ON *s*-IMAGES OF LOCALLY SEPARABLE METRIC SPACES

Tran Van An^{*} and Nguyen Van Dung

*Department of Mathematics Vinh University, Vietnam e-mail: andhv@yahoo.com

Department of Mathematics Pedagogical University of Dong Thap, Vietnam e-mail: nguyendungtc@yahoo.com

Abstract

In this paper we characterize compact-covering (resp. pseudo-sequencecovering, subsequence-covering, sequentially-quotient) *s*-images of locally separable metric spaces by certain point-countable covers.

1 Introduction

Characterizations of images of metric spaces have attracted many authors (see [1], [6], [7], [10]). Recently, many topologists were engaged in *s*-images of locally separable metric spaces. In [10] and [12], authors have characterized quotient *s*-images and sequence-covering *s*-images of locally separable metric spaces as follows.

Theorem 1.1 ([10], Theorem 2.2). The following conditions are equivalent for a space X.

1. X is a quotient s-image of a locally separable metric space,

2. X is a sequential space, and there exists a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ of X where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network for some subsequence of S.

^{*}Corresponding author

Key words: s-map, cs-map, network, k-network, cfp-cover, cfp-network, cs-network, cs*-network, sequence-covering, compact-covering, pseudo-sequence-covering, subsequence-covering, sequentially-quotient.

²⁰⁰⁰ AMS Mathematics Subject Classification: 54C10, 54E40, 54E99, 54D55, 54D65 Supported in part by the National Natural Science Foundation of Vietnam

Theorem 1.2 ([12], Theorem 3.4). The following are equivalent for a space X.

1. X is a sequence-covering s-image of a locally separable metric space,

2. X has a point-countable cs-network consisting of cosmic subspaces,

3. X has a point-countable cs-network, and an so-cover consisting of \aleph_0 -subspaces.

Note that, for a map $f : X \longrightarrow Y$, f is compact-covering or sequencecovering $\Rightarrow f$ is pseudo-sequence-covering \Rightarrow subsequence-covering, and f is quotient if and only if f is subsequence-covering such that Y is sequential. Any of each converse implication need not hold. Compact-covering maps and sequence-covering maps are exclusive ([15], [16]). These lead us to be interested in compact-covering (resp. pseudo-sequence-covering, subsequence-covering, sequentially-quotient) *s*-images of locally separable metric spaces, that is, we are interested in the following question.

Question 1.3. How are compact-covering (resp. pseudo-sequence-covering, subsequence-covering, sequentially-quotient) s-images of locally separable metric spaces characterized by means of point-countable covers?

In this paper we give internal characterizations of compact-covering (pseudosequence-covering, subsequence-covering, sequentially-quotient) *s*-images of locally separable metric spaces by means of certain point-countable covers to answer Question 1.3 completely.

Throughout this paper, all spaces are assumed to be regular and T_1 , all maps are assumed continuous and onto, \mathbb{N} denotes the set of all natural numbers, ω denotes $\mathbb{N} \cup \{0\}$, and a convergent sequence includes its limit point. Let $f : X \longrightarrow Y$ be a map and \mathcal{P} be a collection of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}$ and $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$

Definition 1.4. Let A be a subset of a space X and \mathcal{P} be a collection of subsets of X.

 \mathcal{P} is a cover for A in X, if $A \subset \bigcup \mathcal{P}$.

 \mathcal{P} is a *network at* x *in* X, if $x \in P$ for every $P \in \mathcal{P}$ and whenever $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.

 \mathcal{P} is a *network for* A *in* X, if whenever $x \in U \cap A$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}$.

 \mathcal{P} is a *k*-network for A in X, if whenever $K \subset U \cap A$ with K compact and U open in X, then $K \subset \bigcup \mathcal{F} \subset U$ for some finite $\mathcal{F} \subset \mathcal{P}$.

 \mathcal{P} is a *cfp-cover* for A in X, if \mathcal{P} is finite and for each $P \in \mathcal{P}$ there is a closed set A_P in A with $A_P \subset P$ such that $A \subset \bigcup \{A_P : P \in \mathcal{P}\}$. Note that a such family \mathcal{P} is a *full cover* in [1].

 \mathcal{P} is a *cfp-network for* A *in* X, if whenever $K \subset U \cap A$ with K compact and U open in X, then there is a *cfp*-cover $\mathcal{F} \subset \mathcal{P}$ for K in X such that $K \subset \bigcup \mathcal{F} \subset U$. Note that a such family \mathcal{P} is a *strong k*-*network* in [1].

