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Abstract

Let K be an algebraically closed field of arbitrary characteristic, com-
pleted with respect to a non-Archimedean absolute value “| |”. In this
paper, we will estimate truncated defect relation for non-Archimedean
analytic curves intersecting hypersurfaces in general position.

1 Introduction

We first introduce some standard notations in Nevanlinna theory. Let f be an
entire function on K, defined by a convergent series

f(z) =
∞∑

n=m

anz
n, (am �= 0; m � 0).

For each real number r � 0, we define

|f |r = sup
n

|an|rn = sup{|f(z)| : z ∈ K with |z| � r}
= sup{|f(z)| : z ∈ K with |z| = r}.

Let f : K → P
n(K) be a analytic map, f = (f0 : ... : fn) be a reduced represen-

tative of f , where f0, ..., fn are entire functions on K without common zeros,
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at least one of which is non-constant. The Nevanlinna-Cartan characteristic
function Tf (r) is defined by

Tf (r) = log ‖f‖r ,

where ‖f‖r = max{|f0|r, ..., |fn|r}. The above definition is independent, up to
an additive constant, of the choice of the reduced representation of f .

Let D be a hypersurface in P
n(K) of degree d. Let G be the homogeneous

polynomial in n+1 variables with coefficients in K of degree d defining D. The
proximity function of f is defined by

mf (r, D) = mf (r, G) = log
‖f‖d

r

|G ◦ f |r .

Note that up to a constant term, mf (r, D) is independent of the choice of
defining form G. Let nf (r, G) be the number of zeros of G ◦ f in the disk
|z| < r, counting multiplicity, and nΔ

f (r, G) be the number of zeros of G ◦ f in
the disk |z| < r, truncated multiplicity by a positive integer Δ. The counting
function and truncated function are defined by

Nf (r, D) = Nf (r, G) =
∫ r

0

nf(t, G) − nf (0, G)
t

dt+ nf (0, G) logr;

NΔ
f (r, D) = NΔ

f (r, G) =
∫ r

0

nΔ
f (t, G)− nΔ

f (0, G)
t

dt+ nΔ
f (0, G) logr.

It is clear that for any positive integer Δ, NΔ
f (r, D) � Nf(r, D).

Let X be an n-dimensional (not necessarily smooth) projective subvariety
of P

N (K). A collection of q ≥ n+ 1 hypersurfaces D1, . . . , Dq in P
N (K) is said

to be in general position with X if for any subset {i0, . . . , in} of {1, . . . , q} of
cardinality n+ 1,

{x ∈ X : Gij(x) = 0, j = 0, . . . , n} = ∅,

where Gj, 1 � j � q, be the homogeneous polynomials in K[x0, ..., xn] defining
Dj .

For a hypersurface D, which is defined by homogeneous polynomial G, we
define the defect

δf (D) = δf (G) = 1 − lim sup
r−→+∞

Nf (r, G)
(degG)Tf(r)

,

and the truncated defect

δΔf (D) = δΔf (G) = 1 − lim sup
r−→+∞

NΔ
f (r, G)

(degG)Tf (r)
,
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where Δ be a positive integer. It is easy to see that

0 � δf (D) � δΔf (D) � 1

for any positive integer Δ and hypersurface D.
In [1] (also [11] for the special case when X = P

N (K)), the author showed
that

Theorem A. Let X ⊂ P
N (K) be a projective sub-variety of dimension n ≥ 1

over K. Let D1, .., Dq be hypersurfaces of degree d1, ..., dq resp. in P
N (K) in

general position with X. Let f : K → X be a non-constant analytic map whose
image is not completely contained in any of the hypersurfaces D1, . . . , Dq. Then

q∑
j=1

δf (Dj) � n = dimX. (1.1)

Let D1, .., Dq be hypersurfaces of degree d1, ..., dq resp. in P
n(K), for

any ε > 0, we now define bound of truncated level, which is denoted by
Bε(D1 , ..., Dq), of the hypersurfaces D1, ..., Dq associating ε as follows: Let
d be the least common multiple of d′js and let N be the smallest natural num-

ber such that N � nd, divisible by d and
(N + 1)...(N + n)
(N − d)...(N − nd)

� 1 +
ε

n+ 1
,

then
Bε(D1, ..., Dq) =

(N + n)!
N !n!

.

