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Abstract

A module M over an associative ring R is said to be extending if ev-
ery submodule of M is essential in some direct summand of M . In this
paper we consider τ-extending modules, an analogue of extending that
corresponds to a torsion theory τ on the modules over R. We present
some fundamental properties of τ -extending modules, relate them to ex-
tending modules, and give some results regarding when direct sums of
τ -extending modules are τ -extending. Examples are provided to illus-
trate our results. For τG the Goldie torsion theory and τ a larger torsion
theory, the τG-extending modules coincide with the τ -extending modules.

1 Introduction

For R an associative ring with identity, the study of extending modules and
their various generalizations originated with von Neumann’s work in the 1930s
on the development of “continuous geometry” and “continuous” von Neumann
regular rings. He uses the term “geometry” to mean lattices; the rings are said
to be “continuous ” provided the lattice of principal right ideals is upper and
lower continuous [31], [32]; that is,
for all {a}, {bi}i∈I ⊆ R and an index set I, (uc) and (lc) hold:
(uc) aR ∩ (

∑
i∈I biR) =

∑
i∈I (aR ∩ biR), and
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164 Classes of extending modules associated with a torsion theory

(lc) aR + (∩i∈IbiR) = ∩i∈I(aR + biR).
(Originally von Neumann worked with left ideals, but we use right ideals and
modules in this paper.) Later Utumi [30], Jeremy [20], Takeuchi [29] and
Mohamed-Bouhy [24] generalized continuous to non-regular rings and modules.
There is a good account of this history in Mohamed and Muller [23] and Dung,
Huynh, Smith and Wisbauer [7].

We pause for some conventions and definitions before giving more history.
Throughout; R and all rings are associative with identity and all modules are
unitary right modules. We let Mod-R denote the category of unitary right
R-modules.

Definitions 1.1. Let R be a ring and M be an R-module. A nonzero submod-
ule N of M is an essential submodule of M , written N ≤e M , if N ∩ K �= (0)
for every nonzero submodule K of M . For N a submodule of M , a closure of
N (in M) is a submodule K of M that is maximal in the collection of submod-
ules H of M that contain N as an essential submodule. We say K is closed
(in M), written K ≤c M , if K has no proper essential extension in M . The
module M is extending if every closed submodule of M is a direct summand,
or equivalently, if every submodule of M is essential in a direct summand of
M .

Remarks. (1) Because of the disparate nature of the development of the
theory, different authors have adopted different terminology. We use the term
extending for what Harada [16] and his school refer to as the dual to “lifting
module.” His terminology is used in [7].
(2) By Zorn’s Lemma, every submodule N of M has a closure.

Seemingly independent of the development of the theory of continuous and
extending modules outlined above, Goldie considered complements in his study
of quotient rings [12], [13]. For N a submodule of M , a complement of N (in
M) is a submodule L of M that is maximal among those submodules H with
the property H ∩N = 0. A submodule L is a complement (in M) if there exists
a submodule N of M such that L is a complement of N . Clearly the concepts
of “closed” and “complement” are equivalent (see [7, p.6]). Thus “extending”
is equivalent to the term “CS” for “complements are summands”, used by
Chatters and Hajarnavis; they study left CS-rings, i.e., rings R for which R as
a left R-module is extending [6].

An extending module M is continuous if it has the additional property that
every submodule N isomorphic to a direct summand of M is actually a direct
summand of M . A module is quasi-continuous if it is extending and for every
pair M1, M2 of submodules of M with M1 ∩ M2 = (0), M1 ⊕ M2 is a direct
summand of M . Thus, as remarked in Mohamed and Muller [23],
injective ⇒ continuous ⇒ quasi-continuous ⇒ extending. Extending modules
need not be quasi-continuous [23, Example 2.9]; quasi-continuous modules are
not necessarily continuous [23, Proposition 2.2].
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More recently the theories of extending modules and other related concepts
have developed as interesting generalizations of the concept of injective module
and have come to play an important role in the theories of rings and modules.
Although this generalization of injectivity is extremely useful, it does not satisfy
some desirable properties. For example, a direct summand of an extending
module is extending but a direct sum of two or more extending modules is not
necessarily extending. Much work has been done to find necessary and sufficient
conditions to ensure that the extending property is preserved under direct sums
[7], [8], [9], [10]. Relative injectivity, continuous and quasi-continuous modules
have been studied in detail (c.f. [2], [17], [19], [26]) and have been related to
torsion theory in [4]; the extending property with respect to a torsion theory
has had less attention. In earlier work we studied extending, continuous and
quasi-continuous modules relative to module classes and in particular studied
extending modules relative to torsion and torsion-free module classes, e.g. [9].
Other articles such as [5], [25], [28], [33], concern different aspects of extending
modules. The monograph [8] describes the development of the theory further.

