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Abstract

In this paper, we investigate the question whether the p.q.-Baer center
of a ring R can be extended to R. We give several counterexamples this
question and consider some conditions under which the answers of this
may be affirmative. The concept of a generalized p.q.-Baer property
which is a generalization of Baer property of a ring is also introduced.

1. Introduction

In [15], Kaplansky introduced Baer rings as rings in which every right (left)
annihilator ideal is generated by an idempotent. According to Clark [9], a ring
R is called quasi-Baer if the right annihilator of every right ideal is generated
(as a right ideal) by an idempotent. Further works on quasi-Baer rings appear
in [4], [6], and [17]. Recently, Birkenmeier, Kim and Park [8] called a ring R
to be a right (resp. left) principally quasi-Baer (or simply right (resp. left)
p.q.-Baer) ring if the right (resp. left) annihilator of a principal right (resp.
left) ideal is generated by an idempotent. R is called a p.q.-Baer ring if it is
both right and left p.q.-Baer. The class of right or left p.q.-Baer rings is a
nontrivial generalization of the class of quasi-Baer rings. For example, if R is a
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2 Principally quasi-Baer rings and generalized principally quasi-Baer rings

commutative von Neumann regular ring which is not complete, then R is p.q.-
Baer but not quasi-Baer. Observe that every biregular ring is also a p.q.-Baer
ring.

A ring satisfying a generalization of Rickart’s condition (i.e., every right
annihilator of any element is generated (as a right ideal) by an idempotent)
has a homological characterization as a right PP-ring which is also another
generalization of a Baer ring. A ring R is called a right (resp. left) PP-ring
if every principal right (resp. left) ideal is projective (equivalently, if the right
(resp. left) annihilator of an element of R is generated (as a right (resp. left)
ideal) by an idempotent of R). R is called a PP-ring (also called a Rickart
ring [3, p. 18]) if it is both right and left PP. Baer rings are clearly right
(left) PP-rings, and von Neumann regular rings are also right (left) PP-rings
by Goodearl [10, Theorem 1.1]. Note that the conditions right PP and right
p.q.-Baer are distinct [8, Example 1.3 and 1.5], but R is an abelian PP-ring if
and only if R is a reduced p.q.-Baer ring [8, Corollary 1.15].

Throughout this paper R denotes an associative ring with identity. For a
nonempty subset X of R, we write rg(X) = {a € R | Xa =0} and {r(X) =
{a € R| aX = 0}, which are called the right annihilator of X in R and the left
annihilator of X in R, respectively.

2. Principally quasi-Baer centers

As a motivation for this section, we recall the following results:

(1) [15, Theorem 7] The center of a Baer ring is Baer.

(2) [7, Proposition 1.8] The center of a quasi-Baer ring is quasi-Baer.

(3) [8, Proposition 1.12] The center of a right p.q.-Baer ring is PP (hence
p.q.-Baer).

(4) [1, Theorem D] Every reduced PI-ring with the Baer center is a Baer
ring.

It is natural to ask if the p.q.-Baer center of a ring R can be extended to
R. In this section, we show that this question has a negative answer, and so
we investigate the class of rings with some conditions under which the answer
to this question is affirmative.

Let C(R) denote the center of a ring R.

Example 1. (1) Let K be a field. We consider the ring R = K[X,Y, Z]
with XY = XZ =ZX =YX =0and YZ # ZY. Then R is reduced and
C(R) = K[X] is Baer and so p.q-Baer. But rg(Y) has no idempotents. Thus
R is not right p.q.-Baer. Note that

= {J(Y,2) € K[, Z)| (0,0) =0}
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is a two-sided ideal of R and I N C(R) = 0.

(2) Let
x Yy z
R= 0 =z uw ||=zy,z2uveRy C Matz(R),
0 0 w

where R denotes the set of real numbers. Then R is a Pl-ring which is not
semiprime. Then we see that

01 0 0 b ¢
TR 000]|R|= 00 01| |bceRr
00 0 00 0

But this cannot be generated by an idempotent. Hence R is not right p.q.-Baer.
On the other hand,

z 0 0
C(R) = 0 =z 0 | zeR» 2R
0 0 =«

Therefore C(R) is Baer.