In this paper, we will estimate truncated defect relation for non-Archimedean
analytic curves to projective space over K. Our result is stated as follows.

Main Theorem. Let f : K → P
n(K) be an algebraically non-degenerate

analytic map, and let Dj , 1 � j � q, be hypersurfaces in P
n(K) of degree

dj in general position. Then for every ε > 0, there exists a positive integer
Δ = Bε(D1 , ..., Dq) such that

q∑
j=1

δΔf (Dj) � n+ 1 + ε. (1.2)

Theorem A as above gave a better bound than our result, but it seems
impossible to get a truncated defect relation from the approach which is given
in the paper [1]. The proof of our Main Theorem is based on the method which
was first introduced by Corvaje and Zannier for number fields [6], then by Ru
[10] and An-Phuong [3] for the complex field. By our method explicit bound
truncation level of Δ in our result is the smallest as possible.

Unfortunately, Δ in Main Theorem depends on ε. It would be interesting
if one can find a Δ term indenpends on ε > 0. It is very important, because
we can cut term ε in the right side in (1.2) in that case.
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2 Some Preparations

In this section, we show and recall some lemmas and theorem, which are nec-
essary for proof of the our main result. (For detail, readers can find in [1], [5],
[6], [7], [10], [12] and also [2]).

Throughout of this paper, we shall use the lexicographic ordering on the m-
tuples (i1, ..., im) ∈ N

m of natural numbers. Namely, (j1, ..., jm) > (i1, ..., im) if
and only if for some b ∈ {1, ..., m}we have jl = il for l < b and jb > ib. With the
n-tuples (i) = (i1, ..., in) of non-negative integers, we denote σ(i) =

∑n
j=1 ij .

Let g1, ..., gn ∈ K[x0, ..., xn] be homogeneous polynomials of degree d, such
that they define a subvariety of P

n(K) of dimension 0. For a fixed positive
integer N , denote by VN the space of homogeneous polynomials of degree N
in K[x0, ..., xn]. We define a filtration of VN as follows. Arrange, by the lexico-
graphic order, the n-tuples (i) = (i1, ..., in) of non-negative integers such that
σ(i) � N/d. Define the spaces W(i) = WN,(i) by

W(i) =
∑

(e)�(i)

ge1
1 ...g

en
n VN−dσ(e).

Clearly, W(0,...,0) = VN and W(i) ⊃ W(i′) if (i′) > (i), so W(i) is a filtration of
VN .

For any pair (i′) follows (i) in ordering, as in Corvaja-Zannier’s original

proof we may choose a basis of quotient
W(i)

W(i′)
from the set containing all

equivalence classes of the form: γi1
1 ...γ

in
n η modulo W(i′) with η being a mono-

mial in x0, ..., xn with total degree N−dσ(i). Now we evaluate the dimensions,
denoted by δ(i), of the quotients of successive spaces in the filtration.

Lemma 1. If σ(i) � N/d− n then

δ(i) := dim
W(i)

W(i′)
= dn.

The proof of the above lemma was give in [3].
Next, we will recall the following lemma which is well-know in p-adic Nevan-

linna theory. The proof can be found, for example, in [8].

Lemma 2. Let f be a nonconstant meromorphic function in K, then

m

(
r,
f ′

f

)
= O(1).
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Let f1, ..., fn be meromorphic functions over K. Their Wronskian is

W (f) = W (f1, ..., fn) :=

∣∣∣∣∣∣∣∣∣

f1 . . . fn

f ′1 . . . f ′n
...

. . .
...

f
(n−1)
1 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣∣
.

We denote

L = L(f) = L(f1, ..., fn) :=

∣∣∣∣∣∣∣∣∣

1 . . . 1
f ′1/f1 . . . f ′n/fn

...
. . .

...
f

(n−1)
1 /f1 . . . f

(n−1)
n /fn

∣∣∣∣∣∣∣∣∣
.

Lemma 3. Let f1, ..., fn be meromorphic functions over K. Then for any
r > 0 we have

mL(r) = log+ |L|r = O(1).

Proof. Let g be a meromorphic function over K, for any integer k � 1, we can
write a logarithmic derivative of hight order as product

g(k)

g
=

g(k)

g(k−1)
...
g′

g
,

since Lemma 2, we have

m

(
r,
g(k)

g

)
= O(1). (2.1)

Applies (2.1) to fs, s = 1, ..., n, we have

m

(
r,

n∏
s=1

f
(μ(s))
s

fs

)
= O(1),

for any surjective μ : {1, ..., n} −→ {0, ..., (n− 1)}. Therefore

mL(r) = O(1).