In this paper we define the concept of τ -extending module relative to a
torsion theory τ and consider desirable properties for τ -extending modules. In
particular, “When is the direct sum of τ -extending modules τ -extending?” If
the torsion theory τ is hereditary then it is easy to see that a direct summand
of a τ -extending module is τ -extending.

The outline of this article is as follows: The second section contains the
definition of τ -extending and some general background material on torsion
theories. In the third section we prove some basic results and compare the
τ -extending property to other properties. We provide matrix examples that
illustrate our results. The fourth section contains decomposition theorems for
τ -extending modules; also we demonstrate similarities to and differences from
extending modules. In section five, we show that if τ contains the Goldie torsion
theory, then τ -extending modules coincide with the extending modules. If τ is
a hereditary torsion theory such that “τ -extending” equals “extending”, then
τ contains the Goldie torsion theory.

We use basic facts from module theory; otherwise the proofs in this article
are essentially self-contained.

2 Background on Torsion theories

By a class C of R-modules we mean a collection of R-modules that contains
the zero module and that is closed under isomorphism. By a C-module we
mean a member of C. If C is a class of R-modules and M is an R-module then
a C-submodule of M is a submodule N of M such that N belongs to C.

Let τ = (T ,F) be a torsion theory. Then τ is uniquely determined by its
associated torsion class T of τ -torsion modules. Here the class T := {M ∈
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Mod-R | τ (M) = M}. The class F refers to the τ -torsion-free class; thus
F := {M ∈ Mod-R | τ (M) = 0}. A module in T (respectively in F) is called
τ -torsion (respectively τ -torsion-free). The submodule τ (M) is the unique
maximal T -submodule of M , and is called the τ -torsion submodule of M . It
satisfies τ (M/τ (M)) = 0, i.e. M/τ (M) is an F -module and is τ -torsion-free.
A module M is τ -torsion if τ (M) = M and is τ -torsion-free if τ (M) = 0.

We now introduce definitions analogous to “essential” submodule, “closed”
submodule and “extending” module in Definitions 1.1. The new definitions
correspond to a given torsion theory τ on Mod-R.

Definitions 2.1. Let τ be a torsion theory and M an R-module. A submodule
N of M is τ -essential (in M), denoted N ≤eτ M , if N is essential in M and
M/N is τ -torsion, that is, τ (M/N) = M/N . (Originally defined by Tsai, 1965
[11, p.90].)

A submodule N of M is called τ -closed (in M) if N has no proper τ -essential
extension in M ; this property is denoted N ≤cτ M .

A module M is τ -extending if every τ -closed submodule of M is a direct
summand of M .

Remark: If N is τ -closed in M , where N is essential in a submodule K of
M and K/N is τ -torsion, then N = K. Direct summands of a module M are
τ -closed in M for every torsion theory τ .

For every torsion theory τ , both the torsion class T and the torsion-free
class F of R-modules contain the zero module and both are closed under iso-
morphisms; that is, if N ∈ T and N ′ ∼= N , then N ′ ∈ T , and similarly for F .
A T -submodule (or F -submodule) of M is a submodule N of M such that N
belongs to T (or F). The torsion class T is closed under homomorphic images,
arbitrary direct sums, and extensions by short exact sequences (see [3], [11] or
[27, p.139 Proposition 2.1 and 2.2]). The torsion-free class F is closed under
submodules, extensions by short exact sequences and direct products. A tor-
sion theory τ = (T ,F) for which the torsion class T is closed under submodules
is called a hereditary torsion theory. If the torsion-free class F is closed under
homomorphic images; then τ is called cohereditary. The reader is referred to
[1], [3], [7], [11] and [27] for more background.

Most of our results are true for torsion classes that are not closed under
submodules; we assume a torsion theory is not necessarily hereditary unless we
specify that it is hereditary.

Definitions 2.2. Let M be an R-module. The singular submodule Z(M) of
M is the set Z(M) := {m ∈ M : mI = 0, for some essential right ideal I of R
}. If Z(M) = M ( respectively, Z(M) = 0), then M is a singular (respectively
nonsingular) module. The Goldie torsion theory, denoted
τG = (TG,FG), is given by, for M an R-module, τG(M) is the second singular
submodule Z2(M) of M . That is, τG(M) is the largest submodule Z2(M) of
M such that Z2(M)/Z(M) = Z(M/Z(M)) [14].
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The Goldie torsion theory is hereditary [27, Proposition 7.3]. Examples
of τG-extending modules include semisimple modules, uniform modules, and
quasi-injective modules. Every free abelian group of finite rank is a τG-extending
module. It is easy to see that every extending module is τG-extending and every
semisimple module is τ -extending.

3 Basic results concerning τ-extending and re-

lated conditions

The following Lemma gives some immediate consequences of the definitions
that relate the τ -terms to the original terms without τ .

