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Abstract

In [HN], the authors showed that if 2 ≤ q ≤ m ≤ 2q − 2 then the set
E of the attainable local dimensions of fractal measure µ is an interval.
In this paper we will prove that this result is not true if we replace the
probabilistic system p0 = p1 = . . . = pm by the system pj = Cj

m/2m, j =
0, 1, . . . , m. More precisely, the set E has an isolated point. Hence the
multifractal formalism fails in this case.

The special of our case when q = 3, the results was obtained earlier
in [HL].

1 Introduction

Let {F1, . . . , Fm} be an iterated function system ( IFS ) of m contractive simil-
itudes on R

d:
Fj(x) = ρjRjx + bj , j = 1, . . . , m,

where 0 < ρj < 1, Rj is a d×d orthogonal matrix and bj is a vector in R
d. It is

well known that there exists a unique nonempty compact subset E in R
d such

that

E =
m⋃

j=1

Fj(E).

The set E is called the self-similar set or the invariant set of the IFS (see [Hut]).
If further, we associate the IFS with a set of probability weights p1, . . . , pm, 0 ≤
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150 Multifractal structure of fractal measures

pj ≤ 1 and
m∑

j=1
pj = 1, then it will generate a unique invariant Borel probability

measure such that

μ =
m∑

j=1

pjμ ◦ F−1
j . (1.1)

We call μ a self-similar measure or invariant measure.

The invariant sets and measures play a central role in theory of fractals.
Jessen and Winter [JW] showed that this measure is either purely singular or
absolutely continuous. If 0 < ρ < 1/m, then the measure μ is purely singu-
lar. Otherwise, the different choice of the values b1, . . . , bm and the probability
weights p1, . . . , pm will produce different type of the measure μ. The determi-
nation of which type, in general, is very difficult.

When the measure μ is purely singular, the local dimension measures the
degree of singularities of μ locally.

Recall that for s ∈ supp μ, the lower local dimension and upper local di-
mension of μ at s are defined as

α(s) = lim
h→0+

inf
logμ(B(s, h))

log h
;

α(s) = lim
h→0+

sup
log μ(B(s, h))

logh
,

where B(s, h) is the closed interval [s−h, s+h]. When α(s) = α(s) we refer to
the common value as the local dimension of μ at s, and we denote it by α(s).

Put

α = sup{α(s) : s ∈ supp μ}; α = inf{α(s) : s ∈ supp μ};
E = {α : α(s) = α, s ∈ supp μ} and Eα = {s ∈ supp μ : α(s) = α}.

One of the main objectives in fractal geometry is to study the multifractal
structure of a measure μ such as the local dimension spectrum defined by

f(α) = dimH Eα,

the Hausdoff dimension of the level sets Eα. It was first proposed by physicists
to investigate various chaotic models arising from natural phenomena (see [FP],
[HJKPS], [M]).

A direct computation of f(α) in general is rather difficult. Based on some
physical intuition and analogous to the thermodynamic formalism in statisti-
cal mechanics, it was suggested that f(α) can be determined using the Lq−
spectrum and the Legendre transformation (see [HP], [HJKPS], [FP]). Namely,

f(α) = τ∗(α) := inf{αp − τ (p) : p ∈ R}, (1.2)
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where

τ (p) = lim inf
δ→0

log sup
∑

j μ(B(xj , δ))p

log δ
,

and the supremum is over all families of disjoint closed δ-balls B(xj , δ) centered
at xj ∈ supp μ. The function τ (p) is called a Lq− spectrum of the measure
μ.

The formula (1.2), known as multifractal formalism, holds for fractal mea-
sures associated with probabilistic systems satisfying the open set condition
(see [CM], [Ols], [AP]). And more generally, for fractal measures associated
with probabilistic systems possessing the weak separation property (see [LN]).
More recently, D. J. Feng and E. Olivier proved that the multifractal formalism
holds under a so-called “weak-Gibbs” condition (see [FO]). Without separation,
however, much less is known, and almost all that is known refers to the portion
of the Lq-spectrum corresponding to p ≥ 0, see [LN] and [PS] for some of the
deep results obtained.