This finishes the proof.

In [8], H.H. Khoai and M.V. Tu gave a form of inequality second main
theorem type for an analytic curve intersecting hyperplanes, with ramification.
For a convenience of readers, we will give here a simple proof of this result. The
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method in the proof of the following theorem bases on the method of Vojta,
which is shown in [13], over K.

Theorem 1. Let f = (f0 : ... : fn) : K → P
n(K) be a analytic map whose

image is not contained in any proper linear subspace. Let H1, ..., Hq be arbitrary
hyperplanes in P

n(K). Let Lj , 1 � j � q, be the linear forms defining H1, ..., Hq.
Denote by W (f0, ..., fn) the Wronskian of f0, ..., fn. Then,

max
K

log
∏
j∈K

‖f(z)‖r

|Lj(f)(z)|r +NW (r, 0) � (n + 1)Tf (r) + O(1),

where the maximum is taken over all subsets K of {1, ..., q} such that the linear
forms Lj, j ∈ K, are linearly independent. NW (r, 0) is the counting function
for the zeros of Wronskian W of f.

Proof. Without loss of generality, we may assume (by adding more hyper-
planes) that H1 ∩ ... ∩Hq = ∅. Then the subsets K can be further restricted
to subsets having exactly n+ 1 elements.

Give such a subset K, write K = {s0, ..., sn}. Also write γj = Hj ◦ f for all
j ∈ K. As in Cartan’s original proof we have

W

γs0 ...γsn

= CK

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1
γ′s0

γs0

. . .
γ′sn

γsn

...
. . .

...
γ

(n)
s0

γs0

. . .
γ

(n)
sn

γsn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

where CK is a constant. Let MK denote the determinant on the right-hand
side.

Obviously, W is a analytic function. Since Jensen’s formula, we have

NW (r, 0) = log |W |r + O(1).

Hence

NW (r, 0)−
n∑

i=0

log |Lsi(f)(z)|r = log
∣∣∣∣ W

n∏
i=0

Lsi(f)(z)

∣∣∣∣
r

+O(1)

= log
∣∣∣∣ W

γs0 ...γsn

∣∣∣∣
r

+ O(1),

so
n∑

i=0

log
‖f(z)‖r

|Lsi(f)(z)|r − (n+ 1)Tf (r) +NW (r, 0) = log
∣∣∣∣ W

γs0 ...γsn

∣∣∣∣
r

+ O(1).
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It then follows, by (2.2), that

max
K

∑
j∈K

log
‖f(z)‖r

|Lj(f)(z)|r − (n+ 1)Tf (r) +NW (r, 0)

= max
K

log
∣∣∣∣ W

γs0 ...γsn

∣∣∣∣
r

+ O(1)

= max
K

log |MK |r + O(1)

� max
K

log+ |MK |r +O(1).

Since Lemma 3, we have

max
K

log+ |MK |r = O(1)

which concludes the proof of the theorem.

3 Proof of Main Theorem

We first recall the Nevanlinna first main theorem in non-Archimedean fields.
First Main Theorem. Let f : K −→ P

n(K) be an analytis curve and let Q
be a homogeneous polynomial of degree d. If Q(f) �≡ 0, then every positive real
number r,

mf (r, Q) +Nf (r, Q) = dTf(r) +O(1),

where O(1) is a constant independent of r.
Now let f = (f0 : ... : fn) : K → P

n(K) be an algebraically non-degenerate
analytic map, and let D1, ..., Dq be hypersurfaces in P

n(K) of degree dj in
general position. Let Gj, 1 � j � q, be the homogeneous polynomials in
K[x0, ..., xn] of degree dj defining Dj. Let d is the least common multiple of
d′js and let Qj = G

d/dj

j ∀j = 1, ..., q, then Qj, 1 � j � q are homogeneous
polynomials of the same degree of d.

