PRINCIPALLY QUASI-BAER RINGS AND GENERALIZED PRINCIPALLY QUASI-BAER RINGS

Tai Keun Kwak
Department of Mathematics
Daejin University Pocheon 487-711, Korea
Pocheon 487-711, Korea
tkkwak@daejin.ac.kr

Abstract

In this paper, we investigate the question whether the p.q.-Baer center of a ring R can be extended to R. We give several counterexamples this question and consider some conditions under which the answers of this may be affirmative. The concept of a generalized p.q.-Baer property which is a generalization of Baer property of a ring is also introduced.

1. Introduction

In [15], Kaplansky introduced Baer rings as rings in which every right (left) annihilator ideal is generated by an idempotent. According to Clark [9], a ring R is called quasi-Baer if the right annihilator of every right ideal is generated (as a right ideal) by an idempotent. Further works on quasi-Baer rings appear in [4], [6], and [17]. Recently, Birkenmeier, Kim and Park [8] called a ring R to be a right (resp. left) principally quasi-Baer (or simply right (resp. left) p.q.-Baer) ring if the right (resp. left) annihilator of a principal right (resp. left) ideal is generated by an idempotent. R is called a p.q.-Baer ring if it is both right and left p.q.-Baer. The class of right or left p.q.-Baer rings is a nontrivial generalization of the class of quasi-Baer rings. For example, if R is a

Key words: Baer rings, principally quasi-Baer rings, generalized principally quasi-Baer rings, Annihilators.

2000 AMS Mathematics Subject Classification: Primary 16U70, Secondary 16S99.
commutative von Neumann regular ring which is not complete, then R is p.q.Baer but not quasi-Baer. Observe that every biregular ring is also a p.q.-Baer ring.

A ring satisfying a generalization of Rickart's condition (i.e., every right annihilator of any element is generated (as a right ideal) by an idempotent) has a homological characterization as a right PP-ring which is also another generalization of a Baer ring. A ring R is called a right (resp. left) $P P$-ring if every principal right (resp. left) ideal is projective (equivalently, if the right (resp. left) annihilator of an element of R is generated (as a right (resp. left) ideal) by an idempotent of R). R is called a $P P$-ring (also called a Rickart ring [3, p. 18]) if it is both right and left PP. Baer rings are clearly right (left) PP-rings, and von Neumann regular rings are also right (left) PP-rings by Goodearl [10, Theorem 1.1]. Note that the conditions right PP and right p.q.-Baer are distinct [8, Example 1.3 and 1.5], but R is an abelian PP-ring if and only if R is a reduced p.q.-Baer ring [8, Corollary 1.15].

Throughout this paper R denotes an associative ring with identity. For a nonempty subset X of R, we write $r_{R}(X)=\{a \in R \mid X a=0\}$ and $\ell_{R}(X)=$ $\{a \in R \mid a X=0\}$, which are called the right annihilator of X in R and the left annihilator of X in R, respectively.

2. Principally quasi-Baer centers

As a motivation for this section, we recall the following results:
(1) $[15$, Theorem 7] The center of a Baer ring is Baer.
(2) [7, Proposition 1.8] The center of a quasi-Baer ring is quasi-Baer.
(3) [8, Proposition 1.12] The center of a right p.q.-Baer ring is PP (hence p.q.-Baer).
(4) [1, Theorem D] Every reduced PI-ring with the Baer center is a Baer ring.

It is natural to ask if the p.q.-Baer center of a ring R can be extended to R. In this section, we show that this question has a negative answer, and so we investigate the class of rings with some conditions under which the answer to this question is affirmative.