Lemma 3.1. Let τ be a torsion theory on Mod-R and let N and K be sub-
modules of a module M . Then
(1) If N is τ -essential in K and K is τ -essential in M , then N is τ -essential
in M .
(2) If N is τ -essential in M , then N is essential in M .
(3) If N is closed in M , then N is τ -closed in M .
(4) If M is a τ -extending module, then M is an extending module.
(5) If M is τ -extending, then N is closed in M if and only if N is τ -closed in
M .
(6) If N is a direct summand of M , then N is τ -closed in M .

Proof For part (1), since N ≤e K ≤e M , we have N ≤e M . On the
other hand, the τ -torsion modules K/N and M/K form an exact sequence
0 → K/N → M/N → M/K → 0. Since every torsion class is closed under
extensions by short exact sequences, M/N is τ -torsion. Thus N ≤eτ M .
Part (2) follows from Definitions 2.1.
For part (3), we suppose that N is a closed submodule of M . If N is not
τ -closed in M , then there exists a proper τ -essential extension K of N in M ,
and so K is an essential extension of N . This is a contradiction to N being
closed. Therefore N is τ -closed in M .
Parts (4) and (6) follow immediately from part (3) and the definitions.
For part (5), let M be a τ -extending module. Every closed submodule is τ -
closed from part (3). Conversely, let N be a τ -closed submodule in M . Since
M is τ -extending, N is a direct summand of M and hence N is closed in M .
�

The converses of Lemma 3.1 parts (2), (3), (4) and (6) are not true in
general, as the following example shows. We use an extending module M from
[23, Example 2.9].
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Example 3.2. Let F be a field, let R be the upper triangular matrix ring over
F , let I be the idempotent right ideal of R, let M denote the right R-module
RR and let K be the submodule of M shown below.

M := RR =
[

F F
0 F

]
, I :=

[
F F
0 0

]
, K :=

[
0 F
0 F

]
.

Define TI := {N ∈ Mod-R : NI = 0}. Then τI := (TI ,FI) is a hereditary
torsion theory and M is an extending module that is not a τI-extending.

Proof Clearly submodules of τI -torsion modules are τI -torsion, and so τI is
hereditary. For convenience we show that M is extending. The right submod-
ules of M are the following:

M := {
[

a b
0 c

]
: a, b, c ∈ F }, I := {

[
a b
0 0

]
: a, b ∈ F },

K := {
[

0 a
0 b

]
: a, b ∈ F }, N(x,y) := {

[
0 xc
0 yc

]
: c ∈ F },

for fixed (x, y) ∈ F × F . That is, for every pair x, y ∈ F , N(x,y) is a right
submodule of M . (Note N(0,0) = 0.) We notice that the only submodules of M
that are closed are (0), I (as a submodule ) and N(x,y) where y �= 0. For y �= 0,
N(x,y) ∩N(1,0) = 0, and so N(x,y) is not essential in M or in K; hence N(x,y) is
closed if y �= 0. Now K ∩ I = N(1,0) �= 0; thus K is essential in M and so K is
not closed. For x �= 0, y = 0, N(x,0) is an essential submodule of I; thus N(x,0)

is not closed in M . Also M = I ⊕ N(x,y) if y �= 0. Therefore M is extending.
Since K ≤e M and M/K is not τI -torsion, K is not τI -essential in M . Since

K has no proper τI -essential extension in M , K is τI -closed in M . However K
is not a direct summand of M ; hence M is not a τI -extending module. �

A further example, this time with a non-hereditary torsion theory, is pro-
vided to show that the converses of Lemma 3.1 parts (2), (3), (4) and (6) are
not true in general.

Example 3.3. Let F, R, M, I, K and N(x,y) be as in Example 3.2. Let L denote
the idempotent right ideal shown below.

L := N(0,1) = {
[

0 0
0 c

]
: c ∈ F }.

Define TL := {N ∈ Mod-R : NL = N}. Then τL := (TL,FL) is not a
hereditary torsion theory. M is an extending module that is not τL-extending.
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Proof As in Example 3.2, M is extending. Here M = I ⊕ N(x,y) for y �= 0
where I and N(x,y) are from Example 3.2. On the other hand, since N(1,0) is
essential in I, N(1,0) is not closed in M . But τL(I/N(1,0)) = 0, and so I/N(1,0)

is not τL-torsion. Thus N(1,0) is τL-closed in M , but is not a direct summand
of M . Thus M is not τL-extending. Also, K is essential in M ; thus K is not
closed in M . Since M/K is τL-torsion-free, K is τL-closed in M , but K is not
a direct summand of M . �

Proposition 3.4. Let τ be a torsion theory, M a module and K a submodule
of M such that either M/K is a τ -torsion-free module or K is closed in M .
Then K is a τ -closed submodule of M .

