7 :

adX2 =

⎛
⎝1 1 0

0 1 1
0 0 1

⎞
⎠ .

8. G5,3,8(λ,ϕ) :

adX2 =

⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 λ

⎞
⎠ ; λ ∈ R \ {0}, ϕ ∈ (0, π).

In order to prove Theorem 2.1 we need some lemmas.

Lemma 2.2. Under the above notation. We have adX1 ◦ adX2 = adX2 ◦ adX1 .

Proof Using the Jacobi identity for X1, X2 and Xi(i = 3, 4, 5 ), we have

[[X1, X2], Xi] + [[X2, Xi], X1] + [[Xi, X1], X2] = 0
⇔ [X1, [X2, Xi]]− [X2, [X1, Xi]] = 0
⇔ adX1 ◦ adX2(Xi) = adX2 ◦ adX1(Xi); i = 3, 4, 5
⇔ adX1 ◦ adX2 = adX2 ◦ adX1 .
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�

Lemma 2.3 (see[2], [4]). If G is an MD-algebra and F ∈ G∗ is not perfectly
vanishing on G1, i.e. there exists U ∈ G1 such that 〈F, U〉 = 0, then the K-orbit
ΩF is the one of maximal dimension.

Proof Assume that ΩF is not a K-orbit of maximal dimension, i.e. dimΩF = 0.
This means that

dimGF = dimG − dimΩF = dimG.

So KerBF = GF = G ⊃ G1 and F is perfectly vanishing on G1. This contradicts
the supposition of the lemma. Therefore ΩF is a K-orbit of maximal dimension.
�

We are now in a position to prove the main theorem of the paper.

Proof of Theorem 2.1.

Firstly, we can always choose some basis (X1, X2, X3, X4, X5) of G such
that G1 = R.X3 ⊕ R.X4 ⊕ R.X5 ≡ R

3; adX1 , adX2 ∈ End(G1) ≡ Mat3(R).
It is obvious that adX1 and adX2 cannot be concurrently the trivial operator

because G1 ∼= R
3. There is no loss of generality in assuming adX2 = 0. By

changing basis, if necessary, we get the similar classification of adX2 as follows:⎛
⎝λ1 0 0

0 λ2 0
0 0 1

⎞
⎠ , (λ1, λ2 ∈ R \ {1}, λ1 = λ2 = 0);

⎛
⎝1 0 0

0 1 0
0 0 λ

⎞
⎠ ,

(λ ∈ R \ {0, 1});
⎛
⎝λ 0 0

0 1 0
0 0 1

⎞
⎠ , (λ ∈ R \ {1});

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠;

⎛
⎝λ 0 0

0 1 1
0 0 1

⎞
⎠ ,

(λ ∈ R \ {1});
⎛
⎝1 1 0

0 1 0
0 0 λ

⎞
⎠ , (λ ∈ R \ {0, 1});

⎛
⎝1 1 0

0 1 1
0 0 1

⎞
⎠;

⎛
⎝cosϕ −sinϕ 0

sinϕ cosϕ 0
0 0 λ

⎞
⎠ , (λ ∈ R \ {0}, ϕ ∈ (0, π)).

Assume that [X1, X2] = mX3 + nX4 + pX5; m, n, p ∈ R. We can always
change basis to have [X1, X2] = mX3. Indeed, if

adX2 =

⎛
⎝λ1 0 0

0 λ2 0
0 0 1

⎞
⎠ , (λ1, λ2 ∈ R \ {1}, λ1 = λ2 = 0),

then by changing X1 for X1

′
= X1 + n

λ2
X4 + pX5 we get [X1

′
, X2] = mX3,

m ∈ R. For the other values of adX2 , we also change basis in the same way.
Hence, without restriction of generality, we can assume right from the start
that [X1, X2] = mX3 , m ∈ R.
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There are three cases which contradict each other as follows.