Let $C(R)$ denote the center of a ring R.
Example 1. (1) Let K be a field. We consider the $\operatorname{ring} R=K[X, Y, Z]$ with $X Y=X Z=Z X=Y X=0$ and $Y Z \neq Z Y$. Then R is reduced and $C(R)=K[X]$ is Baer and so p.q-Baer. But $r_{R}(Y)$ has no idempotents. Thus R is not right p.q.-Baer. Note that

$$
I=\{f(Y, Z) \in K[Y, Z] \mid f(0,0)=0\}
$$

is a two-sided ideal of R and $I \cap C(R)=0$.
(2) Let

$$
R=\left\{\left.\left(\begin{array}{ccc}
x & y & z \\
0 & x & u \\
0 & 0 & v
\end{array}\right) \right\rvert\, x, y, z, u, v \in \mathbb{R}\right\} \subseteq \operatorname{Mat}_{3}(\mathbb{R})
$$

where \mathbb{R} denotes the set of real numbers. Then R is a PI-ring which is not semiprime. Then we see that

$$
r_{R}\left(\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) R\right)=\left\{\left.\left(\begin{array}{ccc}
0 & b & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \right\rvert\, b, c \in \mathbb{R}\right\}
$$

But this cannot be generated by an idempotent. Hence R is not right p.q.-Baer. On the other hand,

$$
C(R)=\left\{\left.\left(\begin{array}{ccc}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x
\end{array}\right) \right\rvert\, x \in \mathbb{R}\right\} \cong \mathbb{R} .
$$

Therefore $C(R)$ is Baer.
Observe that Example 1(2) also shows that there exists a PI-ring R with the Baer center, but R is not right p.q.-Baer.

However, we have the following results:
Lemma 2. [8, Proposition 1.7] R is a right p.q.-Baer ring if and only if the right annihilator of any finitely generated right ideal is generated (as a right ideal) by an idempotent.

Proposition 3. Let R be a ring with the p.q.-Baer center $C(R)$. If R satisfies any of the following conditions for any nonzero two-sided ideal I of R, then R is quasi-Baer (and hence right p.q.-Baer).
(1) $I \cap C(R)$ is a nonzero finitely generated right ideal of $C(R)$.
(2) $I \cap C(R) \neq 0$ and every central idempotent of R is orthogonal.
(3) $I \cap C(R) \neq 0$ and every right ideal of R generated by a central element contains $C(R)$.

Proof. Let I be a nonzero two-sided ideal of R. If $r_{R}(I)=0$, then we are done. Thus we assume $r_{R}(I) \neq 0$.
(1) By hypothesis and Lemma $2, I \cap C(R) \neq 0$ and $r_{C(R)}(I \cap C(R))=e C(R)$ for some $e^{2}=e \in C(R)$. We claim that $r_{R}(I)=e R$. If $I e \neq 0$, then $I e$ is a nonzero two-sided ideal of R. Thus, by hypothesis, $0 \neq I e \cap C(R) \subseteq$ $I \cap C(R)$. Let $0 \neq x \in I e \cap C(R)$. Then $x=y e \in I \cap C(R)$ for some $y \in I$, and so $x=x e=0$; which is a contradiction. Hence $e R \subseteq r_{R}(I)$, and then $r_{R}(I)=R \cap r_{R}(I)=(e R \oplus(1-e) R) \cap r_{R}(I)=e R \oplus\left((1-e) R \cap r_{R}(I)\right)$. We show that $(1-e) R \cap r_{R}(I)=0$. Suppose that $0 \neq(1-e) R \cap r_{R}(I)$.