Proof Let K be a submodule of M such that M/K is τ -torsion-free. To show
K is τ -closed, suppose that K ≤eτ L, for some submodule L of M . Then L/K
is τ -torsion. On the other hand, L/K ≤ M/K implies L/K is τ -torsion-free.
Therefore L = K and so K is τ -closed in M . If K is a closed submodule of M ,
then K is τ -closed by Lemma 3.1 part (3). �

Example 3.5. The converse of Proposition 3.4 is not true in general because
the module N(1,0), described in the proof of Example 3.2 is τI-closed in M , but
N(1,0) is not closed in M , and M/N(1,0) is not a τI-torsion-free module.

Lemma 3.6. Let τ be a hereditary torsion theory. Then a submodule K of
M is τ -closed in M if and only if there exists a submodule H of M such that
K ⊆ H ⊆ M , K is closed in H and τ (M/K) = H/K.

Proof Assume first that the submodule K of M is τ -closed in M . Let H be
a submodule of M such that τ (M/K) = H/K. We show that K is closed in
H . Assume that K ≤e K′ ≤ H for a submodule K′ of H . Then K′/K ≤ H/K
and, since τ is hereditary, K′/K is a τ -torsion module. Thus K is τ -essential
in K′, and so K = K′, that is, K is closed in H .

Conversely, let K ⊆ H ⊆ M , where K is a closed submodule in H and
τ (M/K) = H/K. Assume that K is τ -essential in some submodule K′ of M ,
that is, K ≤e K′ and K′/K is a τ -torsion module. Now K ≤ K′ ∩H ≤ H and
K ≤e K′ ∩ H . But K is closed in H , and so K = K′ ∩ H . Also, since K′/K
is a τ -torsion module and τ (M/K) = H/K, we have K′/K ≤ H/K. Thus
K′ ≤ H , and so we have K = K′ ∩ H = K′. Therefore K is τ -closed in M . �

Lemma 3.7. Let τ be a hereditary torsion theory and let M be an R-module.
Then every submodule N of M is τ -essential in some τ -closed submodule K of
M .
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Proof Let N be a submodule of M . Let τ (M/N) = H/N . Then M/H is
τ -torsion-free. Let K be a closed submodule of H such that N ≤e K. Thus
N ≤e K ≤c H . Since K/N ≤ H/N and H/N is a τ -torsion module, K/N is
τ -torsion. Thus N is τ -essential in K. Now suppose that K is τ -essential in
a submodule V of M ; that is, V/K is a τ -torsion module and K ≤e V . Then
K ≤e H ∩ V . Since K is a closed submodule of H , we have K = H ∩ V . Now
(H +V )/H ∼= V/(H ∩V ) = V/K and (H +V )/H ≤ M/H (τ -torsion-free) and
so V/K is τ -torsion-free. On the other hand, V/K is a τ -torsion module, and
so K = V . Therefore K is τ -closed in M . �

Corollary 3.8. Let τ be a hereditary torsion theory and let M be an R-module.
Then M is τ -extending if and only if every submodule of M is τ -essential in a
direct summand of M .

Proof Suppose that M is a τ -extending module. By Lemma 3.7, every
submodule N of M is τ -essential in some τ -closed submodule K of M . By
hypothesis, K is a direct summand of M .

Conversely, suppose that every submodule of M is τ -essential in a direct
summand of M . Let N be a τ -closed submodule of M . By hypothesis, there
exists a direct summand A of M such that N is τ -essential in A. Then N = A,
and so N is a direct summand of M . Thus M is τ -extending. �

Definition 3.9. For N a submodule of M and K a τ -closed submodule of
M that contains N as an τ -essential submodule, the submodule K is called a
τ -closure of N in M , in analogy with Definition 1.1.

Remark: For τ a hereditary torsion theory, Lemma 3.7 implies that every
submodule N of M has a τ -closure in M .

Lemma 3.10. Let τ be a hereditary torsion theory and M = M1 ⊕ M2 for
submodules M1 and M2 of a module M . Then:
(1) If A is a τ -closed submodule of M1, then A is τ -closed in M .
(2) If M is τ -extending, then M1 and M2 are both τ -extending.