In order for the multifractal formalism to hold, f(α) must be a concave func-
tion and the domain is an interval (i.e., the set of local dimensions of μ forms an
interval). Therefore, the main question was proposed that: what condition on
the chooses of parameters will ensure the domain of f(α) to contain an isolated
point or ensure its domain to be an interval. In [HL], a first investigation was
made for the m-fold convolution of the Cantor measure for m ≥ 3. The au-
thors proved that the set E contains an isolated point. This result was proved
by two other ways by Feng, Lau and Wang in [FLW]. In [HN], the authors
considered the measure μ induced by IFS {Fj(x) = 1

q (x + j) : j = 0, 1, . . . , m}
and probabilistic system {pj = 1/(m+1) : j = 0, 1, . . . , m}. They showed that
the maximum of the set E is an isolated point of it for m > 2q − 2. For the
Bernoulli convolutions associated with the PV-number, Lau, Ngai and Feng
gave a detailed study on the multifractal formalism (see [LN1-2], [F1-2]).

On the other hand, also in [HN], the authors showed that for 2 ≤ q ≤
m ≤ 2q − 2 the set E is an interval. Now we will prove that if we replace
pj = 1/(m + 1) in [HN] by pj = Cj

m/2m for j = 0, 1, . . . , m, then E has an
isolated point. Therefore the formula (1.2) is not true in this case.

In this paper we will consider the measure μ induced by the IFS {Fj =
1
q (x + j) : j = 0, 1, . . . , m} and the associated probability system {pj = Cj

m

2m :
j = 0, 1, . . . , m} for 3 ≤ q ≤ m ≤ 2q − 2.

Denote [x] be the largest integer not exceeding x. Our main result is stated
as follows.

Main Theorem . Let 2q − 2 ≥ m ≥ q ≥ 3, m, q be integers. Then
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1. α =
m log 2
log q

.

2. α =
m log 2
logq

− logC
[
m + 1

2
]

m

log q
.

3. α is an isolated point of E. More precisely, Eα = ∅ for all α ∈ (α̂, α)

where α̂ =
m log 2 − logC

[(m−q+1)/2]
m

log q
.

The paper is organized as follows. In section 2 we will give some preliminar-
ies and prove some basic lemmas for counting. The Main Theorem is proved
in Section 3.

2 Notation and Primarily Results

Let N denote the set of all nonnegative integers. Let 3 ≤ q ≤ m ≤
2q − 2; q, m ∈ N. We denote

Dm = {0, 1, . . . , m} and D
n
m = {0, 1, . . . , m}n, where n ≤ ∞,

and let

S =
∞∑

k=1

q−kXk, and Sn =
n∑

k=1

q−kXk

be functions defined on D
∞
m and D

n
m respectively. Then for x = (x0, x1, . . .) ∈

D
∞
m , we have S(x) =

∞∑
k=1

q−kxk and Sn(x) =
n∑

k=1

q−kxk.

Given ρ ∈ (0, 1), let μ be a probability measure induced by IFS

{Fj = ρ(x + bj) : j = 1, . . . , m}
and the associated probability system {pj : j = 1, . . . , m}. Then this measure
can be viewed as generated by a sequence of independent identically distributed
(i.i.d) random variables as follows.

Let X1, X2, ... be a sequence of i.i.d random variables each taking real values
b1, . . . , bm with probability p1, . . . , pm respectively. Given ρ ∈ (0, 1), we define
a random variable

S = Sρ =
∞∑

i=1
ρiXi.

Let μρ be the probability measure induced by S, i.e.,
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μρ(A) = Prob {ω : S(ω) ∈ A}.
We call μρ a fractal measure and {X1, X2, ...} a probabilistic system. The range
of S, or the support of μρ, is given by

F = {
∞∑

i=1

ρixi : xn ∈ {b1, b2, . . . , bm}}

= {ρ(x1 +
∞∑

i=1

ρixi) : xi ∈ {b1, b2, . . . , bm}}

=
m⋃

j=1

ρ(xj + F )

=
m⋃

j=1

Fj(F ).