Then $(1-e) R \cap C(R)$ is a nonzero two-sided ideal of R. Thus, by hypothesis, $0 \neq(1-e) R \cap r_{R}(I) \cap C(R)=(1-e) R \cap r_{C(R)}(I) \subseteq(1-e) R \cap r_{C(R)}(I \cap C(R)) \subseteq$ $(1-e) R \cap e C(R) \subseteq(1-e) R \cap e R=0$; which is also a contradiction. Therefore $r_{R}(I)=e R$ and thus R is quasi-Baer.
(2) There exists $0 \neq a \in C(R)$ such that $a \in I$, and so $r_{C(R)}(a C(R))=$ $e C(R)$ for some $e^{2}=e \in C(R)$ by hypothesis. Then $r_{R}(a R)=e R$. For, since $r_{R}(a R) \cap C(R)=r_{C(R)}(a C(R))=e C(R), e \in r_{R}(a R)$ and so $e R \subseteq r_{R}(a R)$, and thus $r_{R}(a R)=e R$ by the similar method to (1). Hence $r_{R}(I) \subseteq e R$. Now, we claim $e R \subseteq r_{R}(I)$. If not, there exists $0 \neq x \in R$ such that $x \in I \cap C(R)$ by the same arguments as in (1). Then $r_{C(R)}(x C(R))=f C(R)$ for some $f^{2}=f \in C(R)$ and so $r_{R}(x R)=f R$. Hence $r_{R}(I) \subseteq f R \cap e R=0$; which is a contradiction. Thus $r_{R}(I)=e R$ for some $e^{2}=e \in R$ and therefore R is a quasi-Baer ring.
(3) By hypothesis, there exists $0 \neq a \in I \cap C(R)$ and so $r_{C(R)}(a C(R))=$ $e C(R)$ for some $e^{2}=e \in C(R)$. Then $r_{R}(a R)=e R$, and this implies $r_{R}(I) \subseteq$ $e R$ by the same method as in (2). Now, we claim that $e R \subseteq r_{R}(I)$. If not, there exists $0 \neq x \in I e \cap C(R) \subseteq I \cap a R \subseteq a R$, by hypothesis. We put $x=y e \in C(R)$ for some $y \in I$. Since $r_{R}(x) \supseteq r_{R}(\bar{a} R)=e R$, we obtain $x=x e=0$; which is a contradiction. Thus $e R \subseteq r_{R}(I)$, and consequently $r_{R}(I)=e R$. Therefore R is a quasi-Baer ring.

Corollary 4. Let R be a semiprime PI-ring with the p.q.-Baer center $C(R)$. If either every central idempotent of R is orthogonal or every right ideal of R generated by a central element contains $C(R)$, then R is quasi-Baer.

Proof. It follows from [18, Theorem 6.1.28] and Proposition 3.
Part (1) of the following example shows that the condition " $I \cap C(R)$ is a nonzero finitely generated right ideal of $C(R)$ " and the condition "every central idempotent of R is orthogonal" in Proposition 3 (1) and (2) are not superfluous, respectively, and parts (2) and (3) show that in Proposition 3, the condition (1) is not equivalent to the condition (2).

Example 5. (1) Let $R=\left\{\left\langle a_{i}\right\rangle \in \prod_{i=1}^{\infty} T_{i} \mid a_{i}\right.$ is eventually constant $\}$, where $T_{i}=\operatorname{Mat}_{2}(F)$ for all i and F is a field. For a two-sided ideal $I=\left\{\left\langle a_{i}\right\rangle \in\right.$ $R \mid a_{i}=0$ if i is even $\}, r_{R}(I)=\left\{\left\langle b_{j}\right\rangle \in R \mid b_{j}=0\right.$ if i is odd $\}$. Since

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \ldots\right\rangle \notin R,
$$

$r_{R}(I)$ cannot be generated by an idempotent of R. Thus R is not quasi-Baer. Note that

$$
C(R)=\left\{\left\langle a_{i}\right\rangle \in R \left\lvert\, a_{i}=\left(\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right)\right. \text { for some } k \in F\right\}
$$

is p.q.-Baer. Now,

$$
\begin{gathered}
I \cap C(R)= \\
\left\{\left\langle a_{i}\right\rangle \in R \mid a_{i}=0 \text { if } i \text { is even, } a_{i}=\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right) \in \operatorname{Mat}_{2}(F) \text { if } i \text { is odd }\right\}
\end{gathered}
$$

