A P-ADIC GENERALIZED BOREL'S
 LEMMA

Nguyen Thanh Quang and Phan Duc Tuan

Department of Mathematics, Vinh University
Vinh, Nghe An, Vietnam. e-mail:

Abstract

In this paper, by using p-adic Nevanlinna theory, we prove a generalized Borel's lemma in the p-adic case.

1 Introduction

Let us start by recalling Borel's lemma in the complex case:
Theorem 1.1. Let $f_{1}, \ldots, f_{n}, n \geq 3$ be non-zero holomorphic functions on \mathbb{C} such that

$$
f_{1}+\cdots+f_{n}=0
$$

Then the function $\left\{f_{1}, \ldots, f_{n-1}\right\}$ are linearly dependent.
It is well - known that Borel's lemma plays an important role in the study of hyperbolic spaces. For different purposes some generalizations of the lemma are given. We mention here a result of Y.T. Siu and S.K. Yeung.

Theorem 1.2 ([13]). Let $g_{j}\left(x_{0}, \ldots, x_{n}\right)$ be a homogeneous polynomial of degree δ_{j} for $0 \leq j \leq n$. Suppose there exists a holomorphic map $f: \mathbb{C} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ so that its image lies in

$$
\sum_{j=0}^{n} x_{j}^{k-\delta_{j}} g_{j}\left(x_{0}, \ldots, x_{n}\right)=0
$$

Key words: p-adic Nevanlinna theory
2000 AMS Mathematics Subject Classification: 11G, 30D35.
and $k>(n+1)(n-1)+\sum_{j=0}^{n} \delta_{j}$. Then there is a nontrivial linear relation among $x_{1}^{k-\delta_{1}} g_{1}\left(x_{0}, \ldots, x_{n}\right), \ldots, x_{n}^{k-\delta_{n}} g_{n}\left(x_{0}, \ldots, x_{n}\right)$ on the image of f.

In [12], by using p-adic Nevanlinna-Cartan's theorem, Nguyen Thanh Quang and Phan Duc Tuan proved a p-adic version of Siu-Yeung's lemma as the follows.

Theorem 1.3. Let $g_{j}\left(x_{0}, \ldots, x_{n}\right)$ be a homogeneous polynomial of degree δ_{j} for $0 \leq j \leq n$. Suppose there exists a holomorphic map $f: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ so that its image lies in

$$
\sum_{j=0}^{n} x_{j}^{k-\delta_{j}} g_{j}\left(x_{0}, \ldots, x_{n}\right)=0
$$

and

$$
k \geq(n+1)(n-1)+\sum_{j=0}^{n} \delta_{j}
$$

Then the following functions are linearly dependent on \mathbb{C}_{p} if they are have no common zeros:

$$
f_{1}^{k-\delta_{1}} g_{1}\left(f_{0}, \ldots, f_{n}\right), \ldots, f_{n}^{k-\delta_{n}} g_{n}\left(f_{0}, \ldots, f_{n}\right)
$$

In this paper, by using p-adic Nevanlinna theory, we prove an analog of a generalized $a b c$-conjecture for p-adic entire functions and we then apply the result to prove the hypothesis that the functions

$$
f_{1}^{k-\delta_{1}} g_{1}\left(f_{0}, \ldots, f_{n}\right), \ldots, f_{n}^{k-\delta_{n}} g_{n}\left(f_{0}, \ldots, f_{n}\right)
$$

have no common zeros in Theorem 1.3 is not necessary.

2 An analog of a generalized abc-conjecture for p-adic entire functions

Let p be a prime number, \mathbb{Q}_{p} the field of p-adic number, and let \mathbb{C}_{p} be the p-adic completion of the algebraic closure of \mathbb{Q}_{p}. The absolute value in \mathbb{C}_{p} is normalized so that $|p|_{p}=p^{-1}$.