Thus, F is exactly the invariant compact set under the IFS {F1, . . . , Fm}. It
can be verified that the measure μρ also satisfies equation (1.1). In fact, we have
S = ρ(X1 + S′), where S′ has the same distribution as S and it is independent
of X1. So we have

μρ(A) = Prob {ω : S(ω) ∈ A}
= Prob {ρ(X1 + S′) ∈ A}

=
m∑

j=1

Prob(X1 = bj)Prob(ρ(bj + S′) ∈ A)

=
m∑

j=1

pjProb(S′ ∈ F−1
j (A))

=
m∑

j=1

pjμρ(F−1
j (A)).

By uniqueness we obtain μ = μρ. So we will write μ for μρ if no confusion will
occur.

In this paper we consider the measure μ generated by a probabilistic system
{XJ}∞j=0 each taking real values 0, 1, . . . , m with probability pj = p(X = j) =
Ci

m

2m respectively.
Let μ and μn be the probability measures induced by S and Sn respectively.

By #A we denote the cardinal of the set A. We have

Proposition 2.1 ([HN]). For any two consecutive points sn, tn ∈ supp μn,
we have

#S−1
n (sn)/#S−1

n (tn) ≤ n + 1.
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From Proposition 2.1 it follows that

Corollary 2.1. If sn, tn ∈ supp μn and |sn − tn| ≤ kq−n, then

#S−1
n (sn)/#S−1

n (tn) ≤ (n + 1)k.

By Proposition 2.1 and Corollary 2.1 we can see easily the following result.

Proposition 2.2 ([HN]). Let m ≥ 2, then

α(s) = lim
n→∞

∣∣ logμn(sn)
n log q

∣∣,
provided that the limit exists. Otherwise, we can replace α(s) by α(s) and α(s)
and consider the upper and the lower limits.

Proposition 2.3. Let s =
∞∑

j=1

q−jxj, s′ =
∞∑

j=1

q−jx′
j and s − s′ =

∞∑
j=1

q−jyj .

(i) If sn = s′n then xn ≡ x′
n (mod q), and (y1, . . . , yn) can be decomposed

as segments of the forms

(0, . . . , 0), ±(−1, q), ±(−1, q − 1, q − 1, . . . , q − 1, q) (2.5)

(ii) Conversely, if (y1, y1, . . .) can be decomposed as segments as in (2.5) or
±(−1, q − 1, q − 1, . . .), then s = s′.

Proof. (i) If sn = s′n, then qn−1(x1−x′
1)+. . .+q(xn−1−x′

n−1)+(xn−x′
n) = 0.

Hence xn ≡ x′
n (mod q).

For the second statement in (i), we note that the last non-zero term of
y1, . . . , yn must be congruent to 0 module q. Since |yj| ≤ 2q−2, we can assume
without loss of generality that yn = q. We have

n−2∑
j=1

q−jyj + q−(n−1)(yn−1 + 1) = 0, (2.6)

hence yn−1 + 1 ≡ 0 (mod q). Since |yj | ≤ 2q − 2, either yn−1 = −1 or
yn−1 = q − 1.

If yn−1 = −1, then (yn−1, yn) = (−1, q) as asserted. Therefore,
n−2∑
j=1

q−jyj = 0

and we repeat the same argument to this sum.
If yn−1 = q − 1, then we can write (2.6) as

n−3∑
j=1

q−jyj + q−(n−2)(yn−2 + 1) = 0.

This is the same form as (2.6) and the process can be repeated. Thus, we have
the result as asserted.

(ii) The proof of this assertion is trivial. �
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Lemma 2.1. Let s =
∞∑

j=1
q−jxj ∈ (0, m

q−1 ). Then for any fixed q ≤ r ≤ m,

there exists k and another representation s =
∞∑

j=1

q−jx′
j such that

0 ≤ x′
j ≤ r − 1 for all j ≥ k.

Proof. If there is an index j0 such that xj ≤ r − 1 for all j ≥ j0, then the
lemma is true for k = j0 and x′

j = xj . Otherwise, we put

a = max {xj : j > 1},

then a ≥ r. We can assume that x1 	= a and there are infinitely many xj = a.
We will repeat the following procedure to reduce the values of a until a ≤ r−1.
We consider two following cases.
Case 1: There exists j0 such that xj = a for all j > j0 and xj0 < a. Let

x′
j =

⎧⎪⎨
⎪⎩

xj + 1 if j = j0

xj if j < j0

xj − (q − 1) = a − q + 1 if j > j0.