Proof For part (1), by Lemma 3.6, A is closed in some submodule B1 of
M1 such that τ (M1/A) = B1/A. Then M1/B1 is a τ -torsion-free module. Let
B = B1 ⊕ B2, where B2 = τ (M2). Hence A is a closed submodule of B and
M/B = M1/B1 ⊕M2/B2, a direct sum of τ -torsion-free modules, and so M/B
is τ -torsion-free. Now A ⊆ B ⊆ M , A is closed in B and τ (M/A) = B/A.
Therefore, by Lemma 3.6, A is τ -closed in M .
Part (2) follows from part (1). �

Proposition 3.11. Let τ be a hereditary torsion theory and let M be a
τ -torsion module. Then M is extending if and only if M is τ -extending.
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Proof For the “only if” direction, assume that M is an extending module and
let N be a τ -closed submodule of M . Let K be a closure of N in M . Then
N ≤e K ≤c M . By hypothesis, K is a direct summand of M . Since M/N is
τ -torsion, K/N is τ -torsion. Thus N is τ -essential in K, and so N = K and N
is a direct summand of M . Thus M is τ -extending. The converse is clear by
Lemma 3.1, part (4). �

Theorem 3.12. Let τ be a hereditary torsion theory. The following statements
are equivalent for an R-module M .
(1) M is τ -extending.
(2) Every submodule is τ -essential in a direct summand of M .
(3) M is extending and if K is a submodule of M such that M/K is τ -torsion-
free, then K is a direct summand of M .

Proof The equivalence of items (1) and (2) is Corollary 3.8. For (1) ⇒ (3),
M is extending by Lemma 3.1 part (4).

For the other part of (3), let K be a submodule of M such that M/K is
τ -torsion-free. By (2), there exists a direct summand T of M such that K is
τ -essential in T . Then T/K is both a τ -torsion and a τ -torsion-free module.
Thus K = T , and so K is a direct summand of M .

For (3) ⇒ (1), let N be a τ -closed submodule of M . By Lemma 3.6, there
exists a submodule H of M such that N ⊆ H ⊆ M , N is closed in H and
τ (M/N) = H/N . Thus τ (M/H) = 0 and so by (3), H is a direct summand of
M . Hence, H is extending and therefore N is a direct summand of H and so
of M . Thus M is τ -extending. �

Theorem 3.13. Let τ be a torsion theory and M be an R-module. Assume
that every τ -torsion-free module is projective. Then:
(1) M = τ (M) ⊕ N , for some submodule N of M .
(2) If M is an extending module, then M is τ -extending.

Proof For part (1), since M/τ(M) is a τ -torsion-free module, it is projective.
Thus τ (M) is a direct summand of M .

For part (2), let M be an extending module and let K be a τ -closed sub-
module of M . By Zorn’s Lemma, let T be a closure of K in M , so that
K ≤e T ≤c M . Thus T is a direct summand of M . If K = T , then K is a
direct summand of M and we are done. Assume that K �= T . Since K is a
τ -closed submodule of M , T/K is a τ -torsion-free module. Then by hypothesis,
T/K is projective. Thus K is a direct summand of T , and so K is a direct
summand of M . �
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4 Decompositions of τ-extending modules

Let U and M both be R-modules. We say that U is M -injective if, given
a submodule N of M , every homomorphism ϕ : N → U can be lifted to a
homomorphism θ : M → U such that θ(x) = ϕ(x), for all x ∈ N . A class of
R-modules {Mi | i ∈ I}, where I is an index set, is called relatively injective if
Mi is Mj -injective, for every pair of distinct i, j ∈ I.

We use the following Lemma from Kamal and Muller:

Lemma 4.1. [22, Lemma 17] Let a module M = M1 ⊕ M2 be a direct sum of
submodules M1, M2. If M2 is M1-injective, then for each submodule N of M
with N ∩ M2 = 0, there exists a submodule M ′ of M such that M = M ′ ⊕ M2

and N ⊆ M ′.

This decomposition for a τ -extending module is analogous to [18, Theorem
8].

Theorem 4.2. Let τ be a hereditary torsion theory and let M be an R-module
that is a direct sum M = M1 ⊕ M2 of two relatively injective submodules M1

and M2. Then M is τ -extending if and only if both M1 and M2 are τ -extending.

Proof Necessity is clear by Lemma 3.10, part (2).

Conversely, suppose that M1 and M2 are both τ -extending modules. By
Lemma 3.1, part (4), M1 and M2 are extending and by [18, Theorem 8], M
is extending. Now let K be a submodule of M such that M/K is τ -torsion-
free. Let K1 := M1 ∩ K. Note that M1/K1 is τ -torsion-free, since M1/K1

∼=
M1/(M1 ∩ K) ∼= (M1 + K)/K ⊆ M/K.

By hypothesis and Theorem 3.12, K1 is a direct summand of M1. Hence
M1 = K1 ⊕ L for some submodule L of M1. Set M ′ := L ⊕ M2 and K2 :=
K ∩ M ′. See diagram below. Then we have
K = K ∩ M = K ∩ (M1 ⊕ M2) = K ∩ (K1 ⊕ L ⊕ M2) = K ∩ (K1 ⊕ M ′).
Now K1 ⊆ K and thus by modularity K = K1 ⊕ (K ∩ M ′) = K1 ⊕ K2.
Moreover, K2 is a submodule of M ′ such that K2 ∩L = 0, because
K2 ∩ L ⊆ K ∩ (L ⊕ M2) ∩ L ⊆ K ∩ (L ⊕ M2) ∩ M1 ⊆ (K ∩ M1) ∩ (L ⊕ M2) =
K1 ∩ (L ⊕ M2) = 0, since (K1 ⊕ L) ⊕ M2 = M1 ⊕ M2 is a direct sum.