(1) [X1, X2] = 0 ( i.e. m = 0 ) and adX1 = 0. Then G = H⊕R.X1, where H
is the subalgebra of G generated by {X2, X3, X4, X5}, i.e. G is decomposable.

(2) [X1, X2] = 0 and adX1 = 0.

(2a) Assume adX2 =

⎛
⎝λ1 0 0

0 λ2 0
0 0 1

⎞
⎠ , (λ1, λ2 ∈ R\{1}, λ1 = λ2 = 0).

In view of Lemma 2.2, it follows by a direct computation that

adX1 =

⎛
⎝μ 0 0

0 ν 0
0 0 ξ

⎞
⎠ ; μ, ν, ξ ∈ R; μ2 + ν2 + ξ2 = 0.

If ξ = 0, by changing X1

′
= X1 − ξX2, we get

adX1
′ =

⎛
⎝μ

′
0 0

0 ν
′

0
0 0 0

⎞
⎠ ;

where μ
′
= μ − ξλ1, ν

′
= ν − ξλ2. Thus, we can assume from the outset that

adX1 =

⎛
⎝μ 0 0

0 ν 0
0 0 0

⎞
⎠ ; μ, ν ∈ R; μ2 + ν2 = 0.

Let F = αX1
∗ + βX2

∗ + γX3
∗ + δX4

∗ + σX5
∗ ∈ G∗ and U = aX1 + bX2 +

cX3 + dX4 + fX5 ∈ G; α, β, γ, δ, σ, a, b, c, d, f ∈ R. So we have

GF = KerBF

= {U ∈ G/〈F, [U, Xi]〉 = 0; i = 1, 2, , 3, 4, 5}.
Upon simple computation, we get

U ∈ GF ⇔ M

⎛
⎜⎜⎜⎜⎝

a
b
c
d
f

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

where

M :=

⎛
⎜⎜⎜⎜⎝

0 0 μγ νδ 0
0 0 −λ1γ −λ2δ −σ

μγ λ1γ 0 0 0
νδ λ2δ 0 0 0
0 σ 0 0 0

⎞
⎟⎟⎟⎟⎠ .
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Hence, dimΩF = dimG − dimGF = rank(M). According to Lemma 2.3,
ΩF is a K-orbit of maximal dimension if F |G1 = 0, i.e. if γ2 + δ2 + σ2 = 0. In
particular, rank(M) is a constant if γ, δ, σ are not concurrently zeros. However,
it is easily seen that rank(M) = 2 when γ = δ = 0 = σ, but rank(M) = 4
when all of γ, δ, σ are different zero. This contradiction show that Case (2a)
cannot happen.

(2b) By the similar argument and replacing the considered value of
adX2 with the others, we can see that Case (2) cannot happen anyway.

(3) [X1, X2] = 0 ( i.e. m = 0 ). By changing X1 by X1
′

= 1
m

X1 one
has [X1

′
, X2] = X3. Hence, without loss of generality, we can assume that

[X1, X2] = X3.

By an argument similar to the one in Case (2a), again we get a contra-
diction if adX1 = 0. Hence, adX1 = 0. Therefore, in the dependence on the
value of adX2 , G will be isomorphic to one of algebras G5,3,1(λ1,λ2), (λ1, λ2 ∈
R \ {0, 1}, λ1 = λ2 = 0); G5,3,2(λ), (λ ∈ R \ {0, 1}); G5,3,3(λ), (λ ∈ R \ {1});
G5,3,4; G5,3,5(λ), (λ ∈ R \ {1}); G5,3,6(λ), (λ ∈ R \ {0, 1}); G5,3,7; G5,3,8(λ,ϕ), (λ ∈
R \ {0}, ϕ ∈ (0, π))). Obviously, these algebras are not isomorphic to each
other.

To complete the proof, it remains to show that all of these algebras are
MD5-algebras. At first, we shall verify this assertion for G = G5,3,1(λ1,λ2),
(λ1, λ2 ∈ R \ {0, 1}, λ1 = λ2 = 0). Consider an arbitrary linear form F =
αX1

∗ + βX2
∗ + γX3

∗ + δX4
∗ + σX5

∗ ∈ G∗; ( α, β, γ, δ, σ ∈ R). We need prove
that dimΩF = dimG − dimGF is zero or maximal.