182

 \mathcal{P} is a *cs-network for* A *in* X (resp. cs^* -*network for* A *in* X), if whenever S is a convergent sequence in A converging to $x \in A \cap U$ with U open in X, then S is eventually (resp. frequently) in $P \subset U$ for some $P \in \mathcal{P}$. Note that when A is a convergent sequence there are different definitions in [10] but they are the same if \mathcal{P} is a network for A in X.

A cover \mathcal{P} for A in X is an *irreducible cover for* A *in* X, if whenever $\mathcal{Q} \subset \mathcal{P}$ covers A, then $\mathcal{Q} = \mathcal{P}$.

 \mathcal{P} is *point-countable*, if $\{P \in \mathcal{P} : x \in P\}$ is countable for each point $x \in X$.

If A = X, then a cover (resp. network, *cfp*-cover, *cfp*-network, *cs*-network, *cs*^{*}-network, irreducible cover) \mathcal{P} for A in X is abbreviated to a *cover* (resp. *network*, *cfp*-cover, *cfp*-network, *cs*-network, *cs*^{*}-network, irreducible cover) \mathcal{P} for X (see [1], [14]).

Definition 1.5 ([14]). Let $f: X \longrightarrow Y$ be a map.

f is a *compact-covering* map, if each compact subset of Y is the image of some compact subset of X.

f is an s-map, if whenever $y \in Y$, then $f^{-1}(y)$ is a separable subset of X.

f is a sequence-covering map, if each convergent sequence in Y is the image of some convergent sequence in X.

f is a *pseudo-sequence-covering* map, if each convergent sequence in Y is the image of some compact subset of X.

f is a sequentially-quotient map, if for each convergent sequence S in Y, there is a convergent sequence L in X such that f(L) is a convergent subsequence of S.

f is a subsequence-covering map, if for each convergent sequence S in Y there is a compact subset K of X such that f(K) is a convergent subsequence of S.

Definition 1.6 ([14]). Let X be a space.

X is an \aleph_0 -space, if X has a countable cs-network. Note that "cs-" can be replaced by "k-", "cfp-", or "cs*-".

X is a *Fréchet* space, if whenever $x \in \overline{A}$ with $A \subset X$, then there is a sequence in A converging to x.

X is a sequential space, if whenever A is a non closed subset of X, then there is a sequence in A converging to a point not in A.

For terms which are not defined here, please refer to [10], [12] and [14].

2 Results

Firstly, we give some results on preservations of certain networks under coveringmaps and on relations of covering-maps.

Lemma 2.1. Let $f : X \longrightarrow Y$ be a map.

- 1. If \mathcal{P} is a cs-network for a convergent sequence L in X, then $f(\mathcal{P})$ is a cs-network for f(L) in Y.
- If P is a cfp-cover for a compact subset K in X, then f(P) is a cfp-cover for f(K) in Y.
- If P is a cfp-network for a compact subset K in X, then f(P) is a cfpnetwork for f(K) in Y.

Proof (1) and (2) are routine.

(3). Let $H \subset f(K) \cap U$ with H compact and U open in Y. Then $G = f^{-1}(H) \cap K$ is compact and $G \subset K \cap f^{-1}(U)$ with $f^{-1}(U)$ open in X. It is easy to see that H = f(G). Since \mathcal{P} is a *cfp*-network for K in X and $G \subset K \cap f^{-1}(U)$ with $f^{-1}(U)$ open in X, there is a *cfp*-cover $\mathcal{F} \subset \mathcal{P}$ for G in X such that $G \subset \bigcup \mathcal{F} \subset f^{-1}(U)$. Then $f(\mathcal{F}) \subset f(\mathcal{P})$ is a *cfp*-cover for f(G) = H in Y by (2) satisfying that $H \subset \bigcup f(\mathcal{F}) = f(\bigcup \mathcal{F}) \subset U$. It implies that $f(\mathcal{P})$ is a *cfp*-network for f(K) in Y.

Lemma 2.2. Let $f : X \longrightarrow Y$ be a map.

- 1. If f is quotient and Y is Fréchet, then f is pseudo-open.
- 2. If f is compact-covering and \mathcal{P} is a k-network for X, then $f(\mathcal{P})$ is a k-network for Y.
- 3. If f is sequence-covering and \mathcal{P} is a cs-network for X, then $f(\mathcal{P})$ is a cs-network for Y.
- 4. If f is sequentially-quotient and \mathcal{P} is a cs^{*}-network for X, then $f(\mathcal{P})$ is a cs^{*}-network for Y.
- 5. If f is compact-covering and \mathcal{P} is a cfp-network for X, then $f(\mathcal{P})$ is a cfp-network for Y.
- 6. If X is sequential and f is subsequence-covering, then f is sequentiallyquotient.

