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Abstract

Let τM be any preradical for σ[M ] and N any module in σ[M ]. N is
called a τM -semiperfect module if for every submodule K of N , there is a
decomposition K = A⊕B such that A is a projective direct summand of
N in σ[M ] and B ⊆ τM(N). In this paper we prove that any finite direct
sum of τM -semiperfect modules is τM -semiperfect. It is also shown that
if M is a local projective module in σ[M ], then for every index set Λ, the
sum M (Λ) is ZM -semiperfect in σ[M ] if and only if every factor module
of M (Λ) has a projective ZM -cover.

1 Introduction

Throughout this paper all rings are associative with identity and modules are
unitary right modules. For any module M , τM will denote a preradical in σ[M ].
Like in [2], a module N ∈ σ[M ] is called τM -lifting if for every submodule K of
N , there exists a decomposition K = A ⊕ B such that A is a direct summand
of N and B ⊆ τM (N). According to [9], any module N in σ[M ] is called
semiperfect in σ[M ] if every factor module of N has a projective cover. By [9,
41.14 and 42.1], if P ∈ σ[M ] is projective in σ[M ], then P is semiperfect if and
only if for every submodule K of P , there exists a decomposition K = A ⊕ B
such that A is a direct summand of P and B � P . Recently, Özcan and Alkan
[7] have defined the τM -semiperfect modules in σ[M ] for any preradical τM

on σ[M ]. Inspired by this work, we mainly study ZM -semiperfect modules in
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σ[M ] in this paper. A module N ∈ σ[M ] is called ZM -semiperfect in σ[M ] if
for every submodule K of N , there is a decomposition K = A ⊕ B such that
A is a projective direct summand of N in σ[M ] and B ⊆ ZM (N).

In Section 2, we will be concerned with the structure of ZR(RR). It is
shown that if R is a right good ring, then ZR(RR) = annr(Rad(R)). Section 3
is devoted to the study of τM -lifting modules. Some results deal with the case
τM = ZM . In Section 4, we prove that any finite direct sum of τM -semiperfect
modules is τM -semiperfect. In [2], the authors called a module L ∈ σ[M ] τM -
semiperfect, if every factor module of N has a projective τM -cover in σ[M ].
Section 5 establishes the relation between this definition of τM -semiperfect
modules and the one given in [7] in some special cases. In particular, we prove
the following Proposition:

Let M be a local projective module in σ[M ]. The following are equivalent
for a module N in σ[M ] which is isomorphic to M (Λ) for some index set Λ:

(1) Every factor module of N has a projective ZM -cover.
(2) N is ZM -semiperfect.

2 Some Properties of ZR(RR)

Let M be an R-module. A module N ∈ σ[M ] is said to be M -small if there
exists a module L ∈ σ[M ] such that N � L.

Let N ∈ σ[M ]. In [8], Talebi and Vanaja define ZM (N) as follows: ZM (N) =
∩{Ker(g) | g ∈ Hom(N, L), L is M -small}. The module N is called M -
cosingular (non-M -cosingular) if ZM (N) = 0 (ZM (N) = N).

The following proposition maybe well-known. We give here its proof for the
sake of completeness.

Proposition 2.1. Let M be any R-module. Then we have:
(1) Rad(M)ZR(RR) = 0.
(2) MZR(RR) ≤ ZR(M).

Proof (1) Let x ∈ Rad(M) and let a ∈ ZR(RR). Consider the homomorphism
f : R −→ xR defined by f(r) = xr. Since xR � M , ZR(RR) ≤ Ker(f). Thus
f(a) = 0. That is xa = 0.

(2) Let x ∈ M and consider the homomorphism f : R −→ M defined by
f(r) = xr. Since f(ZR(RR)) ≤ ZR(M) (see [8, Proposition 2.1(2)]), it follows
that xZR(RR) ≤ ZR(M). Therefore MZR(RR) ≤ ZR(M). �

Corollary 2.2. If R is a ring having a radical R-module M with annr(M) = 0,
then ZR(RR) = 0.

Proof Since Rad(M)ZR(RR) = 0 and Rad(M) = M , we have MZR(RR) = 0.
But annr(M) = 0. So ZR(RR) = 0. �
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Example 2.3. We consider the ring Z. We know that Q is a radical faithful
Z-module. Then ZZ(Z) = 0 by Corollary 2.2.

The proof of the next Proposition is similar to the proof of [1, Proposition
17.10].

Proposition 2.4. Let R be any ring with I = ZR(RR). If P is a projective
right R-module, then ZR(P ) = PI.