Put ∞∑
j=1

q−jyj =
∞∑

j=1

q−jxj −
∞∑

j=1

q−jx′
j, .

Then

yj =

⎧⎪⎨
⎪⎩

0 if j < j0

−1 if j = j0

q − 1 if j > j0.

Thus, (y1, . . . , yn) is decomposed as segments of the forms

(0, . . . , 0), (−1, q − 1, q − 1, . . .).

Therefore, by Proposition 2.3

s =
∞∑

j=1

q−jxj =
∞∑

j=1

q−jx′
j.

Since a − q + 1 ≤ m − q + 1 ≤ (2q − 2) − q + 1 = q − 1 ≤ r − 1,

max
j>j0

{x′
j} = a − q + 1 ≤ r − 1.
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Thus, the lemma is true for k = j0.
Case 2: If xj < a for infinitely many j. Without loss of generality we can
assume that x1 < a− 1. Let n be the smallest integer such that xn = a. Let j0
be the largest integer less than n such that xj0 < a − 1. We put

x′
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj + 1 if j = j0

xj − q = a − q if j = n

xj − (q − 1) = a − q if j0 < j < n

xj if j > n or j < j0.

Then

yj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j < j0 or j > n

−1 if j = j0

q − 1 if j0 < j < n

q if j = n,

where ∞∑
j=1

q−jxj −
∞∑

j=1

q−jx′
j =

∞∑
j=1

q−jyj .

Thus, (y1, . . . , yn) is decomposed as segments of the forms

(0, . . . , 0), (−1, q − 1, q − 1, . . . , q).

Consequently, by Proposition 2.3 we have

s =
∞∑

j=1

q−jxj =
∞∑

j=1

q−jx′
j and max

n≥j≥1
{x′

j} ≤ a − 1.

We repeat this procedure to have all x′
j ≤ r − 1. The lemma is proved. �

Lemma 2.2. Let s =
∞∑

j=1

q−jxj ∈ (0, m
q−1

). Then for any fixed 0 ≤ r ≤ m− q,

there exists k and another representation s =
∞∑

j=1
q−jx′

j such that x′
j ∈ {r, r +

1, . . . , r + q − 1} for all j ≥ k.

Proof. In the Lemma 2.1, if we replace r by r + q, then for 0 ≤ r ≤ m − q

there exists k such that s =
∞∑

j=1

q−jx′
j and 0 ≤ x′

j ≤ r + q− 1 for all j > k. We

can assume without loss of generality that 0 ≤ x′
j ≤ r + q − 1 for all j.

If r = 0, then the lemma is true. So we assume that r ≥ 1. We will replace
0 ≤ x′

j ≤ r + q − 1 by 1 ≤ x′′
j ≤ r + q − 1. Therefore, after r steps we have the

result as in the lemma.
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In fact, assume that there exists some xn = 0. We consider the following
cases.

(i) If xj = 0 or xj = 1 for all j, then let j0 = min{j : xj = 1}. We put

x′
j =

{
0 if j ≤ j0

xj + q − 1 if j > j0.

It means

x′
j =

⎧⎪⎨
⎪⎩

0 if j ≤ j0

q if j > j0 and xj = 1
q − 1 if j > j0 and xj = 0

and

yj =

⎧⎪⎨
⎪⎩

0 if j < j0

1 if j = j0

−(q − 1) if j > j0,

where
∞∑

j=1

q−jyj =
∞∑

j=1

q−jxj −
∞∑

j=1

q−jx′
j.

By Proposition 2.3 we have

s =
∞∑

j=1
q−jx′

j and x′
j ∈ {q − 1, q} ⊂ {r, r + 1, . . . , r + q − 1} for all j > j0.

Thus, the lemma is true for k = j0 + 1.