Proof (1). See [4], Proposition 2.3.

(2), (3), (4) and (5) are routine.

(6). Let S be a convergent sequence converging to a point $y \in Y$. Since f is subsequence-covering, there is a compact subset K in X such that f(K) is a convergent subsequence of S. Put $f(K) = \{y\} \cup \{y_n : n \in \mathbb{N}\}$ where $\{y_n : n \in \mathbb{N}\}$ converges to y. For each $n \in \mathbb{N}$ pick $x_n \in f^{-1}(y_n) \cap K$, then $\{x_n : n \in \mathbb{N}\} \subset K$. Note that K is a compact subset in a sequential space, K is sequentially compact. So there is a convergent subsequence $\{x\} \cup \{x_{n_k} : k \in \mathbb{N}\}$ of $\{x\} \cup \{x_n : n \in \mathbb{N}\}$ that converges to $x \in f^{-1}(y)$. Then $\{y\} \cup \{f(x_{n_k}) : k \in \mathbb{N}\}$ is a convergent subsequence of $\{y\} \cup \{y_n : n \in \mathbb{N}\}$. Therefore $\{y\} \cup \{f(x_{n_k}) : k \in \mathbb{N}\}$ is a convergent subsequence of S. This proves that f is sequentially-quotient.

The next three lemmas give some properties on certain networks for compact subsets, particularly, convergent sequences. **Lemma 2.3.** If \mathcal{P} is a cfp-network for a compact subset K in X and $x \in K \cap U$ with U open in X, then there is a cfp-cover $\mathcal{F} \subset \mathcal{P}$ for K in X such that $\bigcup \{F \in \mathcal{F} : x \in F\} \subset U$.

A such *cfp*-cover \mathcal{F} for K in X is called having *property* k(x, U).

Proof We get that $x \in W_1 \subset \overline{W_1} \subset W \subset \overline{W} \subset U \cap K$ where both W_1 and W are open in K. Since \overline{W} is compact and $\overline{W} \subset U$, there is a cfp-cover \mathcal{F}_1 for \overline{W} in X with $\bigcup \mathcal{F}_1 \subset U$. Since the open set $X - \overline{W_1}$ contains a compact set K - W, then there is a cfp-cover \mathcal{F}_2 for K - W in X such that $\bigcup \mathcal{F}_2 \subset X - \overline{W_1}$. Then $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ is a cfp-cover for K in X such that $\bigcup \{F \in \mathcal{F} : x \in F\} \subset U$. \Box

Similarly, we get the following

Lemma 2.4. If \mathcal{P} is a cs-network for a convergent sequence S in X with $S \subset U$ and U open in X, then there is a subfamily $\mathcal{F} \subset \mathcal{P}$ satisfying the following.

- 1. \mathcal{F} is finite,
- 2. $\emptyset \neq F \cap S \subset F \subset U$ for every $F \in \mathcal{F}$,
- 3. If $x \in S$, then there is a unique $F \in \mathcal{F}$ such that $x \in F$,
- 4. If $F \in \mathcal{F}$ contains the limit point of S, then S F is finite.

A such family \mathcal{F} is called having property cs(S, U).

Lemma 2.5. If \mathcal{P} is a point-countable cs^* -network for a convergent sequence S in X with $S \subset U$ and U open in X, then there is a family $\mathcal{F} \subset \mathcal{P}$ satisfying the following.

- 1. \mathcal{F} is finite,
- 2. $\emptyset \neq F \cap S \subset F \subset U$ for every $F \in \mathcal{F}$,
- 3. If $x \in S$, then there is $F \in \mathcal{F}$ such that $x \in F$,
- 4. $F \cap S$ is closed for every $F \in \mathcal{F}$.

A such family \mathcal{F} is called having property $cs^*(S, U)$.

The next result is easy to prove.

Lemma 2.6. Let S be a convergent sequence in X, and \mathcal{P} be a point-countable cover for S in X. Then \mathcal{P} is a cfp-network for S in X if and only if \mathcal{P} is a cs^{*}-network for S in X.

The next two lemmas and notations in their proofs will be used frequently in the following parts.

Lemma 2.7. Let $f : M \longrightarrow X$ be an s-map from a locally separable metric space M onto a space X. Then X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ such that each X_{α} has a countable network \mathcal{P}_{α} .

Proof Since M is a locally separable metric space, $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ where all M_{α} 's are separable metric spaces by 4.4.F in [2]. For each $\alpha \in \Lambda$, let \mathcal{B}_{α} be a countable base for M_{α} , and put $X_{\alpha} = f(M_{\alpha}), \mathcal{P}_{\alpha} = f(\mathcal{B}_{\alpha})$. Then $\{X_{\alpha} : \alpha \in \Lambda\}$ is a point-countable cover for X, and \mathcal{P}_{α} is a countable network for X_{α} . \Box

Lemma 2.8. Let X be a space has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ such that each X_{α} has a countable network \mathcal{P}_{α} . Then X is an s-image of a locally separable metric space.

