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Abstract

In [HN], the authors showed that if 2 < ¢ < m < 2¢ — 2 then the set
E of the attainable local dimensions of fractal measure p is an interval.
In this paper we will prove that this result is not true if we replace the
probabilistic system po = p1 = ... = pm by the system p; = C¥, /2™, j =
0,1,...,m. More precisely, the set E has an isolated point. Hence the
multifractal formalism fails in this case.

The special of our case when ¢ = 3, the results was obtained earlier
in [HL).

1 Introduction

Let {Fi,..., Fy} be an iterated function system ( IFS ) of m contractive simil-
itudes on R%:

FJ(J?) =piRjx+0b;, 5=1,...,m,
where 0 < p; < 1, Rj is a d x d orthogonal matrix and b; is a vector in R%. Tt is

well known that there exists a unique nonempty compact subset £ in R? such
that

The set E is called the self-similar set or the invariant set of the IFS (see [Hut]).
If further, we associate the IFS with a set of probability weights p1, ..., pm, 0 <
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150 Multifractal structure of fractal measures

m

p; <land Y p; =1, then it will generate a unique invariant Borel probability
j=1

measure such that

p=> pjpoF;". (1.1)

Jj=1

We call p a self-similar measure or invariant measure.

The invariant sets and measures play a central role in theory of fractals.
Jessen and Winter [JW] showed that this measure is either purely singular or
absolutely continuous. If 0 < p < 1/m, then the measure p is purely singu-
lar. Otherwise, the different choice of the values by, . . ., b,, and the probability
weights p1, ..., py Wwill produce different type of the measure pu. The determi-
nation of which type, in general, is very difficult.

When the measure p is purely singular, the local dimension measures the
degree of singularities of p locally.

Recall that for s € supp u, the lower local dimension and upper local di-
mension of u at s are defined as

where B(s, h) is the closed interval [s — h, s+ h]. When a(s) = a(s) we refer to
the common value as the local dimension of p at s, and we denote it by «a(s).
Put

@ = sup{a(s) : s € supp p}; o = inf{a(s) : s € supp u};
E={a:a(s)=a, s€ supp u} and E, = {s € supp p: a(s) =a}.

One of the main objectives in fractal geometry is to study the multifractal
structure of a measure p such as the local dimension spectrum defined by

f(Ot) = dlmH Ea,

the Hausdoff dimension of the level sets F,. It was first proposed by physicists
to investigate various chaotic models arising from natural phenomena (see [FP],
[HIKPS], [M]).

A direct computation of f(«) in general is rather difficult. Based on some
physical intuition and analogous to the thermodynamic formalism in statisti-
cal mechanics, it was suggested that f(a) can be determined using the LI—
spectrum and the Legendre transformation (see [HP], [HJKPS], [FP]). Namely,

fla) = 7" () ;== inf{ap — 7(p) : p € R}, (1.2)
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where

) — i g 1 B, O
TP = A log é

3

and the supremum is over all families of disjoint closed §-balls B(z;, §) centered
at x; € supp p. The function 7(p) is called a L9— spectrum of the measure
L

The formula (1.2), known as multifractal formalism, holds for fractal mea-
sures associated with probabilistic systems satisfying the open set condition
(see [CM], [Ols], [AP]). And more generally, for fractal measures associated
with probabilistic systems possessing the weak separation property (see [LN]).
More recently, D. J. Feng and E. Olivier proved that the multifractal formalism
holds under a so-called “weak-Gibbs” condition (see [FO]). Without separation,
however, much less is known, and almost all that is known refers to the portion
of the L%-spectrum corresponding to p > 0, see [LN] and [PS] for some of the
deep results obtained.

In order for the multifractal formalism to hold, f(«) must be a concave func-
tion and the domain is an interval (i.e., the set of local dimensions of y forms an
interval). Therefore, the main question was proposed that: what condition on
the chooses of parameters will ensure the domain of f(«) to contain an isolated
point or ensure its domain to be an interval. In [HL], a first investigation was
made for the m-fold convolution of the Cantor measure for m > 3. The au-
thors proved that the set E contains an isolated point. This result was proved
by two other ways by Feng, Lau and Wang in [FLW]. In [HN], the authors
considered the measure  induced by IFS {Fj(z) = ¢(x +7):j=0,1,...,m}
and probabilistic system {p; = 1/(m+1) : j =0,1,...,m}. They showed that
the maximum of the set F is an isolated point of it for m > 2¢ — 2. For the
Bernoulli convolutions associated with the PV-number, Lau, Ngai and Feng
gave a detailed study on the multifractal formalism (see [LN1-2], [F1-2]).