(ii) Otherwise, we consider a segment of the form (xi, xi+1, . . . , xn) with
xi > 1, xn = 0 and xj = 0 or xj = 1 for all i + 1 ≤ i ≤ n − 1. Put

x′
j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xj − 1 > 0 if j = i

xj + q − 1 if i < j < n

xj + q = q if j = n

xj if j > n or j < i.

It implies that

yj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j > n or j < i

1 if j = i

−(q − 1) if n > j > i

−q if j = n,
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where ∞∑
j=1

q−jyj =
∞∑

j=1

q−jxj −
∞∑

j=1

q−jx′
j.

By Proposition 2.3 we have s =
∞∑

j=1

q−jx′
j and 0 < x′

j ≤ r + q−1 for i ≤ j ≤ n.

We repeat this process until all the 0 after xn are replaced.
After having 1 ≤ x′

j ≤ q + r − 1, we repeat the same process until obtain

the representation s =
∞∑

j=1

q−jzj and r ≤ zj ≤ r + q − 1 for all j > k = i. The

lemma is proved. �

3 The proof of the Main Theorem

Theorem 1 . For m ≥ q ≥ 2 we have α = m log 2
log q and the value is attained at

s = 0 or s = m
q−1 .

Proof. Let s =
∞∑

j=1

q−jxj ∈ [0, m
q−1 ]. Then for every n ∈ N

μn(sn) ≥
n∏

j=1

P (X = xj) ≥
(C0

m

2m

)n = 2−mn.

By Proposition 2.2 we have

α(s) = lim
n→∞

∣∣ logμn(sn)
n log q

∣∣ ≤ lim
n→∞

∣∣ log 2−mn

n log q

∣∣ =
m log 2
log q

. (3.1)

Observer that when s0 = 0 or s0 = m
q−1

, they have the unique representation

s0 =
∞∑

j=1

q−jxj , where (x1, x2, . . .) = (0, 0, . . .) or (x1, x2, . . .) = (m, m, . . .)

respectively. From Proposition 2.2 it follows that α(s0) = m log 2
log q . Associating

the latter with (3.1) we have the proof of the proposition. �

Theorem 1 . Put Eα = {s ∈ supp μ : α(s) = α}. Then Eα = ∅ for all

α ∈ (α̂, α), where α̂ = m log 2−log C[(m−q+1)/2]
m

log q and α = m log 2
log q . Therefore, α is

an isolated point of E.

Proof. Let r = [m−q+1
2 ]. For any s =

∞∑
j=1

q−jxj ∈ (0, m
q−1 ), by Lemma 2.2

then there exist k and a representation s =
∞∑

j=1

q−jx′
j, where

x′
j ∈ {[m− q + 1

2
], [

m− q + 1
2

] + 1, . . . , [
m− q + 1

2
] + q − 1}
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for all j ≥ k. Therefore

μn(sn) ≥
n∏

j=1

P (X = x′
j) ≥ C

(C
[ m−q+1

2 ]
m

2m

)n

(C only depends on k). It implies that

α(s) =≤ lim
n→∞

∣∣ log μn(sn)
n log q

∣∣ ≤ lim
n→∞

∣∣ log C
(

C
[ m−q+1

2 ]
m

2m

)n

n log q

∣∣
=

m log 2 − logC
[ m−q+1

2 ]
m

log q
= α̂.

The theorem is proved. �

The following simple property seems to be known, however, we were not
able to find in the literature.

Lemma 3.1. Let 3 ≤ q ≤ m ≤ 2q − 2. Then Ci
m + Ci+q

m ≤ C
[ m+1

2 ]
m for all

0 ≤ i ≤ m − q.

Proof. We only consider for the case m is even. The other case is proved
similarly. Put m = 2n. Then 2n ≥ q ≥ n + 1 ≥ 2, since m ≤ 2q − 2. Observe
that

C0
2n < C1

2n < . . . < Cn
2n > Cn+1

2n > . . . > C2n
2n .

Since n < n + i + 1 < i + q,

Ci+q
2n ≤ Cn+i+1

2n . (3.2)

We will show that
Ci

2n + Cn+i+1
2n ≤ Cn

2n (3.3)

for all n ≥ 1, n − 1 ≥ i ≥ 0.
In fact,

(3.3) ⇔ 1
i!(2n − i)!