Proof Since P is projective, P is a direct summand of a free module R(A). So
there exists a submodule Q of R(A) such that R(A) = P ⊕Q. By [8, Proposition
2.1(4)], ZR(P ) ⊕ ZR(Q) = (ZR(RR))(A) = I(A) = R(A).I = PI ⊕ QI. But
PI ≤ ZR(P ) by Proposition 2.1. Then ZR(P ) = PI. �

Definition 2.5. Following [3, p. 236], a ring R is called a right good ring if
for every right R-module M we have MRad(R) = Rad(M).

Clearly, any semilocal ring is a good ring (see [3, Theorem 9.7.1]). Especially,
every artinian ring is a good ring.

Proposition 2.6. Let R be a right good ring. We have ZR(RR) = annr(Rad(R)).

Proof By Proposition 2.1(1), ZR(RR) ⊆ annr(Rad(R)).
Now let r ∈ annr(Rad(R)) i.e. Rad(R)r = 0 and let f : R −→ L be

a homomorphism where L is a small submodule of an R-module X. Since
Rad(X) = XRad(R), we have Rad(X)r = 0. Thus Lr = 0 and hence f(1)r =
0. That is r ∈ Ker(f). Therefore r ∈ ZR(RR) and so annr(Rad(R)) ⊆
ZR(RR). Consequently, ZR(RR) = annr(Rad(R)). �

Corollary 2.7. Let R be a semilocal ring. Then:
(1) ZR(RR) = Soc(RR) is an ideal of R.
(2) If P is a projective R-module, then ZR(P ) = PSoc(RR).
(3) If Soc(RR) = Soc(RR), then for every projective right R-module P we

have ZR(P ) = Soc(P ).

Proof (1) By Proposition 2.6, ZR(RR) = annr(Rad(R)). By [1, Proposition
15.17], Soc(RR) = annr(Rad(R)). The result follows.

(2) By (1) and Proposition 2.4.
(3) It is known that Soc(P ) = PSoc(RR) (See [1, Exercise 17.12]). But by

hypothesis, we have Soc(RR) = Soc(RR). So Soc(P ) = PSoc(RR). By (2), we
get ZR(P ) = Soc(P ).

�

Corollary 2.8. Let R be a QF ring. Then for every projective right R-module
P we have ZR(P ) = Soc(P ).
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Proof By Corollary 2.7 and [5, Corollary 15.7]. �

Examples 2.9. (1) We consider the ring Z. We have Rad(Z) = 0. Then
annr(Rad(Z)) = Z. But ZZ(Z) = 0. Therefore ZZ(Z) 	= annr(Rad(Z)).

(2) Let R be a Dedekind domain and let M be any radical R-module. Then
ZR(M) = M . In fact, if f : M −→ L is a homomorphism where L is a
small R-module, then M

Ker(f)
∼= Im(f). Hence Im(f) is radical. Since R is a

Dedekind domain, Im(f) is injective. But Im(f) is a small R-module. Thus
Im(f) = 0 and Ker(f) = M . In particular, we have ZZ(Q) = Q.

(3) If R is semisimple, then ZR(RR) = R (because the only R-small module
is 0).

Recall that an R-module M is called V -module if every simple module in
σ[M ] is M -injective. By [8, Proposition 2.5], if M is an R-module, then M is a
V-module if and only if every module in σ[M ] is non-M -cosingular. Moreover,
by [8, Corollary 2.6], R is a right V-ring if and only if the module R is non-R-
cosingular. We can also give the following Proposition:

Proposition 2.10. A ring R is a right V -ring if and only if for every right
R-modules M and N with N ∈ σ[M ], we have ZM (N) = N .

Proof Assume that R is a right V -ring. Then for every right R-module L we
have Rad(L) = 0. So 0 is the only M -small R-module. Then ZM (N) = N .
The converse is clear by [8, Corollary 2.6]. �

3 τM -lifting modules

Lemma 3.1. Let N ∈ σ[M ]. The following are equivalent:
(i) For every submodule K of N , there is a decomposition K = A⊕B such

that A is a direct summand of N and B ⊆ τM (N).
(ii) For every submodule K of N , there is a direct summand A of N such

that A ⊆ K and K/A ⊆ τM (N/A).
(iii) For every submodule K of N , there is a decomposition N = A ⊕ B

such that A ⊆ K and B ∩ K ⊆ τM (N).