On the other hand, also in [HN], the authors showed that for 2 < ¢ <
m < 2q — 2 the set F is an interval. Now we will prove that if we replace
p; = 1/(m+ 1) in [HN] by p; = CJ, /2™ for j = 0,1,...,m, then E has an
isolated point. Therefore the formula (1.2) is not true in this case.

In this paper we will consider the measure p induced by the IFS {F; =
ci

(x+j):j=0,1,...,m} and the associated probability system {p; = 5= :

1
q
j=0,1,....m}for3<qg<m<2q—2.

Denote [z] be the largest integer not exceeding x. Our main result is stated
as follows.

Main Theorem . Let 2¢q —2 > m > q > 3, m,q be integers. Then
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_ mlog2
1. a= ————.
logq
m+1
mlog2 logChp, 2
2. a= —
logq logq

3. @ 1is an isolated point of E. More precisely, E, = () for all a € (&4, @)

mlog?2 — log Clm—1+1)/2

where & =

logq

The paper is organized as follows. In section 2 we will give some preliminar-
ies and prove some basic lemmas for counting. The Main Theorem is proved
in Section 3.

2 Notation and Primarily Results

Let N denote the set of all nonnegative integers. Let 3 < ¢ < m <
2q — 2; q,m € N. We denote

D, ={0,1,...,m} and D, = {0,1,...,m}", where n < co,
and let - .
S = Zq_ka, and S, = Zq_ka
k=1 k=1

be functions defined on D and D7, respectively. Then for z = (zg,z1,...) €
D2, we have S(z) = Y. ¢ *xy and S, (z) = 3. ¢ Fxy.
k=1 k=1

Given p € (0, 1), let u be a probability measure induced by IFS
{Fj=plx+b;):j=1,...,m}

and the associated probability system {p; : j=1,...,m}. Then this measure
can be viewed as generated by a sequence of independent identically distributed
(i.i.d) random variables as follows.

Let X1, Xo, ... be a sequence of i.i.d random variables each taking real values

b1, ..., by with probability p1, ..., pm respectively. Given p € (0, 1), we define
a random variable

i=1

Let 1, be the probability measure induced by S, i.e.,



Vu TH1I HONG THANH 153

tp(A) = Prob {w: S(w) € A}.

We call i, a fractal measure and {X1, Xo, ...} a probabilistic system. The range
of S, or the support of y,, is given by

F= {Zplxl c &y € {b1,b2,...,bm}}

=1

= {p(xl + Zplxl) T € {bl, b2, .. .,bm}}

=1

= olz; + F)

Thus, F is exactly the invariant compact set under the IFS {Fy, ..., F,}. Tt
can be verified that the measure y, also satisfies equation (1.1). In fact, we have
S = p(X1+95"), where S’ has the same distribution as S and it is independent
of Xi. So we have

tp(A) = Prob {w: S(w) € A}
= Prob {p(X; +9') € A}

=Y Prob(X; = b;)Prob(p(b; + S') € A)
j=1

m

= p;Prob(s’ € F; '(A))

j=1

=3 pima (5 (A)).

3

<
Il

By uniqueness we obtain y = j1,. So we will write p for p,, if no confusion will
occur.

In this paper we consider the measure p generated by a probabilistic system
{X7}520 each taking real values 0,1,. .., m with probability p; = p(X = j) =

i

Cm ivel
5w respectively.

Let u and p,, be the probability measures induced by S and .S,, respectively.
By #A we denote the cardinal of the set A. We have

Proposition 2.1 ([HN]). For any two consecutive points sy, tn € SUpp fin,
we have

#HS(s,)/#S (t,) <n+ 1.
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From Proposition 2.1 it follows that
Corollary 2.1. If s,,t, € supp p, and |s, — tn| < kq™", then
#5, " (sn)/#5, (tn) < (n+ D).
By Proposition 2.1 and Corollary 2.1 we can see easily the following result.