Proof For each $\alpha \in \Lambda$ put $\mathcal{P}_{\alpha} = \{P_{\beta} : \beta \in \Gamma^{\alpha}\}$ where Γ^{α} is countable. Let Γ_{n}^{α} be the set Γ^{α} with the discrete topology for each $n \in \mathbb{N}$. Denote

$$M_{\alpha} = \left\{ b = (\beta_n) \in \prod_{n \in \mathbb{N}} \Gamma_n^{\alpha} : \{ P_{\beta_n} : n \in \mathbb{N} \} \right\}$$

forms a network in X_{α} at some point $x_b \in X_{\alpha}$.

Then M_{α} is a hereditarily separable metric space of the space $\prod_{n \in \mathbb{N}} \Gamma_n^{\alpha}$. It implies that $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is a locally separable metric space.

For every $b = (\beta_n) \in M_\alpha$, $\{P_{\beta_n} : n \in \mathbb{N}\}$ is a network at some point x_b in X_α . Put $f_\alpha(b) = x_b$. It is easy to check that $f_\alpha : M_\alpha \longrightarrow X_\alpha$ is a map. For every $b \in M$ put $f(b) = f_\alpha(b)$ whenever $b \in M_\alpha$. Then f is a map from M onto X. Let $x \in X$. Since $\{X_\alpha : \alpha \in \Lambda\}$ is point-countable, $\Lambda_x = \{\alpha \in \Lambda : x \in X_\alpha\}$ is countable. For each $\alpha \in \Lambda_x$ because $f_\alpha^{-1}(x) \subset M_\alpha$ and M_α is hereditarily separable, we get $f_\alpha^{-1}(x)$ is separable. Therefore $f^{-1}(x) = \bigcup\{f_\alpha^{-1}(x) : \alpha \in \Lambda_x\}$ is separable. It implies that f is an s-map from a locally separable metric space M onto X.

Using notations in Lemma 2.8 we get the following two lemmas which play important roles in our proofs. The first proof is similar to the proof of Theorem 2 in [11], the second one is similar to that of Theorem 1 in [8].

Lemma 2.9. If \mathcal{P}_{α} is a countable cfp-network for a compact subset K_{α} in X_{α} , then there is a compact subset L_{α} in M_{α} such that $f_{\alpha}(L_{\alpha}) = K_{\alpha}$.

Lemma 2.10. If \mathcal{P}_{α} is a countable cs-network for a convergent sequence S_{α} in X_{α} , then there is a convergent sequence C_{α} in M_{α} such that $f_{\alpha}(C_{\alpha}) = S_{\alpha}$.

Now, we give a characterization of a subsequence-covering s-image of a locally separable metric space.

Theorem 2.11. The following are equivalent for a space X.

- 1. X is a subsequence-covering s-image of a locally separable metric space,
- 2. X is a sequentially-quotient s-image of a locally separable metric space,

3. X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network in X_{α} for some subsequence of S.

Proof $(1) \Rightarrow (2)$. By Lemma 2.2.(6).

 $(2) \Rightarrow (3).$ Let $f: M \longrightarrow X$ be a sequentially-quotient s-map from a locally separable metric space M onto X. It follows from Lemma 2.7 that X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each $X_{\alpha} = f(M_{\alpha})$ has a countable network $\mathcal{P}_{\alpha} = f(\mathcal{B}_{\alpha})$ with $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ and \mathcal{B}_{α} being a countable base for a separable metric space M_{α} . Let S be a convergent sequence in X, we shall prove that there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a *cs*-network in X_{α} for some subsequence of S. Indeed, since f is sequentially-quotient, there is a convergent sequence L of M such that f(L) is a subsequence of S. Since L is a convergent sequence, L is eventually in M_{α} for some $\alpha \in \Lambda$. It is clear that \mathcal{B}_{α} is a *cs*network for $L \cap M_{\alpha}$ in M_{α} and $f(L \cap M_{\alpha})$ is a subsequence of S. It follows from Lemma 2.1 that \mathcal{P}_{α} is a *cs*-network for $f(L \cap M_{\alpha})$ in X_{α} . It implies that X has a cover $\{X_{\alpha} : \alpha \in \Lambda\}$ having required properties.