is not finitely generated. Moreover,

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \ldots\right\rangle
$$

and

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \ldots\right\rangle
$$

are idempotents, but they are not orthogonal.
(2) Let $R=F\left[x_{1}, x_{2}, \ldots\right]$, where F is a field. Then R is a commutative quasi-Baer ring whose the only idempotents 0 and 1 are orthogonal. But the two-sided ideal $\left\langle x_{1}^{2}, x_{2}^{2}, \ldots\right\rangle$ of R is not finitely generated.
(3) Let $R=\mathbb{Z} \oplus \mathbb{Z}$. Then R is a commutative quasi-Baer ring. Since R is Noetherian, every two-sided ideal of R is finitely generated. But the central idempotents $(1,0)$ and $(1,1)$ are not orthogonal.

Related to the result of $[1$, Theorem $D]$, we have the next example.
Example 6. (1) Let $R=\mathcal{C}[0,1]$ be the ring of all real-valued continuous functions on $[0,1]$. Then R is commutative (and so PI) and reduced. But R is not p.q.-Baer. For, let

$$
f:[0,1] \rightarrow \mathbb{R}
$$

defined by

$$
f(x)= \begin{cases}0, & 0 \leq x \leq \frac{1}{2} \\ x-\frac{1}{2}, & \frac{1}{2}<x \leq 1\end{cases}
$$

Then $f \in R$, and so

$$
r_{R}(f)=\{g \in R \mid g((1 / 2,1])=0\} \neq 0
$$

Suppose that $r_{R}(f)=e R$ for some nonzero idempotent $e \in R$. Then $e(x)^{2}=$ $e(x)$, for each $x \in[0,1]$. Thus $e(x)=0$ or $e(x)=1$. Since $e \in r_{R}(f)$, $e\left(\left(\frac{1}{2}, 1\right]\right)=\{0\}$. But e is continuous, and so $e(x)=0$ for each $x \in[0,1]$. Hence $r_{R}(f)=0$; which is a contradiction. Thus R is a reduced PI-ring which is not right p.q.-Baer.
(2) We take the ring in [12, Example 2(1)]. Let \mathbb{Z} be the ring of integers and $\operatorname{Mat}_{2}(\mathbb{Z})$ the 2×2 full matrix ring over \mathbb{Z}. Let

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{2}(\mathbb{Z}) \right\rvert\, a-d \equiv b \equiv c \equiv 0(\bmod 2)\right\}
$$

Then R is right p.q.-Baer, but R is neither right PP nor left PP by [12, Example $2(1)]$. Moreover, it can be easily checked that R is an abelian PI-ring with the PP center.

3. Generalized p.q.-Baer rings

Regarding to a generalization of Baer rings as well as a PP-ring, recall that a ring R is called a generalized right $P P$-ring if for any $x \in R$ the right ideal $x^{n} R$ is projective for some positive integer n, depending on n, equivalently, if for any $x \in R$ the right annihilator of x^{n} is generated by an idempotent for some positive integer n, depending on n. Left cases may be defined analogously. A ring R is called a generalized $P P$-ring if it is both generalized right and left PP-ring. Right PP-rings are generalized right PP obviously. A number of papers have been written on generalized PP-rings. For basic and other results on generalized PP-rings, see e.g. [11, 14, 16].

As a parallel definition to the generalized PP-property related to the p.q.Baer property, we define the following.

Definition 7. A ring R is called a generalized right p.q.-Baer ring if for any $x \in R$ the right annihilator of $x^{n} R$ is generated by an idempotent for some positive integer n, depending on n. Left cases is defined analogously. A ring R is called a generalized p.q.-Baer ring if it is both generalized right and left p.q.-Baer ring.

We have the following connections.
Lemma 8. [12, Lemma 1] Let R be a reduced ring. The following are equivalent:
(1) R is right $P P$.
(2) R is $P P$.
(3) R is generalized right $P P$.
(4) R is generalized $P P$.
(5) R is right p.q.-Baer.
(6) R is p.q.-Baer.
(7) R is generalized right p.q.-Baer.
(8) R is generalized p.q.-Baer.