Let $a \in \mathbb{C}_{p}$ and f is a p-adic meromorphic function, we write f in the form:

$$
f=(x-a)^{l} \frac{g}{h}
$$

Where g, h are ertire functions and $g(a) h(a) \neq 0$, then l is called the order of f at a and is denoted by μ_{f}^{a}, we also denote $\mu_{f, k}^{a}=\min \left(k, \mu_{f}^{a}\right)$. We have the following easily proved properties of μ_{f}^{a}.

Lemma 2.1. Let f, g be two meromorphic functions and $a \in \mathbb{C}_{p}$, we have
a) $\mu_{f+g}^{a} \geq \min \left(\mu_{f}^{a}, \mu_{g}^{a}\right)$,
b) $\mu_{f g}^{a}=\mu_{f}^{a}+\mu_{g}^{a}$,
c) $\mu_{\frac{f}{g}}^{a}=\mu_{f}^{a}-\mu_{g}^{a}$,
d) $\mu_{f(k)}^{a} \geq \mu_{f}^{a}-k$.

Let f be a nonconstant p-adic analytic function on \mathbb{C}_{p},

$$
f=\sum_{n=0}^{\infty} a_{n} z^{n}\left(a_{n} \in \mathbb{C}_{p}\right)
$$

is well-defined whenever

$$
\left|a_{n} z^{n}\right|_{p} \rightarrow 0
$$

Define the maximum term

$$
\mu(r, f)=\max _{n \geq 0}\left|a_{n}\right| r^{n}
$$

Let f is a meromorphic function, we can uniquely extend μ to meromorphic function $f=\frac{g}{h}$ by defining

$$
\mu(r, f)=\frac{\mu(r, g)}{\mu(r, h)}(0 \leq r<\infty)
$$

Define the compensation function by

$$
m(r, f)=\max \{0, \log \mu(r, f)\}
$$

Define the counting function by

$$
N\left(r, \frac{1}{f}\right)=\mu_{f}^{0} \log r+\sum_{0<a \leq r, f(a)=0} \mu_{f}^{a} \log \left|\frac{r}{a}\right|
$$

and

$$
\bar{N}\left(r, \frac{1}{f}\right)=\mu_{f, 1}^{0} \log r+\sum_{0<a \leq r, f(a)=0} \mu_{f, 1}^{a} \log \left|\frac{r}{a}\right| .
$$

As usual, we define the characteristic function by

$$
T(r, f)=m(r, f)+N(r, f)
$$

where

$$
N(r, f)=N\left(r, \frac{1}{h}\right)
$$

We have Jensen Formular (see [3])

$$
N\left(r, \frac{1}{f}\right)-N(r, f)=\log \mu(r, f)+0(1) .
$$

Now we give an analog of a generalized $a b c$-conjecture for p-adic entire functions.

Theorem 2.1. Let f_{0}, \ldots, f_{n+1} be $(n+2)$ entire functions have no common zeros and g_{0}, \ldots, g_{n+1} be $(n+2)$ entire functions such that $f_{0} g_{0}, \ldots, f_{n} g_{n}$ be linearly independent over \mathbb{C}_{p}, and

$$
f_{0} g_{0}+\cdots+f_{n} g_{n}=f_{n+1} g_{n+1}
$$

Then

$$
\max _{0 \leq j \leq n+1} T\left(r, f_{j} g_{j}\right) \leq n \sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}}\right)-\frac{n(n+1)}{2} \log r+0(1)
$$

Proof. Since $f_{0} g_{0}, \ldots, f_{n} g_{n}$ are linearly independent, then the Wronskian W of $f_{0} g_{0}, \ldots, f_{n} g_{n}$ does not vanish. We set

$$
\begin{aligned}
P & =\frac{W\left(f_{0} g_{0}, \ldots, f_{n} g_{n}\right)}{f_{0} g_{0} \ldots f_{n} g_{n}} \\
Q & =\frac{f_{0} g_{0} \ldots f_{n+1} g_{n+1}}{W\left(f_{0} g_{0}, \ldots, f_{n} g_{n}\right)}
\end{aligned}
$$