Proof This is clear. �

A module N ∈ σ[M ] is called τM−lifting if it satisfies one of the equivalent
conditions of Lemma 3.1. τM -lifting modules are studied in [2] for any radical τ
on σ[M ]. Note that by [2, Proof of 2.10(2)], any direct summand of a τM−lifting
module is again τM−lifting for every preradical τM .
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Theorem 3.2. Let N ∈ σ[M ] with N = N1 ⊕ N2 be a direct sum of relatively
projective modules N1 and N2 such that N1 is semisimple and N2 is τM -lifting.
Then N is τM -lifting.

Proof We follow the proof in [4, Theorem 6]. Let L be any submodule of N .
Note that K = N1∩(L+N2) is a submodule of N1. Then N1 = K⊕K

′
for some

submodule K
′
of N1 and hence N = K ⊕K

′ ⊕N2 = L + (N2 ⊕ K
′
). It is easy

to see that K is (N2 ⊕ K
′
)-projective. Then there exists a submodule L

′
of L

such that N = L
′ ⊕(N2 ⊕K

′
) by [9, 41.14]. Since K

′ ∩ (L+N2) = K
′ ∩K = 0,

it is easy to check that L ∩ (X + K
′
) = X ∩ (L + K

′
) for every X ≤ N2.

Note that N2 is τM -lifting and N2 ∩ (L + K
′
) is a submodule of N2. Therefore

there exists a decomposition N2 = A1 ⊕A2 such that A1 ⊆ N2 ∩ (L + K
′
) and

A2 ∩ (L + K
′
) ⊆ τM (N2). Thus N = (L

′ ⊕ A1) ⊕ (A2 ⊕ K
′
), L

′ ⊕ A1 ⊆ L and
L ∩ (A2 ⊕ K

′
) = A2 ∩ (L + K

′
) ⊆ τM (N). Consequently, N is τM -lifting. �

The following result can be found also in [2] or in [7].

Lemma 3.3. Let N be τM -lifting in σ[M ]. Then Rad(N) ⊆ τM (N).

Proof Since N is τM -lifting in σ[M ], N/τM (N) is semisimple. The result
follows. �

Proposition 3.4. Let N ∈ σ[M ] be an indecomposable module such that N
is τM -lifting in σ[M ]. Then either τM (N) = N or N is a local module with
τM (N) = Rad(N).

Proof Suppose that τM (N) 	= N . Let X be any submodule of N . Then
X = A ⊕ B with A is a direct summand of N and B ≤ τM (N). But N is
indecomposable. Thus A = 0 or A = N . So X ≤ τM (N) or X = N . Therefore
N is a local module and τM (N) is the maximal submodule of N . �

Corollary 3.5. Let N ∈ σ[M ] be a local module. The following are equivalent:
(1) N is τM -lifting in σ[M ].
(2) either τM (N) = N or τM (N) = Rad(N).

Proof (1) ⇒ (2) By Proposition 3.4.
(2) ⇒ (1) Immediate. �

The following result gives some examples of modules M such that M is
ZM -lifting and shows that, in general, a local module over a ring R need not
be τM -lifting.

Proposition 3.6. Let R be a local ring with maximal ideal m. Then the
following are equivalent:

(i) RR is ZR-lifting.
(ii) m2 = 0.
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Proof From Proposition 2.6 we have ZR(RR) = annr(Rad(R)) = annr(m).
The result is a consequence of Corollary 3.5. �

Proposition 3.7. Let N be a τM -lifting module in σ[M ] such that N =
⊕j∈JNj is a finite direct sum of indecomposable submodules Nj (j ∈ J). Then
N = K ⊕ L such that τM (K) = K and L is a direct sum of local submodules
with τM (L) = Rad(L).

Proof By [2, Proof of 2.10(2)], every Nj (j ∈ J) is τM -lifting. It follows that
for every j ∈ J , we have τM (Nj) = Nj or τM (Nj) = Rad(Nj) by Proposition
3.4. The result follows. �

Corollary 3.8. Let N ∈ σ[M ] be a module with finite hollow dimension such
that N is projective in σ[M ]. If N is τM -lifting, then N = K ⊕ L with K is
semiperfect in σ[M ] and L = τM (L).

Proof It is well-known that N is a finite direct sum of indecomposable sub-
modules. The result follows from Proposition 3.7 and [9, 42.3]. �

Corollary 3.9. Let N be a ZM -lifting module in σ[M ] such that N = ⊕i∈INi

is a direct sum of indecomposable submodules Ni (i ∈ I). Then N = K⊕L such
that ZM (K) = K, L is a direct sum of local submodules and ZM (L) = Rad(L).