Proposition 2.2 ([HN]). Let m > 2, then

provided that the limit exists. Otherwise, we can replace a(s) by a(s) and a(s)
and consider the upper and the lower limits.

o) . o) . o) .
Proposition 2.3. Lets= ) ¢ 7z, s’ = > ¢ /2 and s —s' = 3 q7y;.
j=1 j=1 j=1
(i) If s, = s}, then x, = x!, (mod q), and (y1,...,yn) can be decomposed
as segments of the forms

(0570)) :l:(_laQ)) :l:(_laq_ 1aq_ 1)7q_ 1)Q) (25)

(i) Conversely, if (y1,y1,--.) can be decomposed as segments as in (2.5) or
+(-1,g—1,g—1,...), thens = .

Proof. (i) If s,, = s}, then ¢" ! (x1—2})+. . .+q(xpn_1—2),_)+(xn—2]) = 0.
Hence z,, = 2!, (mod q).

For the second statement in (i), we note that the last non-zero term of
Y1, .., Yn must be congruent to 0 module ¢. Since |y;| < 2¢—2, we can assume
without loss of generality that y, = q. We have

n—2
> a7y +q " D(yaa +1) =0, (2.6)
=1

hence yp—1 +1 = 0 (mod ¢). Since |y;| < 2¢ — 2, either y,_1 = —1 or

Yn—1 =¢q — L.
n—2 .

If y,—1 = —1, then (yn—1,yn) = (—1, q) as asserted. Therefore, > ¢ 7y; =0
j=1

and we repeat the same argument to this sum.

If y,—1 = g — 1, then we can write (2.6) as

n—3

> alyi+a " (a2 +1) =0,

Jj=1

This is the same form as (2.6) and the process can be repeated. Thus, we have
the result as asserted.
(ii) The proof of this assertion is trivial. O
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o0
Lemma 2.1. Let s = Y ¢ 7z; € (0, 7). Then for any fived ¢ < r < m,
j=1

e} .
there exists k and another representation s = > q_Jx;- such that
j=1

0<ai<r—1 foral j>k.

Proof. If there is an index jg such that z; < r —1 for all j > jg, then the
lemma is true for & = jp and x; = z;. Otherwise, we put

a= max {z;:j > 1},

then a > r. We can assume that z; # a and there are infinitely many z; = a.
We will repeat the following procedure to reduce the values of @ until a < r—1.
We consider two following cases.

Case 1: There exists jg such that x; = a for all j > jo and z;, < a. Let

41 if j = jo
T; =975 1f]<]0
xj—(q—l):a—q+1 if 7> jo.

Put
o0 o0 o0
D a7y =) e =) a7 al
j=1 j=1 j=1
Then
0 if § < jo
yj =4 1 if j=Jjo
g—1 if 7> jo.
Thus, (y1,---,Yn) is decomposed as segments of the forms

(O,...,O), (_1aq_1aq_1))

Therefore, by Proposition 2.3
j=1 j=1
Sincea—g+1<m—-q+1<(2¢—2)—qg+1=q—1<r—1,

max {2} =a—q+1<r—1
J>J0
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Thus, the lemma is true for k = jg.

Case 2: If z; < a for infinitely many j. Without loss of generality we can
assume that 1 < a — 1. Let n be the smallest integer such that x,, = a. Let j
be the largest integer less than n such that xz;, < a —1. We put

z;+1 if 7 =70
, Tj—qg=a—¢q if j=n
sz . . .
zj—(¢g—1)=a—q if jo<j<n
T if j>norj<jo.
Then
0 if j<joor j>n
_ )1 if j=jo
YY1 it jo<j<n
q if j=mn,
where

o0 o0 o0
YIS WRTES W
j=1 j=1 j=1
Thus, (y1, . -.,Yn) is decomposed as segments of the forms

(O,...,O), (_1aq_1aq_laaQ)

Consequently, by Proposition 2.3 we have
o0 o0
— T — —J / -
S—Zq xJ—Zq x; and nnzl?gl{xj}ga 1.
j=1 j=1
We repeat this procedure to have all x; <r — 1. The lemma is proved. O