Hence we have

$$
f_{n+1} g_{n+1}=P Q
$$

By Jensen formular, we have

$$
\begin{equation*}
T\left(r, f_{n+1} g_{n+1}\right)=N\left(r, \frac{1}{f_{n+1} g_{n+1}}\right)+0(1) \leq N\left(r, \frac{1}{Q}\right)+N\left(r, \frac{1}{P}\right)+0(1) \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
N\left(r, \frac{1}{Q}\right)=N\left(r, \frac{1}{\frac{f_{0} \ldots f_{n+1}}{W\left(f_{0} g_{0}, \ldots, f_{n} g_{n}\right)}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}}\right)+0(1) \tag{2}
\end{equation*}
$$

Suppose that α is a zero of $f_{0} f_{1} \cdots f_{n+1}$, by the hypothesis there exists $\nu, 0 \leq$ $\nu \leq n+1$ such that $f_{\nu} \neq 0$. By the hypothesis $f_{0} g_{0}+\cdots+f_{n} g_{n}=f_{n+1} g_{n+1}$ we have

$$
\begin{aligned}
\mu_{\frac{f_{0} \cdots f_{n+1}}{\alpha W\left(f_{0} g_{0}, \ldots, f_{n} g_{n}\right)}}^{\alpha} & =\mu_{\frac{f_{0} \cdots f_{\nu-1} f_{\nu+1} \cdots f_{n+1}}{\alpha}}^{W\left(f_{0} g_{0}, \ldots, f_{\nu-1} g_{\nu-1}, f_{\nu+1} g_{\nu+1}, \ldots, f_{n+1} g_{n+1}\right)} \\
& =\sum_{j=0}^{n+1} \mu_{f_{j}}^{\alpha}-\mu_{W\left(f_{0} g_{0}, \ldots, f_{\nu-1} g_{\nu-1}, f_{\nu+1} g_{\nu+1}, \ldots, f_{n+1} g_{n+1}\right)}^{\alpha}
\end{aligned}
$$

$W\left(f_{0} g_{0}, \ldots, f_{\nu-1} g_{\nu-1}, f_{\nu+1} g_{\nu+1}, \ldots, f_{n+1} g_{n+1}\right)$ is the sum of follow terms

$$
\delta f_{\alpha_{0}} g_{\alpha_{0}}\left(f_{\alpha_{1}} g_{\alpha_{1}}\right)^{\prime} \cdots\left(f_{\alpha_{n}} g_{\alpha_{n}}\right)^{(n)}
$$

Where $\alpha_{i} \in\{0, \ldots n+1\} \backslash\{\nu\}, \delta= \pm 1$. By using Lemma 2.1 we have

$$
\begin{aligned}
& \mu_{f_{\alpha_{0}} g_{\alpha_{0}}\left(f_{\alpha_{1}} g_{\alpha_{1}}\right)^{\prime} \cdots\left(f_{\alpha_{n}} g_{\alpha_{n}}\right)^{(n)}}^{\alpha} \\
& \geq \sum_{0 \leq j \leq n, f_{\alpha_{j}}(\alpha)=0} \mu_{f_{\alpha_{j}} g_{\alpha_{j}}}^{\alpha}-n\left(\sum_{0 \leq j \leq n, f_{\alpha_{j}}(a)=0} 1\right) \\
& =\sum_{0 \leq j \leq n, f_{\alpha_{j}}(\alpha)=0} \mu_{f_{\alpha_{j}}}^{\alpha}+\sum_{0 \leq j \leq n, f_{\alpha_{j}}(\alpha)=0} \mu_{g_{\alpha_{j}}}^{\alpha}-n\left(\sum_{0 \leq j \leq n, f_{\alpha_{j}}(a)=0} 1\right) \\
& \geq \sum_{0 \leq j \leq n, f_{\alpha_{j}}(\alpha)=0} \mu_{f_{\alpha_{j}}}^{\alpha}-n\left(\sum_{0 \leq j \leq n+1, f_{\alpha_{j}}(a)=0} 1\right) \\
& =\sum_{j=0}^{n+1} \mu_{f_{j}}^{\alpha}-n\left(\sum_{0 \leq j \leq n+1, f_{j}(a)=0} 1\right) .
\end{aligned}
$$