Observe that Example 1(2) also shows that there exists a PI-ring R with
the Baer center, but R is not right p.q.-Baer.
However, we have the following results:

Lemma 2. [8, Proposition 1.7] R is a right p.q.-Baer ring if and only if the
right annihilator of any finitely generated right ideal is generated (as a right
ideal) by an idempotent.

Proposition 3. Let R be a ring with the p.q.-Baer center C(R). If R satisfies
any of the following conditions for any nonzero two-sided ideal I of R, then R
is quasi-Baer (and hence right p.q.-Baer).

(1) INC(R) is a nonzero finitely generated right ideal of C(R).

(2) INC(R) # 0 and every central idempotent of R is orthogonal.

(3) INC(R) # 0 and every right ideal of R generated by a central element
contains C(R).

Proof. Let I be a nonzero two-sided ideal of R. If rg(I) = 0, then we are done.
Thus we assume rg(I) # 0.

(1) By hypothesis and Lemma 2, INC(R) # 0 and r¢(g)(INC(R)) = eC(R)
for some ¢? = ¢ € C(R). We claim that rg(I) = eR. If Ie # 0, then Ie
is a nonzero two-sided ideal of R. Thus, by hypothesis, 0 # Ie N C(R) C
INC(R). Let 0 # z € IeNC(R). Then x = ye € I NC(R) for some y € I,
and so x = xe = 0; which is a contradiction. Hence eR C rr(I), and then
rr(l) = RNrr(I) = (eR® (1 —e)R)Nrr(I) = eR® ((1 — e)R N rr()).
We show that (1 — e)RNrr(I) = 0. Suppose that 0 # (1 — e)R Nrr(I).
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Then (1 — e)RN C(R) is a nonzero two-sided ideal of R. Thus, by hypothesis,
0# (I1—e)RNrr(I)NC(R) = (1—e)RNrer)(I) € (1—e)RNrer)(INC(R)) C
(I—e)RNeC(R) C (1—-e)RNeR = 0; which is also a contradiction. Therefore
rr(I) = eR and thus R is quasi-Baer.

(2) There exists 0 # a € C(R) such that a € I, and so r¢(g)(aC(R)) =
eC(R) for some €2 = e € C(R) by hypothesis. Then rr(aR) = eR. For, since
rr(aR) N C(R) = rory(aC(R)) = eC(R), e € rr(aR) and so eR C rr(aR),
and thus rg(aR) = eR by the similar method to (1). Hence rr(I) C eR. Now,
we claim eR C rg(I). If not, there exists 0 # x € R such that x € I N C(R)
by the same arguments as in (1). Then r¢(g)(zC(R)) = fC(R) for some
f?=f € C(R) and so rr(xR) = fR. Hence rr(I) C fRNeR = 0; which is
a contradiction. Thus 7r(I) = eR for some ¢? = ¢ € R and therefore R is a
quasi-Baer ring.

(3) By hypothesis, there exists 0 # a € I N C(R) and so rory(aC(R)) =
eC(R) for some ¢? = e € C(R). Then rg(aR) = eR, and this implies rz(I) C
eR by the same method as in (2). Now, we claim that eR C rg(I). If not, there
exists 0 # x € IeNC(R) C INaR C aR, by hypothesis. We put z = ye € C(R)
for some y € I. Since rr(z) 2 rr(aR) = eR, we obtain x = ze = 0; which is a
contradiction. Thus eR C rg(I), and consequently rg(I) = eR. Therefore R
is a quasi-Baer ring. [J O

Corollary 4. Let R be a semiprime Pl-ring with the p.q.-Baer center C(R).
If either every central idempotent of R is orthogonal or every right ideal of R
generated by a central element contains C(R), then R is quasi-Baer.

Proof. Tt follows from [18, Theorem 6.1.28] and Proposition 3. OJ O

Part (1) of the following example shows that the condition “I N C(R) is a
nonzero finitely generated right ideal of C'(R)” and the condition “every central
idempotent of R is orthogonal” in Proposition 3 (1) and (2) are not superfluous,
respectively, and parts (2) and (3) show that in Proposition 3, the condition
(1) is not equivalent to the condition (2).