Lemma 2.2. Lets = Y g 7z; € (0, q—%) Then for any fired 0 <r < m—gq,
j=1

o0
there exists k and another representation s = »_ q~7x’; such that x; € {r,r +
j=1

1,...,m+q—1} forall j > k.
Proof. In the Lemma 2.1, if we replace r by r + ¢, then for 0 <r <m —gq
o) .
there exists k such that s = > q_Jx;- and 0 < x; <r+4gqg—1forall j >k We
j=1
can assume without loss of generality that 0 < x; <r+q—1 forall j.
If » = 0, then the lemma is true. So we assume that r > 1. We will replace
0< x; <r+q-—1byl< x;’ < 1+ q — 1. Therefore, after r steps we have the
result as in the lemma.
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In fact, assume that there exists some x,, = 0. We consider the following
cases.
(i) If z; =0 or z; =1 for all j, then let jo = min{j : x; = 1}. We put

{0 if < jo
I e +q—1 if 5> jo

It means
0 if j<jo
zh=<q if j>jo andz; =1
g—1 if j>jo andz; =0
and
0 if 7 < jo
Yy =941 if j=jo
where

Doaly =Y qu =) ¢
j=1 j=1 j=1

By Proposition 2.3 we have
o0

s= >y, q7xfandzf € {¢—1,q} C{r,r+1,...,r+q—1} forall j > jo.
i=1

J_
Thus, the lemma is true for & = jo + 1.
(ii) Otherwise, we consider a segment of the form (x;, z;y1,...,x,) with
z;>1, zp=0andz;=0o0orz; =1foralli+1<i<n—-1 Put

2;—1>0 if j=i

o zij+qg—1 ifi<j<n
J zj+q=q if j=n
T if j>nor j<u.
It implies that
0 if j>nor j<i
1 if j=1
Yj =

—(g—1) f n>j>i
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where

doaly =Y qu =Y ¢
j=1 j=1 j=1

o) .
By Proposition 2.3 we have s = > q_Jx;- and 0 < x; <r+4+qg-—1fori<j<n.
j=1
We repeat this process until all the 0 after x,, are replaced.
After having 1 < x; < g+ r — 1, we repeat the same process until obtain
e} .
the representation s = Y ¢ 7z; andr < z; <r+g¢g—1for all j > k =i. The

Jj=1
lemma is proved. O

3 The proof of the Main Theorem

Theorem 1 . For m > q > 2 we have & = % and the value is attained at
s=0o0rs= %.
Proof. Let s = '21 q Iz €0, ). Then for every n € N
J:
- Co
W(sn) > TTP(X = 1)) > (22)" = 2=mn,
o) = T PX = 23) > (52

By Proposition 2.2 we have

— lo S —— log2—m™ mlog?2
a(s) = Tom |08 Hnlon) ) g log27™") _ mlog2 (3.1)
n—oo' nloggq n—oo' nloggq logq
Observer that when sg = 0 or s9 = q%a they have the unique representation
o) .
so = > q ?x;, where (x1,22,...) = (0,0,...) or (z1,22,...) = (m,m,...)
j=1
respectively. From Proposition 2.2 it follows that a(sg) = %. Associating
the latter with (3.1) we have the proof of the proposition. O
Theorem 1 . Put E, = {s € suppp : a(s) = a}. Then E, = 0 for all
_log Clim—a+1)/2]
a € (&, @), where & = mlog2 loig’; ! and @ = %. Therefore, @ is

an isolated point of E.

Proof. Let r = [2=4t]. For any s = Y. ¢ 7a; € (0, 7-7), by Lemma 2.2
j=1

o) .
then there exist k and a representation s = ) ¢~//, where
j=1

m—q+1, m—q+1

o e (M (M

2

J+q—1}
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for all j > k. Therefore
pn(sn) > [[ P(X =) > C(T)n
j=1

(C only depends on k). It implies that

] log C( St )"
n - o e
a(s) =< lim |M(S)| < lim | 8 2 |
n—oo! nloggq n—oo nloggq
['m,—2q+1]

__mlog2—logCp, _a

; loggq o
The theorem is proved. O

The following simple property seems to be known, however, we were not
able to find in the literature.

