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Abstract
Let K be an algebraically closed field of arbitrary characteristic, com-
pleted with respect to a non-Archimedean absolute value “| |”. In this
paper, we will estimate truncated defect relation for non-Archimedean
analytic curves intersecting hypersurfaces in general position.

1 Introduction

We first introduce some standard notations in Nevanlinna theory. Let f be an
entire function on K, defined by a convergent series

f(z) = i anz",  (am #0; m > 0).

For each real number r > 0, we define
| f]r = sup |an|r™ = sup{| f(2)| : z € K with |z| < r}
= sup{|f(2)| : z € K with |z| = r}.

Let f: K — P*(K) be a analytic map, f = (fo : ... : fn) be a reduced represen-
tative of f, where fo, ..., f, are entire functions on K without common zeros,
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at least one of which is non-constant. The Nevanlinna-Cartan characteristic
function T4 (r) is defined by

Ty (r) = log [ fllr,

where || f|l» = max{|folr, ..., |fn|r}. The above definition is independent, up to
an additive constant, of the choice of the reduced representation of f.

Let D be a hypersurface in P"(K) of degree d. Let G be the homogeneous
polynomial in n+ 1 variables with coefficients in K of degree d defining D. The
proximity function of f is defined by

(Rl

my(r,D) =ms(r,G) = log Gofl

Note that up to a constant term, my(r, D) is independent of the choice of
defining form G. Let ny(r,G) be the number of zeros of G o f in the disk
|z| < r, counting multiplicity, and nf (r, G) be the number of zeros of Go f in
the disk |z| < r, truncated multiplicity by a positive integer A. The counting
function and truncated function are defined by

Ny (r,D) = N¢(r,G) = / n(t,G) = ns (0 G>dt+nf(0, G)logr;

0 t

2 (t,G) — n?0,G
NfA(r,D)szA(r,G):/ 7 (66) — )dt+nf(o,a)1ogr.

0 t
It is clear that for any positive integer A, N&(r, D) < Ny (r, D).

Let X be an n-dimensional (not necessarily smooth) projective subvariety
of PV (K). A collection of ¢ > n + 1 hypersurfaces Dy, ..., D, in PV (K) is said
to be in general position with X if for any subset {io,...,i,} of {1,...,q} of
cardinality n + 1,

{xeX:Gi(x)=0,j=0,...,n} =0,

where G;,1 < j < ¢, be the homogeneous polynomials in K[z, ..., z,] defining
D;.

For a hypersurface D, which is defined by homogeneous polynomial G, we
define the defect

. Nf(lraG)
6r(D)=0¢/(G)=1-limsup ——~—"—,
(D) = 67(G) AP (deg G)Ty(r)

and the truncated defect

N&(r, Q)
SA(D) = 52(G) = 1 — limsu fi,’
7 (D) =67(G) T,ﬁ+£ (deg G)Ty(r)
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where A be a positive integer. It is easy to see that
0<dp(D) <67 (D) < 1

for any positive integer A and hypersurface D.
In [1] (also [11] for the special case when X = PV (K)), the author showed
that

Theorem A. Let X C PV (K) be a projective sub-variety of dimension n > 1
over K. Let D1,..,Dq be hypersurfaces of degree dy,...,dq resp. in PN (K) in
general position with X. Let f : K — X be a non-constant analytic map whose

image is not completely contained in any of the hypersurfaces D1, ..., Dq. Then
q
> 6p(D;) <n=dim X. (1.1)
j=1

Let Ds,.., D, be hypersurfaces of degree di,...,dq resp. in P"(K), for
any € > 0, we now define bound of truncated level, which is denoted by
Be(D1, ..., Dy), of the hypersurfaces Ds, ..., D, associating ¢ as follows: Let
d be the least common multiple of d;-s and let N be the smallest natural num-

o (N+1)...(N+n) €
2 ) 1 g 1 )
ber such that N > nd, divisible by d and (N=d).(N = nd) + o
then o )
+n)!
BE(Dla---qu) - Tn'

In this paper, we will estimate truncated defect relation for non-Archimedean
analytic curves to projective space over K. Our result is stated as follows.