+
1

(i + n + 1)!(n − i − 1)!
≤ 1

(n!)2

⇔ (i + 1)(i + 2) . . . n

(n + 1) . . . (2n − i)
+

(n − i)(n − i + 1) . . . n

(n + 1) . . . (n + i + 1)
≤ 1.

Since n − 1 ≥ i ≥ 0, the left of the last inequality in (3.3) does not exceed
i+1
2n−i + n−i

n+i+1 . Therefore, to show the last inequality we need to check that

i + 1
2n− i

+
n − i

n + i + 1
≤ 1 or 3i2 + 3i + 1 ≤ 3in + n.
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In fact, since n ≥ i + 1,

3in + n = (3i + 1)n ≥ (3i + 1)(i + 1) ≥ 3i2 + 3i + 1.

From (3.2), (3.3) the assertion follows. �

Using this lemma, we have the following result.

Theorem 1 . Let 3 ≤ q ≤ m ≤ 2q − 2. Then the greatest lower local di-

mensions is α = m log 2
logq − log C

[ m+1
2 ]

m

log q . Moreover, the infimum is attained at

s =
∞∑

j=1

q−j
[

m+1
2

]
= [ m+1

2 ]

q−1 .

Proof. Let t =
∞∑

j=1
q−j [m+1

2 ] and tn =
n∑

j=1
q−j[m+1

2 ]. We claim that tn

has the unique representation tn =
n∑

j=1

q−j [m+1
2

] for all n. Indeed, if tn =

n∑
j=1

q−jyj , then Proposition 2.3, yn − [m+1
2 ] ≡ 0 (mod q). Hence yn = [m+1

2 ]

since q ≤ m ≤ 2q − 2. Thus, tn−1 =
n−1∑
j=1

q−jyn−1. By repeating this argument

we have the claim. Therefore,

μn(tn) =
n∏

j=1

P (X = [
m + 1

2
]) =

(C
[ m+1

2 ]
m

2m

)n

.

It implies

α(t) = limn→∞
∣∣ log μn(tn)

n log q

∣∣ =
m log 2
logq

− logC
[ m+1

2 ]
m

log q
= α. (3.5)

Now we will show that α(s) ≥ α for any s ∈ supp μ. Indeed, assume that

s =
∞∑

j=1
q−jxj and sn =

n∑
j=1

q−jxj. We will prove by induction that μn(sn) ≤
μn(tn) for all n. It is easy to see that the assertion is true for n = 1. Assume
that it is true up to n − 1. In the case n, we consider three following cases.
Case 1: If xn = [m+1

2 ], then

μn(sn) = μn−1(sn−1)P (X = [
m + 1

2
])

≤ μn−1(tn−1)
C

[ m+1
2 ]

m

2m
= μn(tn).

Case 2: m− q ≤ xn ≤ q. From Proposition 2.3 and q ≤ m ≤ 2q− 2, it follows

that if sn has an another representation sn =
n∑

j=1
q−jyj , then yn = xn. Hence
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by the argument as above we have μn(sn) ≤ μn(tn).
Case 3: xn + q ≤ m or xn − q ≥ 0. Since q ≤ m ≤ 2q − 2, sn has an another

representation sn =
n∑

j=1

q−jyj, where yn = xn + q or yn = xn − q. Without loss

of generality we assume that yn = xn + q. Then sn has two representations

sn = sn−1 + q−nxn = s′n−1 + q−n(xn + q).

By Lemma 3.1 and the induction hypothesis we have

μn(sn) = μn−1(sn−1)P (X = xn) + μn−1(s′n−1)P (X = xn + q)
≤ μn−1(tn−1)P (X = xn) + μn−1(tn−1)P (X = xn + q)
= μn−1(tn−1)[P (X = xn) + P (X = xn + q)]

≤ μn−1(tn−1)
C

[ m+1
2 ]

m

2m
= μn(tn).

By Proposition 2.2, α(s) ≥ α for any s ∈ supp μ. From the latter and (3.5)
the assertion follows. �
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