Example 5. (1) Let R = {(a;) € [[;2, T} | a; is eventually constant}, where
T, = Maty(F) for all i and F is a field. For a two-sided ideal I = {{a;) €
R|a; =0 if i iseven}, rr(I) = {(b;) € R|b; =0 if ¢ isodd}. Since

1 0 0 0 1 0 0 0
(G 1)-(08)-(o 1)(55)pem
rr(I) cannot be generated by an idempotent of R. Thus R is not quasi-Baer.
Note that
k0
C(R)=<{a;) €R|a;= 0k for some k€ F

is p.q.-Baer. Now,
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INC(R) =
a;) € R|a; =0if i iseven,a; = z 0 € Matq(F) if 7 is odd
0 =x

is not finitely generated. Moreover,

Cot) o) (on))
Cot)(on) (o) (o8))

are idempotents, but they are not orthogonal.

(2) Let R = Flz1,x2,...], where F is a field. Then R is a commutative
quasi-Baer ring whose the only idempotents 0 and 1 are orthogonal. But the
two-sided ideal (2%, 23,...) of R is not finitely generated.

(3) Let R=Z ®Z. Then R is a commutative quasi-Baer ring. Since R is
Noetherian, every two-sided ideal of R is finitely generated. But the central
idempotents (1,0) and (1, 1) are not orthogonal.

and

Related to the result of [1, Theorem D], we have the next example.

Example 6. (1) Let R = C[0,1] be the ring of all real-valued continuous
functions on [0, 1]. Then R is commutative (and so PI) and reduced. But R is
not p.q.-Baer. For, let

f:[0,1] =R
defined by

Then f € R, and so
rr(f) ={g9€ R|g((1/2,1]) = 0} #0.
2

Suppose that rr(f) = eR for some nonzero idempotent e € R. Then e(z)* =
e(x), for each x € [0,1]. Thus e(x) = 0 or e(z) = 1. Since e € rgr(f),
e((%,1]) = {0}. But e is continuous, and so e(z) = 0 for each z € [0, 1]. Hence
rr(f) = 0; which is a contradiction. Thus R is a reduced PI-ring which is not
right p.q.-Baer.

(2) We take the ring in [12, Example 2(1)]. Let Z be the ring of integers
and Maty(Z) the 2 x 2 full matrix ring over Z. Let

R:{(‘CL Z) € Mats(Z) | a—dEbECEO(mod2)}.
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Then R isright p.q.-Baer, but R is neither right PP nor left PP by [12, Example
2(1)]. Moreover, it can be easily checked that R is an abelian PI-ring with the
PP center.

3. Generalized p.q.-Baer rings

Regarding to a generalization of Baer rings as well as a PP-ring, recall that
a ring R is called a generalized right PP-ring if for any x € R the right ideal
" R is projective for some positive integer n, depending on n, equivalently, if
for any « € R the right annihilator of 2™ is generated by an idempotent for
some positive integer n, depending on n. Left cases may be defined analogously.
A ring R is called a generalized PP-ring if it is both generalized right and left
PP-ring. Right PP-rings are generalized right PP obviously. A number of
papers have been written on generalized PP-rings. For basic and other results
on generalized PP-rings, see e.g. [11, 14, 16].

As a parallel definition to the generalized PP-property related to the p.q.-
Baer property, we define the following.

Definition 7. A ring R is called a generalized right p.q.-Baer ring if for any
x € R the right annihilator of ™R is generated by an idempotent for some
positive integer n, depending on n. Left cases is defined analogously. A ring
R is called a generalized p.q.-Baer ring if it is both generalized right and left
p-q.-Baer ring.

We have the following connections.

Lemma 8. [12, Lemma 1] Let R be a reduced ring. The following are equiva-
R is PP.

)
)
)

4) R is generalized PP.
) R is right p.q.-Baer.
)
)

Shin [19] defined that a ring R satisfies (S 1) if for each a € R, rg(a) is a
two-sided ideal of R, and proved that R satisfies (S I) if and only if ab = 0
implies aRb = 0 for a,b € R [19, Lemma 1.2]. The (S I) property was studied
in the context of near rings by Bell, in [2], where it is called the insertion of
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factors principle (simply, IFP). Tt is well known that every reduced ring has
the IFP, and if R has the IFP then it is abelian, but the converses do not hold,
respectively.

Recall from [8, Corollary 1.15], R is an abelian PP-ring if and only if R is
a reduced p.q.-Baer ring. Similarly, we have the following.

Proposition 9. Let a ring R have the IFP. Then R is a generalized right
PP-ring if and only if R is a generalized right p.q.-Baer ring.