Since M1 is M2-injective, we have L is M2-injective. Thus, by Lemma 4.1,
there exists a submodule M ′′ ≤ M ′ such that M ′ = L ⊕ M ′′ and K2 ≤ M ′′.
Note that M ′′ ∼= M2 since also M ′ = L ⊕ M2.
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M = M1 ⊕ M2 = K1 ⊕ L ⊕ M2 = K1 ⊕ M ′

K = K1 ⊕ K2 M1 = K1 ⊕ L M2

M ′ := L ⊕ M2 = L ⊕ M ′′

M ′′

L

K1 := M1 ∩ K

K2 := K ∩ M ′
K′

2

0

Claim: M ′′/K2 is τ -torsion-free. To see this, note M/K = (K1 ⊕ L ⊕
M ′′)/(K1 ⊕ K2), and so we can write M/K = ((K1 ⊕ L)/K1) ⊕ (M ′′/K2) ∼=
L⊕ (M ′′/K2). Now M/K is τ -torsion-free, and therefore M ′′/K2 is τ -torsion-
free.

Since the class of τ -extending modules is closed under isomorphism and
M2

∼= M ′′, we have that M ′′ is τ -extending. By Theorem 3.12, it follows that
K2 is a direct summand of M ′′. Thus M ′′ = K2 ⊕ K′

2 for some submodule
K′

2 of M ′′. Now M ′ = L ⊕ M ′′ = L ⊕ K2 ⊕ K′
2 and so M = K1 ⊕ M ′ =

K1 ⊕ L ⊕ K2 ⊕ K′
2 = K ⊕ L ⊕ K′

2. Hence K is a direct summand of M . Now
by Theorem 3.12, M is τ -extending. �

We also give a decomposition of τ -extending modules as an analogue of [21,
Theorem 1].

Theorem 4.3. Let τ be a hereditary torsion theory and M an R-module. If M
is τ -extending then M = τ (M)⊕N , where τ (M) and N are relatively injective
τ -extending modules.

Proof Suppose that M is a τ -extending module.
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Claim 1: τ (M) ≤cτ M . Proof of Claim 1: Suppose there exists a submodule
N1 of M such that τ (M) is τ -essential in N1. Then N1/τ (M) is τ -torsion. Since
M/τ (M) is τ -torsion-free, N1/τ (M) is τ -torsion-free. This implies N1 = τ (M).
Thus τ (M) is τ -closed in M .

By hypothesis, τ (M) is a direct summand of M . Thus, for some submodule
N of M , we have M = τ (M)⊕ N . By Lemma 3.10 (2), τ (M) and N are both
τ -extending modules.

Claim 2: τ (M) is an N -injective module. Proof of Claim 2: For a sub-
module K of N , let f : K → τ (M) be a homomorphism. We want to ex-
tend f to N → τ (M). Define K′={k − f(k) : k ∈ K}. By Lemma 3.7,
there exists a τ -closed submodule X of M such that K′ ≤eτ X ≤cτ M . By
the definition of τ -extending, M = X ⊕ X′ for some submodule X′ of M .
We see that K′ ∩ τ (M) = 0. Therefore X ∩ τ (M) = 0 because K′ is es-
sential in X. Thus K′ and X are τ -torsion-free, that is, τ (X) = 0. Now
τ (M) = τ (X) + τ (X′) = τ (X′) ≤ X′. Let Y ′ := N ∩ X′. By modular-
ity, X′ = τ (M) ⊕ Y ′, since τ (M) ⊆ X′. For the canonical epimorphism
η : M = X ⊕ τ (M) ⊕ Y ′ → τ (M), define g := η |N . For k ∈ K ⊆ N ,
g(k) = η |N (k). Now K′ ≤ X and so for every k ∈ K, k − f(k) ∈ X
and η(X) = 0; thus η(k − f(k)) = 0. Thus η(k) = η(f(k)) = f(k) because
f(k) ∈ τ (M) and η |τ(M)= 1τ(M). Thus f extends to g : N → τ (M). Therefore
τ (M) is an N -injective module.

It is obvious that N is τ (M)-injective because N is τ -torsion-free and τ (M)
is τ -torsion, and so every homomorphism from a submodule of τ (M) into N is
the 0 homomorphism, which obviously extends to τ (M). �

Theorem 4.4. Let τ be a torsion theory and let M be an R-module such that
M = τ (M) ⊕ N , where N is a semisimple submodule of M . If τ (M) and N
are relatively injective τ -extending modules, then M is τ -extending.

Proof Let K be a τ -closed submodule of M . We show K is a direct summand
of M .