Main Theorem. Let f : K — P*(K) be an algebraically non-degenerate
analytic map, and let D;,1 < j < g, be hypersurfaces in P™(K) of degree
d; in general position. Then for every € > 0, there exists a positive integer
A =B, (D1, ..., Dy) such that

57 (Dj) <n+1+e. (1.2)
j=1

Theorem A as above gave a better bound than our result, but it seems
impossible to get a truncated defect relation from the approach which is given
in the paper [1]. The proof of our Main Theorem is based on the method which
was first introduced by Corvaje and Zannier for number fields [6], then by Ru
[10] and An-Phuong [3] for the complex field. By our method explicit bound
truncation level of A in our result is the smallest as possible.

Unfortunately, A in Main Theorem depends on e. It would be interesting
if one can find a A term indenpends on ¢ > 0. It is very important, because
we can cut term ¢ in the right side in (1.2) in that case.
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2 Some Preparations

In this section, we show and recall some lemmas and theorem, which are nec-
essary for proof of the our main result. (For detail, readers can find in [1], [5],
[6], [7], [10], [12] and also [2]).

Throughout of this paper, we shall use the lexicographic ordering on the m-
tuples (1, ..., im) € N™ of natural numbers. Namely, (j1, ..., Jm) > (@1, .-y i) if
and only if for some b € {1, ..., m} we have j; = ¢; for | < b and j, > ip. With the
n-tuples (i) = (i1, ..., 49,) of non-negative integers, we denote o (i) = 2?21 ij.

Let g1, ..., gn € K[z, ..., ) be homogeneous polynomials of degree d, such
that they define a subvariety of P"(K) of dimension 0. For a fixed positive
integer N, denote by Vi the space of homogeneous polynomials of degree N
in K[zo, ..., x,). We define a filtration of Vy as follows. Arrange, by the lexico-
graphic order, the n-tuples (i) = (i1, ..., 4,) of non-negative integers such that
o(i) < N/d. Define the spaces W5y = Wy (5) by

W(l): Z gil---anVN—do(e)-
(e)=(1)

Clearly, W,....0) = Vv and W5y D Wy if (i') > (i), so Wy is a filtration of
Vn.

For any pair (i') follows (i) in ordering, as in Corvaja-Zannier’s original
W)
o (i)
equivalence classes of the form: ~;'...y/*n modulo W(;;y with 7 being a mono-
mial in x, ..., x,, with total degree N —do(i). Now we evaluate the dimensions,
denoted by d(;), of the quotients of successive spaces in the filtration.

proof we may choose a basis of quotient from the set containing all

Lemma 1. Ifo(i) < N/d—n then

W) _ gn
W)

() := dim

The proof of the above lemma was give in [3].
Next, we will recall the following lemma which is well-know in p-adic Nevan-
linna theory. The proof can be found, for example, in [8].

Lemma 2. Let f be a nonconstant meromorphic function in K, then

w(n L) o



132 On Truncated Defect relation for...

Let f1, ..., fn be meromorphic functions over K. Their Wronskian is

f fn
i f
W(f):W(fla7fn) = : . :

(n—1) (n—1)

1 R Y

We denote

1 1

fi/fhh o fi

L=L(f) = L(f1, - fn) :=

g Y,

Lemma 3. Let fi,..., fn be meromorphic functions over K. Then for any
r > 0 we have
mr(r) =logt|L|, = O(1).

Proof. Let g be a meromorphic function over K, for any integer k£ > 1, we can
write a logarithmic derivative of hight order as product

/

g _ 9V g

Ty

since Lemma 2, we have

m(r, %) = 0(1). (2.1)

Applies (2.1) to fs,8s = 1,...,n, we have

n S(u(S))
m(r, lill 7. > =0(1),

for any surjective p : {1,...,n} — {0, ..., (n— 1)}. Therefore
mp(r) = O0(1).
This finishes the proof. O

In [8], H.H. Khoai and M.V. Tu gave a form of inequality second main
theorem type for an analytic curve intersecting hyperplanes, with ramification.
For a convenience of readers, we will give here a simple proof of this result. The
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method in the proof of the following theorem bases on the method of Vojta,
which is shown in [13], over K.

Theorem 1. Let f = (fo : ... : fn) : K = P*(K) be a analytic map whose
image is not contained in any proper linear subspace. Let Hy, ..., Hy be arbitrary
hyperplanes in P"(K). Let L;,1 < j < g, be the linear forms defining H1, ..., H,.
Denote by W(fo, ..., fn) the Wronskian of fo,..., fn. Then,

maxlog H 7 Hf HT Nw (r,0) < (n+ 1)Ty(r) + O(1),

JjEK

where the mazimum is taken over all subsets K of {1, ..., q} such that the linear
forms Lj,j € K, are linearly independent. Ny (r,0) is the counting function
for the zeros of Wronskian W of f.