Lemma 3.1. Let 3 < g < m < 2¢—2. Then C! + CiF1 < ch ]for all
0<i:<m—q.

Proof. We only consider for the case m is even. The other case is proved
similarly. Put m = 2n. Then 2n > ¢ > n+ 1 > 2, since m < 2q — 2. Observe
that

0y, < O3y <...<Cn >Cuft > . >

Sincen<n+i+1<i+g,

ot < okt (3.2)
We will show that , ,
Gy, + Oyt <y, (3.3)
forallmn>1, n—1>14¢>0.
In fact,
1 1 1
(3.3) &

Ten—i TG nsDlm—i—D = )2
G+1D)(E+2)...n (n—d)(n—i+1)...n
n+1)...2n—4) (n+1)...(n+i+1) —

Since n — 1 > i > 0, the left of the last inequality in (3.3) does not exceed

21;_11, + n’}r;ﬁl. Therefore, to show the last inequality we need to check that

i+1 n—i
2n—1i mn+i+1

<lor3i?+3i+1<3in+n.
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In fact, since n > i+ 1,
3in4+n=(3i4+1)n>Bi+1)G+1)> 3% +3i + 1.

From (3.2), (3.3) the assertion follows. O
Using this lemma, we have the following result.

Theorem 1 . Let 3 < q < m < 2q — 2. Then the greatest lower local di-

['mj:l]
- - _ mlog2  logCy 2 . - -
mensions is o = “o oag Moreover, the infimum is attained at
oo m+1
_ —jmyr] _ [*5]
s=2.4q [ 5 ] = -

Jj=1
n

Proof. Let t = Y ¢7/[2H] and ¢, = > ¢ /[2L]. We claim that ¢,
i=1 =1

<

n .
has the unique representation t, = > ¢~/ [mT“] for all n. Indeed, if ¢, =

j=1
> ¢ 7y, then Proposition 2.3, y, — [252] = 0 (mod ¢). Hence y, = [Z]
j=1
n—1
since ¢ <m < 2¢q —2. Thus, t,—1 = Y, q_jyn_l. By repeating this argument
j=1
we have the claim. Therefore,
- m+ 1 C[%] n
intn) = [T POX = 25D = (F5—) -
j=1
It implies
log pun (tn) mlog2 1og0[%]
at) = lim,,_, [ —""=] = - =a (3.5)

nloggq logq logq

Now we will show that a(s) > a for any s € supp pu. Indeed, assume that
o0 n

s= > q’z;and s, = Y, ¢ 7z;. We will prove by induction that g, (s,) <
=1 =1

tn (tn) for all n. Tt is easy to see that the assertion is true for n = 1. Assume

that it is true up to n — 1. In the case n, we consider three following cases.

Case 1: If z,, = [Z%1], then

m—+1

pn(sn) = Nn—l(sn—l)P(X:[ 9 ])
C[%]
S ,Un—l(tn—l) Tgm :,Un(tn)

Case 2: m—q < z, < q. From Proposition 2.3 and ¢ < m < 2q — 2, it follows
n

that if s, has an another representation s, = g7 y;, then y, = z,. Hence
j=1
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by the argument as above we have iy, (sn) < pin (tn)-
Case 3: z,, + ¢q<morz, —q>0. Since ¢ <m < 2qg— 2, s, has an another
n

representation s, = . ¢ Jy;, where y, = x, +q or y,, = z, —q. Without loss
j=1
of generality we assume that y, = x, + ¢. Then s, has two representations
Sp=8n-1+q¢ "Tn =25, 1 +q "(n+q).

By Lemma 3.1 and the induction hypothesis we have

n(sn) = pn-1(sa—1)P(X =) + pn-1(s,,_1) P(X = 2 +q)
< pn—1(tn-1)P(X = 2n) + pn—1(tn—1)P(X = 2o +q)
= fin—1(tn-1)[P(X = zn) + P(X = 2 + q)]
el
< pn-1(tn-1) om = fin(tn).

By Proposition 2.2, a(s) > « for any s € supp p. From the latter and (3.5)
the assertion follows. O
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