Proof. For any x € R and positive integer n, rg(z™) = rr(z™R) since R has
the IFP. O O

Every right p.q.-Baer rings is generalized right p.q.-Baer, but the converse
does not hold, by the next example.

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by
M 1is the ring T(R, M) = R @® M with the usual addition and the following
multiplication:

(a1, m1)(az, ma) = (a1a2, a1ma + mias).

This is isomorphic to the ring of all matrices ( 8 TZ >, where a € R and

m € M and the usual matrix operations are used.

Example 10. [14, Example 2] Let D be a domain and R = T(D, D) be the
trivial extension of D. Then R has the IFP and R is a generalized right PP-
ring, but it is not a right PP-ring. Thus R is a generalized right p.q.-Baer ring
by Proposition 9, but it is not right p.q.-Baer by [8, Proposition 1.14].

Recall from [5], an idempotent e € R is called left (resp. right) semicentral
if xze = exe (resp. ex = exe) for all z € R. The set of left (resp. right)
semicentral idempotents of R is denoted by S¢(R) (resp. Sr(R)). Note that
S¢e(R) N S,.(R) = B(R), where B(R) is the set of all central idempotents of
R, and if R is semiprime then S;(R) = S,.(R) = B(R). Some of the basic
properties of these idempotents are indicated in the following.

Lemma 11. [7, Lemma 1.1] For an idempotent e € R, the following are equiv-
alent:
Se(R).

(1) ee

(2) 1—e€ S.(R).

(3) (1 —¢e)Re =0.

(4) eR is a two-sided ideal of R.

(5) R(1 —e) is a two-sided ideal of R.

The following example shows that the condition “R has the IFP” in Propo-
sition 9 cannot be dropped.
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Example 12. [8, Example 1.6] For a field F, take F,, = F for n = 1,2,...,

and let -
R— [[= Fn Dnz1Fn
O F, <@ Fn,1> )7

which is a subring of the 2 x 2 matrix ring over the ring [, F,,, where
< @92 F,,1 > is the F-algebra generated by @22, F,, and 1. Then R is a
regular ring by [10, Lemma 1.6], and so R is a generalized PP-ring.

Let a € (an) € [, Fy such that a, = 1 if n is odd and a, = 0 if n
a 0
0 0
idempotent e € R such that rz(a*R) = eR for a positive integer k. Then e is
left semicentral, and so e is central since R is semiprime. But this is impossible.
Thus R is not generalized right p.q.-Baer. Similarly R is not generalized left
p.q.-Baer.

is even, and let o = > € R. Now we assume that there exists an

Proposition 13. Let R be a ring. The following are equivalent:

(1) R is generalized right p.q.-Baer.

(2) For any principal ideal I of the form Ra™R of R, where n is a positive
integer, there exists e € S,.(R) such that I C Re and rr(I) N Re = (1 — e)Re.

Proof. The proof is an adaptation from [8, Proposition 1.9]. (1)=(2): Assume
(1). Then rg(I) = rr(Ra™R) = rgr(a™R) = fR with f € S¢(R). So I C
lr(rr(l)) = R(1— f). Let e =1 — f, then e € S,.(R). Hence rg(I) N Re =
(1—e)RNRe=(1-¢e)Re.

(2)=(1): Assume (2). Clearly (1 —e)R C rg(I) for any ideal I of the form
Ra"R. Let o € rr(I), then ae = eae + (1 — e)ae € rr(I) N Re = (1 — e)Re.
So ea = eae = 0. Hence e = (1 —e)a € (1 —e)R. Thus rr(I) = (1 —e)R, and
therefore R is generalized right p.q.-Baer.[J O

Corollary 14. Let R be a generalized right p.q.-Baer ring. If I is a principal
ideal of the form Ra™R of R, then there exists e € S.(R) such that I C Re,
(1 —e)Re is an ideal of R, and I + (1 — e)Re is left essential in Re.

As a parallel result to [8, Proposition 1.12], we have the following whose
proof is also an adaptation from [8].

Proposition 15. If R is a generalized right p.q.-Baer ring, then the center
C(R) of R is a generalized PP-ring.