Note that if z ∈ K is a zero of Qj ◦ f = G
d/dj

j ◦ f with multiplicity α then

z is a zero of Qj ◦ f with multiplicity α
dj

d
. It implies that for every positive

integer Δ and for all positive real number r > 0

NΔ
f (r, Qj) = NΔ

f (r, G
d

dj

j ) =
d

dj
N

[Δ
dj
d ]

f (r, Gj) =
d

dj
NΔ

f (r, Gj),

so for all j = 1, ..., q

1 − NΔ
f (r, Gj)

(degGj)Tf (r)
= 1 − NΔ

f (r, Qj)
dTf(r)

.
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Hence
q∑

j=1

δΔf (Dj) =
q∑

j=1

δΔf (Gj) =
q∑

j=1

δΔf (Qj).

Given z ∈ K, there exists a renumbering {i1, ..., iq} of the indices {1, ..., q}
such that

|Qi1 ◦ f(z)| � |Qi2 ◦ f(z)| � ... � |Qiq ◦ f(z)|. (3.1)

Since Qj, 1 � j � n are in general position, by Hilbert’s Nullstellensatz [12],
for any integer k, 0 � k � n, there is an integer mk � d such that

xmk

k =
n+1∑
j=1

δjk(x0, .., xn)Qij(x0, ..., xn),

where δjk, 1 � j � n+1, 0 � k � n, are the homogeneous forms with coefficients
in K of degree mk − d. So

|fk(z)|mk � c1‖f(z)‖mk−d max{|Qi1 ◦ f(z)|, ..., |Qin+1 ◦ f(z)|}, (3.2)

where ‖f(z)‖ := max{|f0(z)|, ..., |fn(z)|}, c1 is a positive constant depends only
on the coefficients of δjk, 1 � j � n + 1, 0 � k � n, thus depends only on the
coefficients of Qi, 1 � i � q. Note that, (3.2) holds for all k = 0, ..., n, so

‖f(z)‖mk = max
k=0...n

{|fk(z)|mk}
� c1‖f(z)‖mk−d max{|Qi1 ◦ f(z)|, ..., |Qin+1 ◦ f(z)|},

therefore,
‖f(z)‖d � c1 max{|Qi1 ◦ f(z)|, ..., |Qin+1 ◦ f(z)|}. (3.3)

By (3.1) and (3.3),

q∏
j=1

‖f(z)‖d

|Qj ◦ f(z)| =
( n∏

k=1

‖f(z)‖d

|Qik ◦ f(z)|
)( q∏

k=n+1

‖f(z)‖d

|Qik ◦ f(z)|
)

� cq−n
1

n∏
k=1

‖f(z)‖d

|Qik ◦ f(z)| .

Hence, by the definition,

q∑
j=1

mf (r, Qj) = log
q∏

j=1

‖f(z)‖d
r

|Qj ◦ f(z)|r (3.4)

� max
{i1,...,in}

log
n∏

k=1

‖f(z)‖d
r

|Qik ◦ f(z)|r + (q − n) log c1.

Pick n distinct polynomials g1, ..., gn ∈ {Q1, ..., Qq}. By the general position
assumption, they define a subvariety of dimension 0 in P

n(K). For a fixed large
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integer N , which will be chosen later, let VN be the space of homogeneous
polynomials of degree N in K[x0, ..., xn]. We have constructed a filtration W(i)

of VN and

δ(i) := dim
W(i)

W(i′)
= dn,

for any (i′) > (i), which are consecutive n-tuples.

Set Δ := dimVN . We now choose a suitable basis {ψ1, ..., ψΔ} for VN as
the following way. We start with the last nonzero W(i) and pick any basis of
it. Then we continue inductively as follows: suppose (i′) > (i) are consecutive
n-tuples such that dσ(i), dσ(i′) � N and assume that we have chosen a basis
of W(i′). It follows directly from the definition that we may pick representa-
tives in W(i) for the quotient space W(i)/W(i′), of the form gi1

1 ...g
in
n η, where

η ∈ VN−dσ(i). We extend the previously constructed basis in W(i′) by adding
these representatives. In particular, we have obtained a basis for W(i) and our
inductive procedure may go on unless W(i) = VN , in which case we stop. In this
way, we have obtained a basis {ψ1, ..., ψΔ} for VN . Let φ1, ..., φΔ be a fixed basis
of VN . Then {ψ1, ..., ψΔ} can be written as linear forms L1, ..., LΔ in φ1, ..., φΔ

so that ψt(f) = Lt(F ), where F = (φ1(f) : ... : φΔ(f)) : K → P
Δ−1(K). The

linear forms L1, .., LΔ are linearly independent, and we know, from the assump-
tion of algebraically non-degeneracy of f , that F is linearly non-degenerate.