Proof. Without loss of generality, we may assume (by adding more hyper-
planes) that Hy N...N Hy = (. Then the subsets K can be further restricted
to subsets having exactly n + 1 elements.

Give such a subset K, write K = {so, ..., Sn}. Also write y; = H; o f for all
j € K. As in Cartan’s original proof we have

1 .1
W e 7‘?" : (2.2)
")/ ..")/Sn : .
v&?:’ v&’i’
Vso o Vsn

where Ci is a constant. Let My denote the determinant on the right-hand
side.
Obviously, W is a analytic function. Since Jensen’s formula, we have

Nw (r,0) = log |W]|,. + O(1).

Hence

Zlog|Lgl )|, = log +0(1)

1 L, (D(:) "

=0

=log +0(1),

Vso-+Vsn

T
SO

zn:logM—(n+1)Tf(r)+NW(r,O):log v +0(1).
i=0

|Ls; (f)(2)]r Yso-Vsn

T
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It then follows, by (2.2), that

maleog Hf |§|T (n+ 1)T¢(r) + Nw (r,0)

+0(1)

= maxlog | —
K Yso Vs

= m[?ng |Mg|» + O(1)

T

< mlgxlong | Mg +O(1).
Since Lemma 3, we have
mle(u(log"r |[Mk|,. = O(1)

which concludes the proof of the theorem. O

3 Proof of Main Theorem

We first recall the Nevanlinna first main theorem in non-Archimedean fields.
First Main Theorem. Let f: K — P"(K) be an analytis curve and let Q
be a homogeneous polynomial of degree d. If Q(f) £ 0, then every positive real
number r,

my(r, Q) + Ny (r, Q) = dTy(r) + O(1),

where O(1) is a constant independent of r.

Now let f = (fo:...: fn) : K — P*(K) be an algebraically non-degenerate
analytic map, and let D1,..., Dy be hypersurfaces in P"(K) of degree d; in
general position. Let G;,1 < j < ¢, be the homogeneous polynomials in
Kl[zo, ..., xs] of degree d; defining D;. Let d is the least common multiple of
djs and let Q; = Gd/d7 Vi =1,..,q then Q;, 1 < j < ¢ are homogeneous
polynomlals of the same degree of d.

Note that if 2 € K is a zero of Q; 0 f = GY/% o f with multiplicity o then

d;
z is a zero of Q; o f with multiplicity a—2. It implies that for every positive
integer A and for all positive real number r > 0
rn d a4

A A i) [AF] _ d A
Nf(Tan):Nf(TaG ) EN (an)—d_ij(Tan)a

soforallj=1,...,q
NfA(Ta Gj) NfA(Ta QJ)

© (degG)Ty(r) ~ dTy(r)
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Hence . .
D R (D) =D 0R(Gy) =D 07 (Qy).
j=1 j=1 j=1

Given z € K, there exists a renumbering {i1, ..., 3} of the indices {1, ..., ¢}
such that

Qiy 0 f(2)] Qi 0 f(2)] < ... < Qi 0 f(2)]. (3.1)

Since @j,1 < j < n are in general position, by Hilbert’s Nullstellensatz [12],
for any integer k,0 < k < n, there is an integer my > d such that

n+1

Z5Jk xO;-'a Ql (an"w )a

where §;1,1 < j < n+1,0 < k < n, are the homogeneous forms with coefficients
in K of degree my —d. So

()™ < el f()™ = max{[Qiy 0 f(2)]s s |Qinyy © F(2)]}, (3:2)
where || f(2)]| := max{|fo(2)[, .-, | fu(2)|}, c1 18 & positive constant depends only
on the coefficients of d;;,1 < j <n+1,0 < k < n, thus depends only on the
coefficients of @;,1 < i < ¢. Note that, (3.2) holds for all k =0, ...,n, so

I = max {Ifi(2)™}
<allf)IM T max{|Qi, o f(2)], -, [Qinyy 0 F(2)1},
therefore,
£ < v max{|Qi, © f(2)]s s |Qinyy © F(2)]}- (3.3)
By (3.1) and (3.3),
q q

£(2) Hd ( ()11 >( If()114 > ()11

H|Q] HIQmOf (2)] 11 Qi 0 f(2) HIQuOf

k=n-+1

Hence, by the definition,

q
> i@ = e ] A
j=1

”d (3.4)

)z

< max 1ogH |Q|fof + (g —n)logcy.