 $(3) \Rightarrow (1)$. It follows from Lemma 2.8 that there exists an s-map $f : M \longrightarrow X$ from a locally separable metric space $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ onto X where $f(b) = f_{\alpha}(b)$ whenever $b \in M_{\alpha}$ with each $f_{\alpha} : M_{\alpha} \longrightarrow X_{\alpha}$ being a map from a separable metric space M_{α} onto X_{α} . We shall prove that f is subsequence-covering. Let S be a convergent sequence in X. Then there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network in X_{α} for a subsequence T of S. Therefore $T = f_{\alpha}(C_{\alpha}) = f(C_{\alpha})$ where C_{α} is a convergent sequence in M_{α} by Lemma 2.10. It implies that f is a sequentially-quotient map. Then f is subsequence-covering.

From Theorem 2.11, it is easy to get the following corollary by the fact that sequential spaces and Fréchet spaces are preserved by quotient maps and pseudo-open maps respectively. If we drop the parenthetic part, then we get Theorem 2.2 in [10] (see Theorem 1.1).

Corollary 2.12. The following are equivalent for a space X.

- 1. X is a quotient (resp. pseudo-open) s-image of a locally separable metric space,
- 2. X is a sequential (resp. Fréchet) space having a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network in X_{α} for some subsequence of S.

Next, we give an another result based on the relation between a convergent sequence and some \mathcal{P}_{α} as follows.

Theorem 2.13. The following are equivalent for a space X.

1. X is a sequence-covering s-image of a locally separable metric space,

2. X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network for a subsequence T of S in X_{α} with S - T finite.

Proof $(1) \Rightarrow (2)$. Let $f: M \longrightarrow X$ be a sequence-covering *s*-map from a locally separable metric space M onto X. It follows from Lemma 2.7 that X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each $X_{\alpha} = f(M_{\alpha})$ has a countable network $\mathcal{P}_{\alpha} = f(\mathcal{B}_{\alpha})$ with $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ and \mathcal{B}_{α} being a countable base for a separable metric space M_{α} . Let S be a convergent sequence in X, we shall prove that there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a *cs*-network for a subsequence T of S in X_{α} with S - T finite. Indeed, since f is sequence-covering, S = f(L) with some convergent sequence L in M. Since L is a convergent sequence in M, L is eventually in M_{α} for some $\alpha \in \Lambda$. It is clear that \mathcal{B}_{α} is a *cs*-network for $L \cap M_{\alpha}$ in M_{α} . It follows from Lemma 2.1 that \mathcal{P}_{α} is a *cs*-network for $T = f(L \cap M_{\alpha})$ in X_{α} where T is a subsequence of S. Since L is eventually in M_{α} , S - T is finite. It implies that X has a cover $\{X_{\alpha} : \alpha \in \Lambda\}$ having required properties.

(2) \Rightarrow (1). It follows from Lemma 2.8 that there exists an s-map f: $M \longrightarrow X$ from a locally separable metric space $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ onto X where $f(b) = f_{\alpha}(b)$ whenever $b \in M_{\alpha}$ with each $f_{\alpha} : M_{\alpha} \longrightarrow X_{\alpha}$ being a map from a separable metric space M_{α} onto X_{α} . We shall prove that f is sequencecovering. Let S be a convergent sequence in X. Then there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network for a subsequence T of S with S - T finite. It follows from Lemma 2.10 that $T = f_{\alpha}(C_{\alpha})$ where C_{α} is a convergent sequence in M_{α} . Since S - T is finite, there is finite set F in M such that f(F) = S - T. Put $L = F \cup C_{\alpha}$, then L is a convergent sequence in M such that f(L) = S. It implies that f is sequence-covering.

The following corollary is routine.

Corollary 2.14. The following are equivalent for a space X.

- 1. X is a sequence-covering quotient (resp. pseudo-open) s-image of a locally separable metric space,
- 2. X is a sequential (resp. Fréchet) space having a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network for a subsequence T of S in X_{α} with S T finite.

Definition 2.15 ([12], Definition 2.1). A space X is sequentially separable if X has a countable subset D such that for each $x \in X$ there is a sequence $\{x_n : n \in \mathbb{N}\} \subset D$ with $x_n \longrightarrow x$.

By the above notion and results we get a nice characterization of sequencecovering *s*-images of locally separable metric spaces as follows. **Corollary 2.16.** The following are equivalent for a space X.

- 1. X is a sequence-covering s-image of a locally separable metric space,
- 2. X has a point-countable cs-network consisting of \aleph_0 -subspaces.