Shin [19] defined that a ring R satisfies (S I) if for each $a \in R, r_{R}(a)$ is a two-sided ideal of R, and proved that R satisfies (S I) if and only if $a b=0$ implies $a R b=0$ for $a, b \in R$ [19, Lemma 1.2]. The (S I) property was studied in the context of near rings by Bell, in [2], where it is called the insertion of
factors principle (simply, $I F P$). It is well known that every reduced ring has the IFP, and if R has the IFP then it is abelian, but the converses do not hold, respectively.

Recall from [8, Corollary 1.15], R is an abelian PP-ring if and only if R is a reduced p.q.-Baer ring. Similarly, we have the following.

Proposition 9. Let a ring R have the IFP. Then R is a generalized right $P P$-ring if and only if R is a generalized right p.q.-Baer ring.

Proof. For any $x \in R$ and positive integer $n, r_{R}\left(x^{n}\right)=r_{R}\left(x^{n} R\right)$ since R has the IFP.

Every right p.q.-Baer rings is generalized right p.q.-Baer, but the converse does not hold, by the next example.

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring $T(R, M)=R \oplus M$ with the usual addition and the following multiplication:

$$
\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right)=\left(a_{1} a_{2}, a_{1} m_{2}+m_{1} a_{2}\right)
$$

This is isomorphic to the ring of all matrices $\left(\begin{array}{cc}a & m \\ 0 & a\end{array}\right)$, where $a \in R$ and $m \in M$ and the usual matrix operations are used.

Example 10. [14, Example 2] Let D be a domain and $R=T(D, D)$ be the trivial extension of D. Then R has the IFP and R is a generalized right PPring, but it is not a right PP-ring. Thus R is a generalized right p.q.-Baer ring by Proposition 9, but it is not right p.q.-Baer by [8, Proposition 1.14].

Recall from [5], an idempotent $e \in R$ is called left (resp. right) semicentral if $x e=e x e($ resp. $\quad e x=e x e)$ for all $x \in R$. The set of left (resp. right) semicentral idempotents of R is denoted by $S_{\ell}(R)$ (resp. $S_{r}(R)$). Note that $S_{\ell}(R) \cap S_{r}(R)=\mathbf{B}(R)$, where $\mathbf{B}(R)$ is the set of all central idempotents of R, and if R is semiprime then $S_{\ell}(R)=S_{r}(R)=\mathbf{B}(R)$. Some of the basic properties of these idempotents are indicated in the following.

Lemma 11. [7, Lemma 1.1] For an idempotent $e \in R$, the following are equivalent:
(1) $e \in S_{\ell}(R)$.
(2) $1-e \in S_{r}(R)$.
(3) $(1-e) R e=0$.
(4) $e R$ is a two-sided ideal of R.
(5) $R(1-e)$ is a two-sided ideal of R.

The following example shows that the condition " R has the IFP" in Proposition 9 cannot be dropped.

Example 12. [8, Example 1.6] For a field F, take $F_{n}=F$ for $n=1,2, \ldots$, and let

$$
R=\left(\begin{array}{cc}
\prod_{n=1}^{\infty} F_{n} & \oplus_{n=1}^{\infty} F_{n} \\
\oplus_{n=1}^{\infty} F_{n} & <\oplus_{n=1}^{\infty} F_{n}, 1>
\end{array}\right)
$$

which is a subring of the 2×2 matrix ring over the ring $\prod_{n=1}^{\infty} F_{n}$, where $<\oplus_{n=1}^{\infty} F_{n}, 1>$ is the F-algebra generated by $\oplus_{n=1}^{\infty} F_{n}$ and 1 . Then R is a regular ring by [10, Lemma 1.6], and so R is a generalized PP-ring.