Proof. Let a € C(R). For any positive integer n, there exists e € Sy(R) such
that ¢r(a™) = €r(Ra™) = rr(a™) = rr(a™R) = eR. Observe that {r(Ra™) =
lrrrlr(Ra™) = Lgrr(eR). Let rr(eR) = rr(e™R) = fR with f € S¢(R), then
1—f € S8.(R). Hence eR = Lr(Ra™) = frrr(eR) = Lr(fR) = R(1 — f). So
there exists € R such that e = (1 — f) and hence ef = (1 — f)f = 0. Now
fe = efe =0 because e € Sy(R), and so ef = fe = 0. Since eR = R(1 — f),
there is y € R such that 1 — f = ey and so e = e(1 — f) = ey =1 — f. Thus



TaAal KEUN KwAK 9

e € S¢(R)N S,.(R) = B(R). Consequently, rc(R)(a™) = rgr(a™) N C(R) =
eRNC(R) = eC(R). Therefore the center C(R) of R is a generalized PP-ring.
O O

The following example shows that there exists a semiprime ring R whose
center is generalized PP, but R is not generalized right p.q.-Baer.

Example 16. Let R = R @ Mato(Z|[x]), where

R= quzozl Iy Ontrfn
O F, < @B Fn,1> )7

in Example 12. Then the center of R is generalized PP. Since R is not general-
ized right p.q.-Baer by Example 12, R is not generalized right p.q.-Baer either.
Furthermore, due to [14, Example 4], Maty(Z[x]) is not generalized right PP.
Thus R is not generalized right PP.

Note that given a reduced ring R the trivial extension of R (by R) has the
IFP by simple computations. However, the trivial extension of a ring R which
has the IFP does not have the IFP by [13, Example 11]. We give examples of
generalized right p.q.-Baer rings, which are extensions of the trivial extension,
as in the following.

Lemma 17. Let S be a ring and for n > 2

a a2 a1z - Qip
0 a as --- a2

R, = 0 0 a Tt A3n |CL,CLUES
0 O o --- a

If S has the IFP, then for any A € R,, and any E*> = E € R,,, AE = 0 implies
AR,E =0, where 0 is the zero matriz in R,,.

Proof. Note that every idempotent F in R, is of the form

e 00 --- 0
0O e O --- 0
0 0 e -~ 0
000 --- e

with e? = e € S by [14, Lemma 2]. Suppose that AE = 0 for any

a a2 aiz - Qin
0 a a3 - az
A= 0 0 a - am | R,
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Then we have the following: ae =0 and a;;e =0 for i <j, 1 <7 and 2 <.
Since S has the IFP, aSe = 0 and a;;8¢ =0 for i < j, 1 <4 and 2 <.
These imply AR, F =0. O O

Proposition 18. Let a ring S have the IFP and let R,, for n > 2 be the ring
in Lemma 17. Then the following are equivalent:

(1) S is generalized right p.q.-Baer.

(2) R, is generalized right PP.

(2) R, is generalized right p.q.-Baer.

Proof. (1)=(2): Suppose that S is generalized right p.q.-Baer. By Proposition
9, S is generalized right PP. Hence R, is also generalized right PP by [14,
Proposition 3].

(2)=(3): Suppose that R,, is generalized right PP. Then for any

a aj2 a1z -+ QAin
0 a as - a2

A _ O O a . asn c Rn
0 O o --- a

and a positive integer k, there exists an idempotent

e 00 0
0 e 0 0

E = 0 0 e 0 ERn
000 - e

with €2 = e € S such that rg, (A¥) = ER,. Note that rr, (A*R,) C ER,.
From rg, (A*) = ER,,, A*E = 0, and so A*R,,E = 0 by Lemma 17. Thus we
have E € rg, (A*R,), and so ER,, C rg, (A*R,). Consequently, rr (A*R,) =
ER,,, and therefore R, is generalized right p.q.-Baer.

(3)=(1): Suppose that R,, is generalized right p.q.-Baer. Let a € S and
consider

a 0 0 0
0 a O 0

A= 0 0 a 0 1 eR,.
000 - a

Since R, is generalized right p.q.-Baer, 7, (A*R,) = ER,, for some E? = F €
R,, and a positive integer k. Then by [14, Lemma 2], there is e? = e € S such
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that
e 00 0
0 e 0 0
E = 0 0 e 0 ERn
000 - e

Hence eS C rg(a*S). Let b € rg(a*S), then

b 0 0 - 0
0 b 0 - 0
005b - 0|cpr,
000 -+ b

is contained in rg, (A*R,) = ER,, so b € eS. Thus S is also a generalized
right p.q.-Baer ring. [ O
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