Proof (1) \Rightarrow (2). It follows from Theorem 2.13 that X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X there is $\alpha \in \Lambda$ such that \mathcal{P}_{α} is a cs-network for a subsequence T of S in X_{α} with S - T finite. Put $\mathcal{P} = \bigcup \{\mathcal{P}_{\alpha} : \alpha \in \Lambda\}$, then \mathcal{P} is a point-countable cs-network for X. We need only to prove that each element $P \in \mathcal{P}$ is an \aleph_0 -subspace. By (1) \Rightarrow (2) in Proof of Theorem 2.13 we can assume that P = f(B) where B is separable metric. Note that every separable metric space is a sequentially separable space and sequential separability is preserved by a map, then P is a sequentially separable subspace having a point-countable cs-network $\mathcal{P}_P = \{Q \cap P : Q \in \mathcal{P}\}$. It follows from Lemma 2.4(3) in [12] that P is an \aleph_0 -space.

 $(2) \Rightarrow (1)$. Let $\mathcal{P} = \{X_{\alpha} : \alpha \in \Lambda\}$ be a point-countable *cs*-network for X consisting of \aleph_0 -subspaces. So each X_{α} has a countable *cs*-network \mathcal{P}_{α} . Then $\{X_{\alpha} : \alpha \in \Lambda\}$ satisfies (2) in Theorem 2.13. It implies that X is a sequence-covering *s*-image of a locally separable metric space.

Next, we characterize pseudo-sequence-covering s-images of locally separable metric spaces based on the relation between a convergent sequence and some finite collection of \mathcal{P}_{α} 's as follows.

Theorem 2.17. The following are equivalent for a space X.

- 1. X is a pseudo-sequence-covering s-image of a locally separable metric space,
- 2. X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is a finite subset Λ_S of Λ such that $S = \bigcup \{S_{\alpha} : \alpha \in \Lambda_S\}$ where S_{α} is compact and \mathcal{P}_{α} is a cs^{*}-network for S_{α} in X_{α} for every $\alpha \in \Lambda_S$.

Proof (1) \Rightarrow (2). Let $f : M \longrightarrow X$ be a pseudo-sequence-covering s-map from a locally separable metric space M onto X. It follows from Lemma 2.7 that X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each $X_{\alpha} = f(M_{\alpha})$ has a countable network $\mathcal{P}_{\alpha} = f(\mathcal{B}_{\alpha})$ with $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ and each \mathcal{B}_{α} being a countable base for a separable metric space M_{α} . Let S be a convergent sequence in X, we shall prove that there is a finite subset Λ_S of Λ such that $S = \bigcup \{S_{\alpha} : \alpha \in \Lambda_S\}$ where S_{α} is compact and \mathcal{P}_{α} is a cs^* -network for S_{α} in X_{α} for every $\alpha \in \Lambda_S$. Indeed, since f is pseudo-sequence-covering, S = f(L)with some compact subset L of M. Because L is a compact subset of M, $\Lambda_S = \{\alpha \in \Lambda : M_{\alpha} \cap L \neq \emptyset\}$ is finite. For each $\alpha \in \Lambda_S$ put $L_{\alpha} = L \cap M_{\alpha}$, then L_{α} is compact and $L = \bigcup \{L_{\alpha} : \alpha \in \Lambda_S\}$. Denote $S_{\alpha} = f(L_{\alpha})$, then S_{α} is compact for each $\alpha \in \Lambda_S$. We get $S = f(L) = f(\bigcup \{L_{\alpha} : \alpha \in \Lambda_S\}) = \bigcup \{f(L_{\alpha}) : \alpha \in \Lambda_S\} = \bigcup \{S_{\alpha} : \alpha \in \Lambda_S\}$. It follows from Claim 4.2 in [1] that \mathcal{B}_{α} is a *cfp*-network of M_{α} for each $\alpha \in \Lambda$, then \mathcal{B}_{α} is a *cfp*-network for L_{α} in M_{α} for each $\alpha \in \Lambda_S$. From Lemma 2.1.(3), \mathcal{P}_{α} is a *cfp*-network for S_{α} in X_{α} for each $\alpha \in \Lambda_S$. Since S_{α} is compact in a convergent sequence S, S_{α} is a convergent sequence for each $\alpha \in \Lambda_S$. Then \mathcal{P}_{α} is a *cs*^{*}-network for S_{α} in X_{α} by Lemma 2.6 for each $\alpha \in \Lambda_S$. It implies that X has a cover $\{X_{\alpha} : \alpha \in \Lambda\}$ having required properties.