Let U = aX1 + bX2 + cX3 + dX4 + fX5 ∈ G; ( a, b, c, d, f ∈ R ). Upon
simple computation which is similar to one in Case (2a), we get

U ∈ GF ⇔ N

⎛
⎜⎜⎜⎜⎝

a
b
c
d
f

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

where

N :=

⎛
⎜⎜⎜⎜⎝

0 −γ 0 0 0
γ 0 −λ1γ −λ2δ −σ
0 λ1γ 0 0 0
0 λ2δ 0 0 0
0 σ 0 0 0

⎞
⎟⎟⎟⎟⎠ .

Hence, dimΩF = dimG − dimGF = rank(N). It is plain that

rank(N) =

{
0 if γ = δ = σ = 0;
2 if γ2 + δ2 + σ2 = 0.
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Therefore, ΩF is the orbit of dimension zero or two (maximal dimension) for
any F ∈ G∗, i.e. G = G5,3,1(λ1,λ2) is an MD5-algebra, (λ1, λ2 ∈ R \ {0, 1}, λ1 =
λ2 = 0). By the same way, we can be also seen that the remaining algebras are
MD5-algebras. The proof is complete. �

Remark

Let us recall that each real Lie algebra G defines only one connected and sim-
ply connected Lie group G such Lie(G) = G. Therefore we obtain a collection
of eight families of connected and simply connected MD5-groups correspond-
ing to given MD5-algebras in Theorem 2.1. For convenience, each MD5-group
from this collection is also denoted by the same indices as corresponding MD5-
algebra. For example, G5,3,1(λ1,λ2) is the connected and simply connected MD5-
group corresponding to G5,3,1(λ1,λ2). Especially, we have eight families of MD5-
groups as follows: G5,3,1(λ1,λ2), (λ1, λ2 ∈ R\{0, 1}, λ1 = λ2 = 0); G5,3,2(λ), (λ ∈
R\{0, 1}); G5,3,3(λ), (λ ∈ R\{1}); G5,3,4; G5,3,5(λ), (λ ∈ R\{1}); G5,3,6(λ), (λ ∈
R \ {0, 1}); G5,3,7; G5,3,8(λ,ϕ), (λ ∈ R \ {0}, ϕ ∈ (0, π))). All of them are inde-
composable MD5-groups.
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D’une Classe De Groupes De Lie, J. Operator Theory, 11(1984), 77-90.

[5] D. V. Tra, On the Lie Algebras of low dimension, Sci. Papes of the 12th
College of Institute of Math. Vietnam, Hanoi 1984 (in Vietnamese).

[6] Le Anh Vu, On the Structure of the C∗-algebra of the Foliation Formed
by the K-orbits of Maximal Dimension of the Real Diamond Group, J.
Operator Theory, 24(1990), 227 - 238.

[7] Le Anh Vu, On the Foliations Formed by the Generic K-orbits of the MD4-
Groups, Acta Math. Vietnam, No 2(1990), 39 - 55.



22 On a subclass of 5-dimensional Lie algebras...

[8] Le Anh Vu, Foliations Formed by Orbits of Maximal Dimension in the Co-
adjoint Representation of a Class of Solvable Lie Groups, Vest. Moscow
Uni., Math. Bulletin, Vol. 48(1993), No 3, 24 - 27.

[9] Le Anh Vu, Foliations Formed by Orbits of Maximal Dimension of Some
MD5-Groups, East-West J. of Mathematics, Vol.5, No 2 (2003), 159 - 168.

[10] Le Anh Vu and Nguyen Cong Tri, Some Examples on MD5 algebras
and MD5 foliations Associated to Corresponding MD5 groups, (to appear
in Sci. J. of Univ. of Pedagogy of Ho Chi Minh city).