Case 1: If K∩τ (M) = 0, then we use Lemma 4.1, since τ (M) is N -injective;
there exists a submodule U of M such that M = U ⊕ τ (M) and K ⊆ U . Since
U is semisimple, K is a direct summand of U and so K is a direct summand
of M and we are done.

Case 2: Suppose K ∩ N = 0. Since N is τ (M)-injective, again by Lemma
4.1 there exists a submodule M ′ of M such that M = M ′ ⊕ N and K ⊆ M ′.
Since M = τ (M) ⊕ N , we have M ′ ∼= τ (M), and so M ′ is τ -extending. Since
K is τ -closed in M , K is τ -closed in M ′. Hence K is a direct summand of M ′

and so K is a direct summand of M , and we are done in this case.
Case 3: Assume K ∩N �= 0. Then N = (K ∩N)⊕ T , for some submodule

T of N , since N is semisimple. Since M = τ (M)⊕ (K ∩N)⊕T , by modularity
we see that K = (K ∩ N) ⊕ [K ∩ (τ (M) ⊕ T )].
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Let M1 := τ (M)⊕T and K′ := K∩M1. (See diagram.) Since K′ is a direct
summand of K, Lemma 3.1 part (6) implies that K′ is a τ -closed submodule
of K.

M = τ (M) ⊕ N = (K ∩ N) ⊕ τ (M) ⊕ T = (K ∩ N) ⊕ M1

M ′

K = (K ∩ N) ⊕ K′

N = (K ∩ N) ⊕ T
M1 := τ (M) ⊕ T = M ′

1 ⊕ T

M ′
1 = K′ ⊕ H T

K ∩ N

K′ := K ∩ M1

H

0

Claim: K′ is τ -closed in M1. Proof: Suppose not. Then there exists an L
with K′ ≤e L ≤ M1 and τ (L/K′) = L/K′. Then
K = (K ∩ N) ⊕ K′ ≤e (K ∩ N) ⊕ L ≤ (K ∩ N) ⊕ M1 = M since M =
(K∩N)⊕τ (M)⊕T . Now ((K∩N)⊕L)/((K∩N)⊕K′) ∼= L/K′, a contradiction
since K is τ -closed. Therefore K′ is τ -closed in M1 and the claim holds. (Thus
L = K′.) Also K′ ∩ T = 0, because K′ ∩ T ⊆ K ∩ T ⊆ K ∩ N ∩ T = 0.

Since T is a direct summand of N and N is τ (M)-injective, by [1, Proposi-
tion 16.10] T is τ (M)-injective. By Lemma 4.1, there exists a submodule M ′

1

of M1 such that M1 = M ′
1 ⊕ T and K′ ≤ M ′

1. Then M ′
1
∼= τ (M) and so M ′

1

is τ -extending. Since K′ is τ -closed in M1, K′ is τ -closed in M ′
1 and so K′ is

a direct summand of M ′
1. Then M ′

1 = K′ ⊕ H for some submodule H of M ′
1.

We write M = (K ∩N) ⊕ τ (M)⊕ T = (K ∩ N)⊕ M1 = (K ∩N) ⊕M ′
1 ⊕ T =

(K ∩ N) ⊕ K′ ⊕ H ⊕ T = K ⊕ H ⊕ T . Thus M is τ -extending. �
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Corollary 4.5. Let τ be a torsion theory and let M be an R-module such that
M = M1 ⊕ M2 where M1 is τ -torsion and M2 is a semisimple submodule. If
M1 is τ -extending and M1 and M2 are relatively injective submodules, then M
is τ -extending.

Proof Since M2 is semisimple, M2 = τ (M2)⊕N , where N is a τ -torsion-free
module and M1 = τ (M1). This implies M = τ (M1)⊕ τ (M2)⊕N = τ (M)⊕N .
Thus M is τ -extending by Theorem 4.4. �

5 Goldie related conditions

In this section we compare τ -extending modules relative to two different torsion
theories. By Lemma 3.1 part (4), every τ -extending module is extending, but
Example 3.2 shows the converse is not true in general. We show in Theorem
5.3 that if the torsion theory τ contains the Goldie torsion theory τG, defined
in Definition 2.2, then every extending module is τ -extending.

Lemma 5.1. Let τG be the Goldie torsion theory. Then every extending module
is τG-extending.

Proof Let M be an extending module and let N be a τG-closed submodule of
M . We claim that N is a closed submodule of M . If not, assume that there is
an essential extension K of N in M , i.e. N ≤e K ≤ M . Then K/N is singular.
Thus N is τG-essential in K, a contradiction. Thus N is a closed submodule
of M . By hypothesis, N is a direct summand of M . �

For torsion theories ρ and τ , we write ρ ≤ τ provided every ρ-torsion R-
module is a τ -torsion R-module.