Let $a \in\left(a_{n}\right) \in \prod_{n=1}^{\infty} F_{n}$ such that $a_{n}=1$ if n is odd and $a_{n}=0$ if n is even, and let $\alpha=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right) \in R$. Now we assume that there exists an idempotent $e \in R$ such that $r_{R}\left(\alpha^{k} R\right)=e R$ for a positive integer k. Then e is left semicentral, and so e is central since R is semiprime. But this is impossible. Thus R is not generalized right p.q.-Baer. Similarly R is not generalized left p.q.-Baer.

Proposition 13. Let R be a ring. The following are equivalent:
(1) R is generalized right p.q.-Baer.
(2) For any principal ideal I of the form $R a^{n} R$ of R, where n is a positive integer, there exists $e \in S_{r}(R)$ such that $I \subseteq R e$ and $r_{R}(I) \cap R e=(1-e) R e$.

Proof. The proof is an adaptation from [8, Proposition 1.9]. (1) $\Rightarrow(2)$: Assume (1). Then $r_{R}(I)=r_{R}\left(R a^{n} R\right)=r_{R}\left(a^{n} R\right)=f R$ with $f \in S_{\ell}(R)$. So $I \subseteq$ $\ell_{R}\left(r_{R}(I)\right)=R(1-f)$. Let $e=1-f$, then $e \in S_{r}(R)$. Hence $r_{R}(I) \cap R e=$ $(1-e) R \cap R e=(1-e) R e$.
$(2) \Rightarrow(1)$: Assume (2). Clearly $(1-e) R \subseteq r_{R}(I)$ for any ideal I of the form $R a^{n} R$. Let $\alpha \in r_{R}(I)$, then $\alpha e=e \alpha e+(1-e) \alpha e \in r_{R}(I) \cap R e=(1-e) R e$. So $e \alpha=e \alpha e=0$. Hence $\alpha=(1-e) \alpha \in(1-e) R$. Thus $r_{R}(I)=(1-e) R$, and therefore R is generalized right p.q.-Baer.

Corollary 14. Let R be a generalized right p.q.-Baer ring. If I is a principal ideal of the form $R a^{n} R$ of R, then there exists $e \in S_{r}(R)$ such that $I \subseteq R e$, $(1-e) R e$ is an ideal of R, and $I+(1-e) R e$ is left essential in Re.

As a parallel result to [8, Proposition 1.12], we have the following whose proof is also an adaptation from [8].

Proposition 15. If R is a generalized right p.q.-Baer ring, then the center $C(R)$ of R is a generalized PP-ring.

Proof. Let $a \in C(R)$. For any positive integer n, there exists $e \in S_{\ell}(R)$ such that $\ell_{R}\left(a^{n}\right)=\ell_{R}\left(R a^{n}\right)=r_{R}\left(a^{n}\right)=r_{R}\left(a^{n} R\right)=e R$. Observe that $\ell_{R}\left(R a^{n}\right)=$ $\ell_{R} r_{R} \ell_{R}\left(R a^{n}\right)=\ell_{R} r_{R}(e R)$. Let $r_{R}(e R)=r_{R}\left(e^{n} R\right)=f R$ with $f \in S_{\ell}(R)$, then $1-f \in S_{r}(R)$. Hence $e R=\ell_{R}\left(R a^{n}\right)=\ell_{R} r_{R}(e R)=\ell_{R}(f R)=R(1-f)$. So there exists $x \in R$ such that $e=x(1-f)$ and hence $e f=x(1-f) f=0$. Now $f e=e f e=0$ because $e \in S_{\ell}(R)$, and so $e f=f e=0$. Since $e R=R(1-f)$, there is $y \in R$ such that $1-f=e y$ and so $e=e(1-f)=e y=1-f$. Thus
$e \in S_{\ell}(R) \cap S_{r}(R)=\mathbf{B}(R)$. Consequently, $r_{C}(R)\left(a^{n}\right)=r_{R}\left(a^{n}\right) \cap C(R)=$ $e R \cap C(R)=e C(R)$. Therefore the center $C(R)$ of R is a generalized PP-ring.