Proof By Proposition 3.4 and [8, Proposition 2.1(4)]. �

Proposition 3.10. Let R be a commutative ring and M an R-module. Let L
be a local ZM -lifting module in σ[M ]. Then L is simple or ZM (L) = Rad(L).

Proof Suppose that L is not simple. Let x ∈ L such that L = xR and let N
be the maximal submodule of L. By Lemma 3.3, we have N ⊆ ZM (L). Let
a ∈ N such that a 	= 0. It is clear that aR is an M -small module. Consider
the homomorphism f : xR −→ aR defined by f(xr) = ar for all r ∈ R.
It is well defined, because if xr = 0 for some r ∈ R, then r ∈ annr(L) (R
is commutative), and hence ar = 0. This gives ZM (L) ⊆ Ker(f). Since
Ker(f) 	= L (f 	= 0), Ker(f) ⊆ N . Thus ZM (L) ⊆ N . Therefore ZM (L) =
Rad(L). �

Corollary 3.11. Suppose that R is commutative. Let P be a projective semiper-
fect module in σ[M ]. Then the following are equivalent:

(1) P is ZM -lifting.
(2) P = P1 ⊕ P2 with Rad(P1) = ZM (P1) and P2 is semisimple.
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Proof (1) ⇒ (2) Since P is projective semiperfect in σ[M ], P is a direct sum
of local submodules and Rad(P ) � P by [9, 42.4]. By Proposition 3.10 and [8,
Proposition 2.1], P = P1 ⊕ P2 with Rad(P1) = ZM (P1) and P2 is semisimple.

(2) ⇒ (1) Since P1 is projective semiperfect in σ[M ], as a direct summand of
P , and Rad(P1) = ZM (P1), P1 is ZM -lifting. From Theorem 3.2, we conclude
that P is ZM -lifting. �

4 τM -Semiperfect Modules

Let τM be any preradical for σ[M ] and let N be a module in σ[M ]. The module
N is called a τM -semiperfect module in σ[M ] if it satisfies one of the following
equivalent two conditions (See [7, Proposition 2.1]):

(1) For every submodule K of N , there is a decomposition K = A⊕B such
that A is a projective direct summand of N in σ[M ] and B ⊆ τM (N);

(2) For every submodule K of N , there is a decomposition N = A⊕B such
that A is projective in σ[M ], A ≤ K and K ∩ B ≤ τM (N).

It is easy to see that every τM -semiperfect module is τM -lifting and any
projective module in σ[M ] is τM -lifting if and only if it is τM -semiperfect in
σ[M ].

Examples 4.1. (1) Let K be a field and let R =
∏

n≥1 Kn with Kn = K for all
n ≥ 1. Then the ring R is a von Neumann regular ring which is not semisimple
(See [3, p. 264]). Hence the R-module R is not semiperfect (Rad(R) = 0). On
the other hand, since ZR(R) = R, the module R is ZR-semiperfect.

(2) If R is a DV R, then the R-module RR is semiperfect but by Proposition
3.6, the module RR is not ZR-semiperfect.

Theorem 4.2. Any finite direct sum of τM -semiperfect modules is τM -semi-
perfect.

Proof To prove this result it is sufficient by induction to prove that a direct
sum of two τM -semiperfect modules in σ[M ] is again τM -semiperfect in σ[M ].
Let N = N1 ⊕ N2 such that N1 and N2 are τM -semiperfect modules in σ[M ].
Let L be any submodule of N . Note that N1 ∩ (L + N2) is a submodule
of N1 and N1 is τM -semiperfect in σ[M ]. Thus there exists a decomposition
N1 = A1 ⊕B1 such that A1 is projective in σ[M ] with A1 ⊆ N1 ∩ (L+N2) and
B1 ∩ (L + N2) ⊆ τM (N1). Then N = L + (B1 ⊕ N2). Since N2 ∩ (L + B1) is
a submodule of N2, there exists a decomposition N2 = A2 ⊕ B2 such that A2

is projective in σ[M ] with A2 ⊆ N2 ∩ (L + B1) and B2 ∩ (L + B1) ⊆ τM (N2).
Then N = L + (B1 ⊕ B2) = (A1 ⊕ A2) ⊕ (B1 ⊕ B2). Since A1 and A2 are
projective in σ[M ], A1 ⊕ A2 is (B1 ⊕ B2)-projective. Hence by [9, 41.14],
N = L

′ ⊕ (B1 ⊕ B2) for some submodule L
′

of N with L
′ ⊆ L. Clearly, L

′

is projective in σ[M ]. Now, L ∩ (B1 ⊕ B2) ⊆ B1 ∩ (L + B2) + B2 ∩ (L + B1)



200 On ZM -semiperfect Modules

implies that L ∩ (B1 ⊕ B2) ⊆ τM (N1) ⊕ τM (N2) = τM (N). Therefore N is
τM -semiperfect in σ[M ]. �

Note that Theorem 4.2 generalizes [7, Theorem 2.10].