By Lemma 2.1 we have

$$
\mu_{W\left(f_{0} g_{0}, \ldots, f_{\nu-1} g_{\nu-1}, f_{\nu+1} g_{\nu+1}, \ldots f_{n+1} g_{n+1}\right)}^{\alpha} \geq \sum_{j=0}^{n+1} \mu_{f_{\alpha_{j}}}^{\alpha}-n\left(\sum_{0 \leq j \leq n+1, f_{j}(a)=0} 1\right) .
$$

Hence

$$
\mu_{\frac{f_{0} \cdots f_{n+1}}{W\left(f_{0} g_{0}, \ldots, f_{n} g_{n}\right)}} \leq n\left(\sum_{0 \leq j \leq n+1, f_{j}(a)=0} 1\right)
$$

By the definition of counting function, we have:

$$
\begin{equation*}
N\left(r, \frac{1}{\frac{f_{0} \cdots f_{n+1}}{W\left(f_{0} g_{0}, \ldots, f_{n} g_{n}\right)}}\right) \leq n \sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{f_{j}}\right) \tag{3}
\end{equation*}
$$

By Jensen formular we have

$$
\begin{equation*}
N\left(r, \frac{1}{P}\right) \leq \log \mu(r, P)+0(1) \tag{4}
\end{equation*}
$$

The value of P is clearly

$$
\sum \pm \frac{f_{\alpha_{0}} g_{\alpha_{0}}}{f_{\alpha_{0}} g_{\alpha_{O}}} \cdot \frac{\left(f_{\alpha_{1}} g_{\alpha_{1}}\right)^{\prime}}{f_{\alpha_{1}} g_{\alpha_{1}}} \cdots \frac{\left(f_{\alpha_{n}} g_{\alpha_{n}}\right)^{(n)}}{f_{\alpha_{n}} g_{\alpha_{n}}}
$$

summed for the $(n+1)$! permutations $\left(\alpha_{0}, \ldots, \alpha_{n}\right)$ of $(0, \ldots, n)$, the positive sign being taken for a positive permutation, the negative sign for a negative
permutation. We have

$$
\begin{aligned}
\mu(r, P) & \leq \max \mu\left(r, \frac{\left(f_{\alpha_{1}} g_{\alpha_{1}}\right)^{\prime}}{f_{\alpha_{1}} g_{\alpha_{1}}} \cdots \frac{\left(f_{\alpha_{n}} g_{\alpha_{n}}\right)^{(n)}}{f_{\alpha_{n}} g_{\alpha_{n}}}\right) \\
& =\max \mu\left(r, \frac{\left(f_{\alpha_{1}} g_{\alpha_{1}}\right)^{\prime}}{f_{\alpha_{1}} g_{\alpha_{1}}}\right) \cdots \mu\left(r, \frac{\left(f_{\alpha_{n}} g_{\alpha_{n}}\right)^{(n)}}{f_{\alpha_{n}} g_{\alpha_{n}}}\right)
\end{aligned}
$$

By using the lemma of logarithmic derivative (see [2]) which states

$$
\mu\left(r, \frac{f^{(i)}}{f}\right) \leq \frac{1}{r^{i}}
$$

for a nonconstant meromorphic function f in C_{p}, we obtain

$$
\begin{equation*}
\mu(r, P) \leq \frac{1}{r} \cdot \frac{1}{r^{2}} \cdots \frac{1}{r^{n}}=r^{-\frac{n(n+1)}{2}} \tag{5}
\end{equation*}
$$

From (4) and (5) we have

$$
\begin{equation*}
N\left(r, \frac{1}{P}\right) \leq-\frac{n(n+1)}{2} \log r+0(1) \tag{6}
\end{equation*}
$$