For z ∈ K, we now estimate log
Δ∏

t=1
|Lt(F )(z)| = log

Δ∏
t=1

|ψt(f)(z)|. Let ψ be

an element of the basis, constructed with respect to W(i)/W(i′), then we have
ψ = gi1

1 · · ·gin
n η, where η ∈ VN−dσ(i). Then we have a bound

|ψ(f)(z)| � |g1(f)(z)|i1 · · · |gn(f)(z)|in |η(f)(z)|
� c2|g1(f)(z)|i1 · · · |gn(f)(z)|in‖f(z)‖N−dσ(i),

where c2 is the positive constant depending only on ψ, not on f and z. Observe
that there are precisely δ(i) such functions ψ in our basis. Hence,

log |ψt(f)(z)| � i1 log |g1(f)(z)| + · · ·+ in log |gn(f)(z)| + (N − dσ(i)) log ‖f(z)‖ + c3

� i1

(
log |g1(f)(z)| − log ‖f(z)‖d

)
+ · · ·

+ in

(
log |gn(f)(z)| − log ‖f(z)‖d

)
+N log ‖f(z)‖ + c3

� −i1 log
‖f(z)‖d

|g1(f)(z)| − · · · − in log
‖f(z)‖d

|gn(f)(z)| +N log ‖f(z)‖ + c3,
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where c3 is the positive constant, which does not depend on f and r. Therefore,

log
Δ∏

t=1

|Lt(F )(z)| = log
Δ∏

t=1

|ψt(f)(z)| (3.5)

� −
∑
(i)

δ(i)

(
i1 log

‖f(z)‖d

|g1(f)(z)| + · · ·+ in log
‖f(z)‖d

|gn(f)(z)|
)

+ ΔN log ‖f(z)‖ + Δc3

= −
n∑

j=1

log
‖f(z)‖d

|gj(f)(z)|
( ∑

(i)

δ(i)ij

)
+ ΔN log ‖f(z)‖ + Δc3,

where the summations are taken over the n-tuples with σ(i) � N/d. Clearly
that δ :=

∑
(i) δ(i)ij does not depend on j, 1 � j � n. Hence (3.5) becomes

log
Δ∏

t=1

|Lt(F )(z)| � −δ log
n∏

j=1

‖f(z)‖d

|gj(f)(z)| + ΔN log ‖f(z)‖ + Δc3.

This implies

log
n∏

j=1

‖f(z)‖d

|gj(f)(z)| �1
δ

log
Δ∏

t=1

‖F (z)‖
|Lt(F )(z)| −

Δ
δ

log ‖F (z)‖ (3.6)

+
ΔN
δ

log ‖f(z)‖ +
Δc3
δ
.

Since there are only finitely many choices {g1, ..., gn} ⊂ {Q1, ..., Qq}, we
have a finite collection of linear forms L1, ..., Lu. From (3.6) we have

max
{i1,...,in}

log
n∏

k=1

‖f(z)‖d
r

|Qik(f)(z)|r � 1
δ

max
K

log
∏
j∈K

‖F (z)‖r

|Lj(F )(z)|r − Δ
δ
TF (r)

+
ΔN
δ
Tf (r) + c4,

where max
K

is taken over all subsets K of {1, ..., u} such that linear forms Lj , j ∈
K, are linearly independent, c4 is positive constant independent of r. Applying
Theorem 1 to analytic map F : K → P

Δ−1(K) and linear forms L1, ..., Lu, and
together with (3.4) we have

q∑
j=1

mf (r, Qj) � max
{i1,...,in}

log
n∏

k=1

‖f(z)‖d
r

|Qik(f)(z)|r + (q − n) log c1

� −1
δ
NW (r, 0) +

ΔN
δ
Tf (r) + O(1),
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where W is the Wronskian of F1, ..., FΔ. By the First Main Theorem, we have

(qd− ΔN
δ

)Tf (r) �
q∑

j=1

Nf (r, Qj) − 1
δ
NW (r, 0) + O(1). (3.7)