Corollary 4.3. Suppose that R is commutative. Let P be a projective module
in σ[M ] with Rad(P ) � P and P has finite hollow dimension. Then the
following are equivalent:

(1) P is ZM -semiperfect.
(2) P = P1 ⊕P2 ⊕P3 with P1 is semiperfect and Rad(P1) = ZM (P1), P2 is

semisimple and ZM(P3) = P3.

Proof (1) ⇒ (2) By Corollary 3.8, P = K ⊕ L with K is semiperfect and
L = ZM (L). Now following Corollary 3.11, K = K1 ⊕ K2 with Rad(K1) =
ZM (K1) and K2 is semisimple. It is clear that K1 is semiperfect in σ[M ].

(2) ⇒ (1) It is clear that P1, P2 and P3 are all ZM -semiperfect in σ[M ]. So
P is ZM -semiperfect by Theorem 4.2. �

5 ZM -semiperfect Modules and ZM -cover

Let N ∈ σ[M ]. We call an epimorphism f : P −→ N a projective τM -cover of
N in σ[M ] if P is projective in σ[M ] and Ker(f) ⊆ τM (P ).

In [2], the authors called a module L ∈ σ[M ] τM -semiperfect, if every fac-
tor module of N has a projective τM -cover. In [7, Theorem 2.23], the authors
showed that this definition agrees with the one given in this paper for a pro-
jective module in σ[M ] and for the preradical Soc. It is of interest to know
whether these two definitions coincide in the case τM = ZM for projective
modules. It is not our purpose to answer the question. We will touch on only
some special cases.

Lemma 5.1. Let N ∈ σ[M ]. If every factor module of N has a projective
ZM -cover, then Rad(N) ≤ ZM (N).

Proof By [2, 2.17], N
ZM (N)

is semisimple. Therefore Rad(N) ≤ ZM (N). �

Proposition 5.2. Let N ∈ σ[M ] be a projective module in σ[M ]. If N is τM -
semiperfect in σ[M ], then every factor module of N has a projective τM -cover.

Proof Let A be a submodule of N . By hypothesis, N = N1 ⊕ N2 such that
N1 ⊆ A and A ∩ N2 ⊆ τM (N2). Now consider the canonical epimorphism
f : N2 −→ N/A with Ker(f) = A ∩ N2. Clearly, f is a projective τM -cover of
N/A. �
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Proposition 5.3. Let M be a module such that every simple module in σ[M ]
is M -small. Then for every module N in σ[M ], we have ZM (N) ≤ Rad(N).

Proof By the definition of the radical (see [1, p. 109 and 120]), we have
Rad(N) = ∩{Kerh | h ∈ HomR(N, S) and S is a simple R-module}. Thus
Rad(N) = ∩{Kerh | h ∈ HomR(N, S) and S is a simple module with S ∈ σ[M ]
}. By hypothesis and the definition of ZM (N), we have ZM (N) ≤ Rad(N). �

Corollary 5.4. Let M be an R-module such that every simple module in σ[M ]
is M -small and let N be any module in σ[M ]. Consider the following condi-
tions:

(1) Every factor module of N has a projective ZM -cover.
(2) Every factor module of N has a projective Rad-cover.
Then (1) implies (2).

Proof By Proposition 5.3. �

The following example shows that, in general, the converse of Corollary 5.4
is false.

Example 5.5. Let R be a local ring with maximal ideal m such that m 	= 0.
Suppose that every factor of R has a projective ZR-cover. By Lemma 5.1,
m ⊆ ZR(RR). But ZR(RR) = annr(m). Then ZR(RR) = m. By Proposition
3.6, RR is ZR-semiperfect. This proves that RR is ZR-semiperfect if and only
if every factor of R has a projective ZR-cover.