The following example shows that there exists a semiprime ring \mathcal{R} whose center is generalized PP, but \mathcal{R} is not generalized right p.q.-Baer.

Example 16. Let $\mathcal{R}=R \oplus \operatorname{Mat}_{2}(\mathbb{Z}[x])$, where

$$
R=\left(\begin{array}{cc}
\prod_{n=1}^{\infty} F_{n} & \oplus_{n=1}^{\infty} F_{n} \\
\oplus_{n=1}^{\infty} F_{n} & <\oplus_{n=1}^{\infty} F_{n}, 1>
\end{array}\right)
$$

in Example 12. Then the center of \mathcal{R} is generalized PP. Since R is not generalized right p.q.-Baer by Example 12, \mathcal{R} is not generalized right p.q.-Baer either. Furthermore, due to [14, Example 4], $\operatorname{Mat}_{2}(\mathbb{Z}[x])$ is not generalized right PP. Thus \mathcal{R} is not generalized right PP.

Note that given a reduced ring R the trivial extension of R (by R) has the IFP by simple computations. However, the trivial extension of a ring R which has the IFP does not have the IFP by [13, Example 11]. We give examples of generalized right p.q.-Baer rings, which are extensions of the trivial extension, as in the following.

Lemma 17. Let S be a ring and for $n \geq 2$

$$
R_{n}=\left\{\left.\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \right\rvert\, a, a_{i j} \in S\right\}
$$

If S has the IFP, then for any $A \in R_{n}$ and any $E^{2}=E \in R_{n}, A E=\mathbf{0}$ implies $A R_{n} E=\mathbf{0}$, where $\mathbf{0}$ is the zero matrix in R_{n}.

Proof. Note that every idempotent E in R_{n} is of the form

$$
\left(\begin{array}{ccccc}
e & 0 & 0 & \cdots & 0 \\
0 & e & 0 & \cdots & 0 \\
0 & 0 & e & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e
\end{array}\right)
$$

with $e^{2}=e \in S$ by [14, Lemma 2]. Suppose that $A E=\mathbf{0}$ for any

$$
A=\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \in R_{n}
$$

Then we have the following: $a e=0$ and $a_{i j} e=0$ for $i<j, 1 \leq i$ and $2 \leq j$. Since S has the IFP, $a S e=0$ and $a_{i j} S e=0$ for $i<j, 1 \leq i$ and $2 \leq j$. These imply $A R_{n} E=\mathbf{0}$.

Proposition 18. Let a ring S have the IFP and let R_{n} for $n \geq 2$ be the ring in Lemma 17. Then the following are equivalent:
(1) S is generalized right p.q.-Baer.
(2) R_{n} is generalized right PP.
(2) R_{n} is generalized right p.q.-Baer.

Proof. (1) $\Rightarrow(2)$: Suppose that S is generalized right p.q.-Baer. By Proposition $9, S$ is generalized right PP. Hence R_{n} is also generalized right PP by [14, Proposition 3].
$(2) \Rightarrow(3)$: Suppose that R_{n} is generalized right PP. Then for any

$$
A=\left(\begin{array}{ccccc}
a & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a & a_{23} & \cdots & a_{2 n} \\
0 & 0 & a & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \in R_{n}
$$

and a positive integer k, there exists an idempotent

$$
E=\left(\begin{array}{ccccc}
e & 0 & 0 & \cdots & 0 \\
0 & e & 0 & \cdots & 0 \\
0 & 0 & e & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e
\end{array}\right) \in R_{n}
$$