We will estimate
q∑

j=1

Nf(r, Qj) − 1
δ
NW (r, 0) on the right hand side of the

above inequality. For each z ∈ K, without loss of generality, we may assume
that Qj ◦ f vanishes at z for 1 � j � q1 and Qj ◦ f does not vanish at z
for j > q1. By the hypothesis Qj are “in general position”, we know q1 � n.
There are integers kj � 0 and nowhere vanishing analytic functions γj in a
neighborhood U of z such that

Qj ◦ f = (ζ − z)kjγj , for j = 1, ..., q,

where kj = 0 if q1 < j � q. For {Q1, ..., Qn} ⊂ {Q1, ..., Qq}, we can obtain a
basis {ψ1, ..., ψΔ} of VN and linearly independent linear forms L1, ..., LΔ such
that ψt(f) = Lt(F ). By the property of Wronskian,

W = W (F1, ..., FΔ) = CW (L1(F ), ..., LΔ(F ))

= C

∣∣∣∣∣∣∣∣∣

ψ1(f) . . . ψΔ(f)
(ψ1(f))′ . . . (ψΔ(f))′

...
. . .

...
(ψ1(f))(Δ−1) . . . (ψΔ(f))(Δ−1)

∣∣∣∣∣∣∣∣∣
.

Let ψ be an element of basis, constructed with respect to W(i)/W(i′), so we
may write ψ = Qi1

1 ...Q
in
n η, η ∈ VN−dσ(i). We have

ψ(f) = (Q1(f))i1 ...(Qn(f))inη(f),

where (Qj(f))ij = (ζ − z)ij.kjγ
ij

j , j = 1, ..., n. Also we can assume that kj � Δ
if 1 � j � q0 and 1 � kj < Δ if q0 < j � q1. And we observe that there are
δ(i) such ψ in our basis. Thus W vanishes at z with order at least

∑
(i)

( q0∑
j=1

ij(kj − Δ)
)
δ(i) =

∑
(i)

ijδ(i)

q0∑
j=1

(kj − Δ) = δ

q0∑
j=1

(kj − Δ).

Therefore,

q∑
j=1

Nf (r, Qj) − 1
δ
NW (r, 0) �

q∑
j=1

NΔ
f (r, Qj). (3.8)
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We now estimate on the left hand side of the inequality (3.7). Assume that
N is divisible by d and N � nd. Then

Δ =
(
N + n

n

)
=

(N + 1)...(N + n)
n!

. (3.9)

On the other hand, since the number of non-negative integer m-tuples with
sum � T is equal to the number of non-negative integer (m + 1)-tuples with
sum exactly T ∈ Z, which is

(
T+m

m

)
. It follows from Lemma 1 that,

δ �
∑
(i)

ijδ(i) =
∑
(̂i)

ijδ(i) = dn
∑
(̂i)

ij =
dn

n+ 1

∑
(̂i)

n+1∑
j=1

ij =
dn

n+ 1

∑
(̂i)

(N/d− n)

(3.10)

=
dn

n+ 1

(
N/d

n

)
(N/d− n) =

N(N − d)...(N − nd)
(n + 1)!d

,

where the sum
∑
(i)

is taken over the nonnegative integer (n+1)-tuples with sum

exactly N/d and
∑
(̂i)

is taken over the nonnegative integer (n + 1)-tuples with

sum exactly N/d− n. So since (3.9) and (3.10) we have

ΔN
δ

� (n+ 1)d
(N + 1)...(N + n)
(N − d)...(N − nd)

,

therefore

(qd− ΔN
δ

) � d

(
q − (n+ 1) −

(
(N + 1)...(N + d)
(N − d)...(N − nd)

− 1
)

(n+ 1)
)
.

It follows, for every ε > 0,

(qd− ΔN
δ

)Tf(r) ≥ d(q − n − 1 − ε)Tf (r), (3.11)

if we take N large enough such that

(N + 1)...(N + n)
(N − d)...(N − nd)

� 1 +
ε

(n+ 1)
. (3.12)

Combining the formulas (3.7), (3.8), (3.11) and (3.12) together, for each ε > 0,
and Δ in Main Theorem, we have

d(q − (n+ 1) − ε)Tf (r) �
q∑

j=1

NΔ
f (r, Qj) +O(1),

so
q∑

j=1

(
1 − NΔ

f (r, Qj)
dTf(r)

)
� (n+ 1 + ε) +

O(1)
dTf(r)

.

This is conclusion the proof of Main Theorem.
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