Let R be a DVR with maximal ideal m. Consider the ring S = R
m3 . It is

clear that S is not a von Neuman regular ring (m 	= m3). Thus the simple
S-module S

m/m3 is not an injective S-module. Hence every simple S-module is
S-small. Since ( m

m3 )2 	= 0, the module SS is not ZS-semiperfect by Proposition
3.6. Thus the S-module SS does not satisfy the condition (1) of Corollary 5.4.
But it is easily seen that the module SS satisfies the condition (2).

Lemma 5.6. If M is a local R-module with maximal submodule K, then M
K

is
M -small or ZM (N) = N for every module N ∈ σ[M ].

Proof Let I be a right ideal of R such that M ∼= R
I

and let J be a right
maximal ideal of R such that M

K
∼= R

J . Since M is local, J is the only right
maximal ideal over I. Let S be a simple module in σ[M ]. Then S is isomorphic
to a submodule of a factor module of a direct sum M (Λ) for some index set Λ.
Since MI = 0, we have SI = 0. Hence I ⊆ annr(S). But annr(S) is a right
maximal ideal of R. Therefore annr(S) = J . So S ∼= M

K . Suppose that M
K is

not M -small. By [6, 5.1.4], every simple module in σ[M ] is M -injective. Thus
the module M is a V -module. Hence ZM (N) = N for every module N ∈ σ[M ]
by [8, Proposition 2.5]. �
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Proposition 5.7. Let N be a nonzero module in σ[M ] which has a projective
Rad-cover in σ[M ]. Then N has a maximal submodule.

Proof Let f : P −→ N be a projective Rad-cover of N in σ[M ]. Then
Ker(f) ⊆ Rad(P ). By [9, 22.3], P contains a maximal submodule K. There-
fore Ker(f) ⊆ K. It is easy to check that f(K) is a maximal submodule of N .
�

Proposition 5.8. Let M be a local projective module in σ[M ] with maximal
submodule K. The following are equivalent for a module N in σ[M ] which is
isomorphic to M (Λ) for some index set Λ:

(1) Every factor module of N has a projective ZM -cover.
(2) N is ZM -semiperfect.

Proof (1)⇒(2) Since M is local, ZM(L) = L for every module L ∈ σ[M ] or
M
K

is M -small by Lemma 5.6. If ZM (L) = L for every module L ∈ σ[M ],
then ZM (N) = N . So N is ZM -semiperfect. By the proof of Lemma 5.6,
every simple module in σ[M ] is isomorphic to M

K
. So if M

K
is M -small, then

Corollary 5.4 shows that every factor module of N has a projective Rad-cover.
By Proposition 5.7, every proper submodule of N is contained in a maximal
submodule of N . Hence Rad(N) � N . But N is projective in σ[M ] and
it is a direct sum of local modules. Thus N is semiperfect in σ[M ] by [9,
42.3(1)] and [10, Satz 1.4(A)]. Therefore N is ZM -semiperfect in σ[M ] since
Rad(N) ≤ ZM(N) (See Lemma 5.1).

(2)⇒(1) By Proposition 5.2. �

Proposition 5.9. Let R be a semilocal ring such that Soc(RR) = Soc(RR)
and let N be a projective R-module. The following are equivalent:

(1) Every factor module of N has a projective ZR-cover.
(2) N is ZR-semiperfect.
(3) N is Soc-semiperfect.

Proof Let P be any projective R-module. By Corollary 2.7, we have ZR(P ) =
Soc(P ). The result follows from [7, Theorem 2.23]. �

Corollary 5.10. Let R be a QF ring. Let N be a projective R-module. The
following are equivalent:

(1) Every factor module of N has a projective ZR-cover.
(2) N is ZR-semiperfect.
(3) N is Soc-semiperfect.

Proof By Proposition 5.9 and [5, Corollary 15.7]. �
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Proposition 5.11. Suppose that τM is a radical for σ[M ]. Let N be a projec-
tive module in σ[M ] such that N is Soc-lifting. The following are equivalent:

(1) Every factor module of N has a projective τM -cover.
(2) N is τM -semiperfect in σ[M ].

Proof (1)⇒(2) By [2, 2.17], N
τM (N) is semisimple. Hence Rad(N) ≤ τM (N).

On the other hand, N = N1 ⊕ N2 where N1 is semisimple and τM (N2) is
essential in N2 ([2, 2.2 and 2.16]). Therefore Soc(N2) ≤ τM (N2). Since N is
Soc-lifting, N2 is Soc-lifting and hence it is τM -lifting. By Theorem 3.2, N is
τM -lifting. Therefore N is τM -semiperfect since it is projective in σ[M ].

(2)⇒(1) Clear by Proposition 5.2. �
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