with $e^{2}=e \in S$ such that $r_{R_{n}}\left(A^{k}\right)=E R_{n}$. Note that $r_{R_{n}}\left(A^{k} R_{n}\right) \subseteq E R_{n}$. From $r_{R_{n}}\left(A^{k}\right)=E R_{n}, A^{k} E=\mathbf{0}$, and so $A^{k} R_{n} E=\mathbf{0}$ by Lemma 17. Thus we have $E \in r_{R_{n}}\left(A^{k} R_{n}\right)$, and so $E R_{n} \subseteq r_{R_{n}}\left(A^{k} R_{n}\right)$. Consequently, $r_{R_{n}}\left(A^{k} R_{n}\right)=$ $E R_{n}$, and therefore R_{n} is generalized right p.q.-Baer.
$(3) \Rightarrow(1)$: Suppose that R_{n} is generalized right p.q.-Baer. Let $a \in S$ and consider

$$
A=\left(\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & a & 0 & \cdots & 0 \\
0 & 0 & a & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & a
\end{array}\right) \in R_{n}
$$

Since R_{n} is generalized right p.q.-Baer, $r_{R_{n}}\left(A^{k} R_{n}\right)=E R_{n}$ for some $E^{2}=E \in$ R_{n} and a positive integer k. Then by [14, Lemma 2], there is $e^{2}=e \in S$ such
that

$$
E=\left(\begin{array}{ccccc}
e & 0 & 0 & \cdots & 0 \\
0 & e & 0 & \cdots & 0 \\
0 & 0 & e & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & e
\end{array}\right) \in R_{n} .
$$

Hence $e S \subseteq r_{S}\left(a^{k} S\right)$. Let $b \in r_{S}\left(a^{k} S\right)$, then

$$
\left(\begin{array}{ccccc}
b & 0 & 0 & \cdots & 0 \\
0 & b & 0 & \cdots & 0 \\
0 & 0 & b & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & b
\end{array}\right) \in R_{n}
$$

is contained in $r_{R_{n}}\left(A^{k} R_{n}\right)=E R_{n}$, so $b \in e S$. Thus S is also a generalized right p.q.-Baer ring.

Acknowledgments. The author would like to thank the referee for his/her helpful comments which improved this paper. This work was supported by the Daejin University Research Grants in 2004.

References

[1] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Australian Math. Soc. 18(1974), 470-473.
[2] H.E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2(1970), 363-368.
[3] S.K. Berberian, "Baer *-Rings", Grundlehren Math. Wiss. Band 195, Springer-Verlag, Berlin-Heidelberg-New York(1972).
[4] G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MDSN, Pacific J. Math. 97(1981), 283-292.
[5] G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11(1983), 567-580.
[6] G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hung. 59(1992), 319-326.
[7] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Quasi-Baer Ring Extensions and Biregular Rings, Bull. Austral. Math. Soc. 61(2000), 39-52.
[8] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29(2001), 639-660.

12 Principally quasi-Baer rings and generalized principally quasi-Baer rings
[9] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34(1967), 417-424.
[10] K.R. Goodearl, "Von Neumann Regular Rings", Pitman, London(1979).
[11] Y. Hirano, On generalized P.P.-rings, Math. J. Okayama Univ. 25(1983), 7-14.
[12] C.Y. Hong, N.K. Kim and T.K. Kwak, Ore extensions of Baer and p.p. rings, J. Pure and Applied Algebra 151(2000), 215-226.
[13] C.Y. Hong, N.K. Kim and T.K. Kwak, Extensions of generalized reduced rings, Algebra Colloq. (to appear).
[14] C. Huh, H.K. Kim and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure and Applied Algebra 167(2002), 37-52.
[15] I. Kaplansky, "Rings of Operators", Math. Lecture Note Series, Benjamin, New York(1965).
[16] M. Ôhori, On noncommutative generalized p.p. rings, Math. J. Okayama Univ. 25(1984), 157-167.
[17] A. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37(1970), 127-138.
[18] L.H. Rowen, "Ring Theory II", Academic Press, Inc.(1988).
[19] G.Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184(1973) 43-60.