From (1), (2), (3) and (6) we have

$$
T\left(r, f_{n+1} g_{n+1}\right) \leq n \sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}}\right)-\frac{n(n+1)}{2} \log r+0(1)
$$

By a similar argument applying to the functions $f_{0} g_{0}, \ldots, f_{n} g_{n}$, we have

$$
\max _{0 \leq j \leq n+1} T\left(r, f_{j} g_{j}\right) \leq n \sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}}\right)-\frac{n(n+1)}{2} \log r+0(1)
$$

Theorem 2.1 is proved.

3 A P-adic generalized Borel's lemma

The following theorem is more general than Theorem 1.3.
Theorem 3.1. Let $g_{j}\left(x_{0}, \ldots, x_{n}\right)$ be a homogeneous polynomial of degree δ_{j} for $0 \leq j \leq n$. Suppose there exists a holomorphic map $f: \mathbb{C}_{p} \rightarrow \mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$ so that its image lies in

$$
\sum_{j=0}^{n} x_{j}^{k-\delta_{j}} g_{j}\left(x_{0}, \ldots, x_{n}\right)=0
$$

and $k \geq(n+1)(n-1)+\sum_{j=0}^{n} \delta_{j}$. Then there is a nontrivial linear relation among $x_{1}^{k-\delta_{1}} g_{1}\left(x_{0}, \ldots, x_{n}\right), \ldots, x_{n}^{k-\delta_{n}} g_{n}\left(x_{0}, \ldots, x_{n}\right)$ on the image of f.

Proof. By the hypothesis we have

$$
\sum_{j=0}^{n} f_{j}^{k-\delta_{j}} g_{j}\left(f_{0}, \ldots, f_{n}\right)=0
$$

Assume on the contrary that the functions

$$
f_{1}^{k-\delta_{1}} g_{1}\left(f_{0}, \ldots, f_{n}\right), \ldots, f_{n}^{k-\delta_{n}} g_{n}\left(f_{0}, \ldots, f_{n}\right)
$$

are linearly independent. By using Theorem 2.1 we have

$$
\begin{aligned}
& \max \left(T\left(r, f_{0}^{k-\delta_{0}} g_{1}\left(f_{0}, \ldots, f_{n}\right)\right), \ldots, T\left(r, f_{n}^{k-\delta_{n}} g_{n}\left(f_{0}, \ldots, f_{n}\right)\right)\right) \\
\leq & (n-1) \sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{f_{j}^{k-\delta_{j}}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}\left(f_{0}, \ldots, f_{n}\right)}\right)-\frac{n(n-1)}{2} \log r+0(1) \\
= & (n-1) \sum_{j=0}^{n+1} \bar{N}\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}\left(f_{0}, \ldots, f_{n}\right)}\right)-\frac{n(n-1)}{2} \log r+0(1) \\
\leq & (n-1) \sum_{j=0}^{n+1} N\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}\left(f_{0}, \ldots, f_{n}\right)}\right)-\frac{n(n-1)}{2} \log r+0(1)
\end{aligned}
$$