(2) \Rightarrow (1). It follows from Lemma 2.8 that there exists an s-map f: $M \longrightarrow X$ from a locally separable metric space $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ onto X where $f(b) = f_{\alpha}(b)$ whenever $b \in M_{\alpha}$ with each $f_{\alpha} : M_{\alpha} \longrightarrow X_{\alpha}$ being a map from a separable metric M_{α} onto X_{α} . We shall prove that f is pseudo-sequencecovering. Let S be a convergent sequence in X, then there is a finite subset Λ_S of Λ such that $S = \bigcup \{S_{\alpha} : \alpha \in \Lambda_S\}$ where S_{α} is compact and \mathcal{P}_{α} is a cs^* network for S_{α} in X_{α} for each $\alpha \in \Lambda_S$. Since S_{α} is compact in a convergent sequence S, S_{α} is a convergent sequence for each $\alpha \in \Lambda_S$. It follows from Lemma 2.6 that \mathcal{P}_{α} is a cfp-network for S_{α} in X_{α} . Then for each $\alpha \in \Lambda_S$ there is a compact subset L_{α} of M_{α} such that $S_{\alpha} = f_{\alpha}(L_{\alpha})$ by Lemma 2.9. Put $L = \bigcup \{L_{\alpha} : \alpha \in \Lambda_S\}$, then L is compact and $S = \bigcup \{S_{\alpha} : \alpha \in \Lambda_S\} =$ $\bigcup \{f_{\alpha}(L_{\alpha}) : \alpha \in \Lambda_S\} = f(\bigcup \{L_{\alpha} : \alpha \in \Lambda_S\}) = f(L)$. It implies that f is a pseudo-sequence-covering map.

It is easy to get the following from Theorem 2.17.

Corollary 2.18. The following are equivalent for a space X.

- 1. X is a pseudo-sequence-covering quotient (resp. pseudo-open) s-image of a locally separable metric space,
- 2. X is a sequential (resp. Fréchet) space having a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each convergent sequence S of X, there is a finite subset Λ_S of Λ such that $S = \bigcup \{S_{\alpha} : \alpha \in \Lambda_S\}$ where S_{α} is compact and \mathcal{P}_{α} is a cs^{*}-network for S_{α} in X_{α} for every $\alpha \in \Lambda_S$.

The following is a general result of Corollary 2.3 in [10].

Corollary 2.19. If X is a space with a point-countable cs^* -network consisting of \aleph_0 -subspaces, then X is a pseudo-sequence-covering s-image of a locally separable metric space.

Finally, we characterize compact-covering s-images of locally separable metric spaces based on the relation between a compact subset and some finite collection of \mathcal{P}_{α} 's.

Theorem 2.20. The following are equivalent for a space X.

1. X is a compact-covering s-image of a locally separable metric space,

2. X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each compact subset K of X, there is a finite subset Λ_K of Λ such that $K = \bigcup \{K_{\alpha} : \alpha \in \Lambda_K\}$ where K_{α} is compact and \mathcal{P}_{α} is a cfp-network for K_{α} in X_{α} for every $\alpha \in \Lambda_K$.

Proof (1) \Rightarrow (2). Let $f: M \longrightarrow X$ be a compact-covering s-map from a locally separable metric space M onto X. It follows from Lemma 2.7 that X has a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each $X_{\alpha} = f(M_{\alpha})$ has a countable network $\mathcal{P}_{\alpha} = f(\mathcal{B}_{\alpha})$ with $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ and \mathcal{B}_{α} being a countable base for a separable metric space M_{α} . Let K be a compact subset of X, we shall prove that there is a finite subset Λ_K of Λ such that $K = \bigcup \{K_\alpha : \alpha \in \Lambda_K\}$ where K_α is compact and \mathcal{P}_{α} is a *cfp*-network for K_{α} in X_{α} for every $\alpha \in \Lambda_K$. Indeed, since f is compact-covering, K = f(L) with some compact subset L of M. Because L is a compact subset of M, $\Lambda_K = \{ \alpha \in \Lambda : M_\alpha \cap L \neq \emptyset \}$ is finite. For each $\alpha \in \Lambda_K$ put $L_{\alpha} = L \cap M_{\alpha}$, then L_{α} is compact and $L = \bigcup \{L_{\alpha} : L_{\alpha} : L_{\alpha} \in \Lambda_K \}$ $\alpha \in \Lambda$. Denote $K_{\alpha} = f(L_{\alpha})$, then K_{α} is compact for each $\alpha \in \Lambda_{K}$. We get $K = f(L) = f(\bigcup\{L_{\alpha} : \alpha \in \Lambda_K\}) = \bigcup\{f(L_{\alpha}) : \alpha \in \Lambda_K\} = \bigcup\{K_{\alpha} : \alpha \in \Lambda_K\}.$ It follows from Claim 4.2 in [1] that \mathcal{B}_{α} is a *cfp*-network of M_{α} for each $\alpha \in \Lambda$, then \mathcal{B}_{α} is a *cfp*-network for K_{α} in M_{α} for each $\alpha \in \Lambda_K$. From Lemma 2.1.(3), \mathcal{P}_{α} is a *cfp*-network for K_{α} in X_{α} for each $\alpha \in \Lambda_K$. It implies that X has a cover $\{X_{\alpha} : \alpha \in \Lambda\}$ having required properties.