Proposition 5.2. Let τ and ρ be torsion theories such that ρ ≤ τ . If an
R-module M is ρ-extending, then M is τ -extending.

Proof Let M be a ρ-extending R-module. Let K be a τ -closed submodule of
M . Claim: K is ρ-closed in M . If there exists a submodule T of M such that
T is a ρ-essential extension of K, then T/K is a ρ-torsion module and K ≤e T .
Hence T/K is a τ -torsion module and so T = K, since K is τ -closed in M .
Thus K is ρ-closed in M , and the claim is proved. By hypothesis K is a direct
summand of M . Thus M is τ -extending. �

Theorem 5.3. Let τ be a torsion theory with τG ≤ τ . Then the following
conditions are equivalent for an R-module M .
(1) M is τ -extending.
(2) M is extending.
(3) M is τG-extending.
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Proof (1) ⇒ (2): This follows from Lemma 3.1 part (4).
(2) ⇒ (3): This follows from Lemma 5.1.
(3) ⇒ (1): This follows from Proposition 5.2. �

Question 5.4. Let τ be a torsion theory. If every extending module is τ -
extending, does τ contain the Goldie torsion theory?

If the torsion theory is hereditary, the answer is “yes”.

Theorem 5.5. Let τ be a hereditary torsion theory on Mod-R. Then every
extending module is τ -extending if and only if τG ≤ τ .

Proof Sufficiency is clear by Theorem 5.3. Conversely, suppose that every
extending module is τ -extending. First we show that every singular module is
τ -torsion. So let M be a nonzero singular R-module. There exists an R-module
F and an essential submodule K of F such that M is isomorphic to F/K by
[15, Proposition 3.26]). Let E denote the injective hull of F . Suppose that
E/K is not a τ -torsion module. Then there exists a proper submodule L of E
containing K such that τ (E/K) = L/K and thus (E/K)/(L/K) ∼= E/L is τ -
torsion-free. Since injective modules are extending, using the hypothesis, we see
E is a τ -extending module. Thus by Theorem 3.12 (3), L is a direct summand
of E. This contradicts the fact that L is essential in E. Thus E/K is a τ -torsion
module. Since the torsion theory τ is hereditary and M ∼= F/K ≤ E/K, we
have F/K is τ -torsion. Thus M is τ -torsion. Now let M be a nonzero R-
module with τG(M) = M . Then M/Z(M) is singular. Since Z(M) is also
singular, M/Z(M) and Z(M) are τ -torsion from what we have proved. Thus
M is τ -torsion. It follows that τG ≤ τ . �

We let ξ denote the trivial torsion theory, where the torsion class of modules
consists of only the zero module. The improper torsion theory χ is such that
the torsion class is all of Mod-R, i.e., χ=(Mod-R,0).

Proposition 5.6. Let ξ denote the trivial torsion theory and let χ denote the
improper torsion theory. Let M be an R-module. Then:
(1) M is ξ-extending if and only if M is semisimple.
(2) M is extending if and only if M is χ-extending.
(3) M is τG-extending if and only if M is χ-extending.

Proof Part (1) and (2) are clear from the definitions.
For part (3), since τG ≤ χ, Proposition 5.2 shows τG-extending implies
χ-extending. If M is χ-extending then M is extending by part (2), and so M
is τG-extending by Lemma 5.1. �
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Proposition 5.7. Let τ be a cohereditary torsion theory, that is, F is closed
under homomorphic images. If an R-module M is τ -torsion-free and τ -extending,
then M is semisimple.

Proof Let N be a submodule of M . We claim that N is τ -closed in M . Since
M is τ -torsion-free and τ is cohereditary, M/N is τ -torsion-free. By Proposition
3.4, N is τ -closed in M . Thus N is a direct summand of M . Therefore M is a
semisimple module. �

While reading an early draft of this article, P.F. Smith asked the follow-
ing question, since extending modules generalize the concept of injective for
modules.

Question 5.8. Let R be a ring. Does there exist a torsion theory τ such
that the class of injective R-modules coincides with the class of τ -extending
modules?

We don’t know of a torsion theory that answers this question yet but the
following theorem may help.

Definition 5.9. An R-module M is said to be τ -injective if, for each short
exact sequence 0 −→ L −→ X −→ N −→ 0 of R-modules L, X, N , where N
is τ -torsion, the sequence HomR(X, M) −→ HomR(L, M) −→ 0 is exact (see
[4]).

Theorem 5.10. Let τ be a hereditary torsion theory and let τG be the Goldie
torsion theory on Mod-R. The following conditions are equivalent.
(1) τG ≤ τ .
(2) Every extending module is τ -extending.
(3) Every τ -injective module is injective.

Proof (1) ⇔ (2) by Theorem 5.5.
(1) ⇔ (3) by [4, Theorem 2.1]. �
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