We set for simplicity

$$
\max _{0 \leq j \leq n} T\left(r, f_{j}\right)=T\left(r, f_{i_{0}}\right)
$$

Then we have

$$
\begin{aligned}
& T\left(r, f_{i_{0}}^{k-\delta_{i_{0}}} g_{i_{0}}\left(f_{0}, \ldots, f_{n}\right)\right) \\
\leq & (n-1) \sum_{j=0}^{n+1} N\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}\left(f_{0}, \ldots, f_{n}\right)}\right)-\frac{n(n-1)}{2} \log r+0(1) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& N\left(r, \frac{1}{f_{i_{0}}^{k-\delta_{i_{0}}}}\right)+N\left(r, \frac{1}{g_{i_{0}}\left(f_{0}, \ldots, f_{n}\right)}\right) \\
\leq & (n-1) \sum_{j=0}^{n+1} N\left(r, \frac{1}{f_{j}}\right)+\sum_{j=0}^{n+1} N\left(r, \frac{1}{g_{j}\left(f_{0}, \ldots, f_{n}\right)}\right)-\frac{n(n-1)}{2} \log r+0(1)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(k-\delta_{i_{0}}\right) N\left(r, \frac{1}{f_{i_{0}}}\right) \\
& \leq \quad(n-1)(n+1) N\left(r, \frac{1}{f_{i_{0}}}\right)+\sum_{0 \leq j \leq n, j \neq i_{0}}^{n+1} N\left(r, \frac{1}{g_{j}\left(f_{0}, \ldots, f_{n}\right)}\right)-\frac{n(n-1)}{2} \log r+0(1) \\
& \leq \quad(n-1)(n+1) N\left(r, \frac{1}{f_{i_{0}}}\right)+\sum_{0 \leq j \leq n, j \neq i_{0}}^{n+1} \delta_{j} N\left(r, \frac{1}{f_{i_{0}}}\right)-\frac{n(n-1)}{2} \log r+0(1) .
\end{aligned}
$$

So

$$
\left(k-\sum_{j=0}^{n} \delta_{j}-(n-1)(n+1)\right) N\left(r, \frac{1}{f_{i_{0}}}\right) \leq-\frac{(n-1) n}{2} \log r+0(1) .
$$

By the hypothesis $k \geq \sum_{j=0}^{q} \delta_{j}-(n-1)(n+1)$ we have a contradiction when $r \rightarrow+\infty$.

References

[1] P.C. Hu and C.C.Yang, A survey on p-adic nevanlinna theory and its applications to differential equations, Taiwanese journal of mathematics, Vol. 3, 1 (1999),1-34.
[2] P.C. Hu and C.C.Yang, Value distribution theory of p-adic meromorphic functions, Izv. Natts. Acad. Nauk Armenii Nat., 32 (3) (1997), 46-67.
[3] P.C. Hu and C.C.Yang, Meromorphic functions over non-Archimedean fields, Mathematics and Its Aplications, 522. Kluwer, Dordrecht, 2000.
[4] P.C. Hu and C.C.Yang, Notes on a generalized abc-conjecture over function fields, Ann. Math. Blaise Pascal 8 (2001), no. 1, 61-71.
[5] P.C. Hu and C.C.Yang, A generalized abc-conjecture over function fields, Journal of Number Theory, Number 2, 94 (2002), 286-298.
[6] P.C. Hu and C.C.Yang, A unique range set of p-adic meromorphic function with 10 elements, Act. Math. Vietnam., 24 (1999), 95-108.
[7] Ha Huy Khoai and My Vinh Quang, On p-dic Nevanlinna theory, Lect. Notes. Math. 1351 Springer-Verlag (1988), 146-158.
[8] Ha Huy Khoai and Mai Van Tu, P-adic Nevalinna-Cartan theorem, Inter. J. Math 6(1995), 719-731.
[9] Ha Huy Khoai, A survey on the p-adic Nevanlinna theory and recent articles, Acta Math. Vietnam., 27 (2002), 321-332.
[10] Nguyen Thanh Quang, Borel's lemma in the p-adic case, Vietnam Journal of Mathematics, 26:4 (1998), 311-313.
[11] Nguyen Thanh Quang, P-adic hyperbolicity of the complement of hyperplanes in $\mathbb{P}^{n}\left(\mathbb{C}_{p}\right)$, Acta Math. Vietnam., 23 (1998), 143-149.
[12] Nguyen Thanh Quang and Phan Duc Tuan, Siu-Yeng's lemma in the padic case, Vietnam Journal of Mathematics, 32:2, No. 2 (2004), 227-234.
[13] Y.T.Siu and S.K.Yeung, Defects for ample divisors of Abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees, Amer. J. Math. 119 (1997), 1139-1172.