(2) \Rightarrow (1). It follows from Lemma 2.8 that there exists an s-map f: $M \longrightarrow X$ from a locally separable metric space $M = \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ onto X where $f(b) = f_{\alpha}(b)$ whenever $b \in M_{\alpha}$ with each $f_{\alpha} : M_{\alpha} \longrightarrow X_{\alpha}$ being a map from a separable metric space M_{α} onto X_{α} . We shall prove that f is compactcovering. Let K be a compact subset of X. By assumption, there is a finite subset Λ_K of Λ such that $K = \bigcup \{K_{\alpha} : \alpha \in \Lambda_K\}$ where K_{α} is compact and \mathcal{P}_{α} is a *cfp*-network of K_{α} for each $\alpha \in \Lambda_K$. Then for each $\alpha \in \Lambda_K$ there is a compact subset L_{α} in M_{α} such that $K_{\alpha} = f_{\alpha}(L_{\alpha})$ by Lemma 2.9. Put $L = \bigcup \{L_{\alpha} : \alpha \in \Lambda_K\}$, then L is compact and $K = \bigcup \{K_{\alpha} : \alpha \in \Lambda_K\} =$ $\bigcup \{f_{\alpha}(L_{\alpha}) : \alpha \in \Lambda_K\} = f(\bigcup \{L_{\alpha} : \alpha \in \Lambda_K\}) = f(L)$. It implies that f is a compact-covering map. \square

The following corollary is routine.

Corollary 2.21. The following are equivalent for a space X.

- 1. X is a compact-covering quotient (resp. pseudo-open) s-image of a locally separable metric space,
- 2. X is a sequential (resp. Fréchet) space having a point-countable cover $\{X_{\alpha} : \alpha \in \Lambda\}$ where each X_{α} has a countable network \mathcal{P}_{α} satisfying that for each compact subset K of X, there is a finite subset Λ_K of Λ such that $K = \bigcup \{K_{\alpha} : \alpha \in \Lambda_K\}$ where K_{α} is compact and \mathcal{P}_{α} is a cfp-network for K_{α} in X_{α} for every $\alpha \in \Lambda_K$.

The following is similar to the Corollary 2.19.

Corollary 2.22. If X is a space with a point-countable cfp-network consisting of \aleph_0 -subspaces, then X is a compact-covering s-image of a locally separable metric space.

References

- H. Chen, Compact-covering maps and k-networks, Proc. Amer. Math. Soc., 131 (8) (2002), 2623 – 2632.
- [2] R. Engelking, *General topology*, PWN-Polish Scientific Publishers, Warszawa 1977.
- [3] L. Foged, Characterizations of ℵ-spaces, Pacific J. Math., 110 (1) (1984), 59 - 63.
- [4] S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 (1965), 107 - 115.
- [5] S. P. Franklin, Spaces in which sequences suffice II, Fund. Math., 61 (1967), 51 – 56.
- Y. Ge, On compact images of locally separable metric spaces, Topology Proc., 27 (1) (2003), 351 – 360.
- [7] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by pointcountable covers, Pacific J. Math., 113 (2) (1984), 303 – 332.
- [8] S. Lin, A note on the Michael-Nagami problem, Chinese Jour. of Contemporary Math., 17 (1) (1996), 11 15.
- [9] S. Lin and C. Liu, On spaces with point-countable cs-networks, Topology Appl., 74 (1996), 51 – 60.
- [10] S. Lin, C. Liu and M. Dai, *Images on locally separable metric spaces*, Acta Math. Sinica, **13** (1) (1997), 1 – 8.
- [11] S. Lin and P. Yan, Notes on cfp-covers, Comment. Math. Univ. Carolinae, 44 (2) (2003), 295 – 306.
- [12] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl., 109 (2) (2001), 301 – 314.
- [13] Y. Tanaka, Point-countable covers and k-networks, Topology Proc., 12 (1987), 327 – 349.
- [14] Y. Tanaka, Theory of k-network II, Q & A in General Topology, 19 (2001), 27 - 46.
- [15] Y. Tanaka and Y. Ge, Around quotient compact images of metric spaces and symmetric spaces, Houston J. Math., 32 (1) (2006), 99 – 117.
- [16] Y. Tanaka and Z. Li, Certain covering-maps and k-networks, and related matters, Topology Proc., 27 (2003), 317 – 334.