'le

Pick n distinct polynomials g1, ..., gn € {@1, ..., Q¢}- By the general position
assumption, they define a subvariety of dimension 0 in P"(K). For a fixed large
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integer N, which will be chosen later, let Vy be the space of homogeneous
polynomials of degree N in K[z, ..., z,]. We have constructed a filtration W
of Vx and

5 = dim 8 _ gn,
Wiy

for any (i) > (i), which are consecutive n-tuples.

Set A := dim V. We now choose a suitable basis {11, ...,9a} for Vy as
the following way. We start with the last nonzero W(;) and pick any basis of
it. Then we continue inductively as follows: suppose (i') > (i) are consecutive
n-tuples such that do(i),do(i’) < N and assume that we have chosen a basis
of Wry. It follows directly from the definition that we may pick representa-
tives in W; for the quotient space W) /Wi, of the form git...girm, where
N € VN_do(1)- We extend the previously constructed basis in W) by adding
these representatives. In particular, we have obtained a basis for W(;y and our
inductive procedure may go on unless W;) = Vi, in which case we stop. In this
way, we have obtained a basis {1, ..., ¥a} for Vy. Let ¢1, ..., ¢ be a fixed basis
of V. Then {1, ...,%a} can be written as linear forms Ly, ..., La in ¢1, ..., ¢a
so that 9;(f) = Li(F), where F = (¢1(f) : ... : ¢a(f)) : K — PA1(K). The
linear forms L1, .., LA are linearly independent, and we know, from the assump-
tion of algebraically non—degeneracy of f, that F'is 1inearly non-degenerate.

For z € K, we now estimate log H |L:(F)(2)| = log H [¥¢(f)(2)]. Let ¢ be

an element of the basis, constructed w1th respect to W( )/ Wiy, then we have
P = g1 -~ ginn, where n € VN—do(i)- Then we have a bound

g1 (S) )™ - lgn(H) ()] [n(f) (2)]
c2lgi (NI - lga (N @) L IV D,

[9(f)(2)]

<
<

where c3 is the positive constant depending only on v, not on f and z. Observe
that there are precisely d(;) such functions 1 in our basis. Hence,

log [ (£)(2)] < ir log g1 (f) ()] + -+ in log g (£) ()] + (N — do(i)) log | f(=)]| + 3
<1 (loglgn(N(=)] — log 1 /()]17) +

+ i (10glgn (£)(2)] — log IF(2)]I*) + N log | £ (=) + 3

)11 1)1

Rae] L T sl + e

< —fplog———— —---— i, log
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where c3 is the positive constant, which does not depend on f and r. Therefore,

A A
g [[114()) = e [ W)2) (3.5)
I L I
Z5<>(’110g| GO Ign(f)(2)|>

1)
+AN10ng( )H +A03

_ng Qﬂf (25( )ZJ) + AN log || f(2)|| + Acs,

where the summations are taken over the n-tuples with o(i) < N/d. Clearly
that 6 := 3 ) d(i)i; does not depend on j, 1 < j < n. Hence (3.5) becomes

A d
1ogH|Lt(F)( 510gH ||g Z) ) + ANlog || f(2)]] + Acs.
= i(

This implies

SOOI HFZ A
1 <=1 ——1 .
s 1L e < ogH| T EIFGl 36)
AN A
+ = tog 7)) + S22

Since there are only finitely many choices {g1,...,gn} C {Q1,...,Qq}, We
have a finite collection of linear forms L, ..., L,. From (3.6) we have

max 1ogH |Q|f; < —maxlog H | HF HT - %TF(’/’)

AN
+ TTf(’/‘) + Cy,

where max is taken over all subsets K of {1, ..., u} such that linear forms L;, j €

K, are linearly independent, ¢4 is positive constant independent of . Applying
Theorem 1 to analytic map F : K — PA~(K) and linear forms Ly, ..., L,, and
together with (3.4) we have

q
D omi(r,Qy) < max 1OgH Hf
= a1 TQul

117

Hd _
+ (g —n)logey
1 AN

< —SNW(T, 0) + TTf(T) +0(1),
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where W is the Wronskian of Fy, ..., Fa. By the First Main Theorem, we have

(ad — ST () < 32 Ny (. Q) - %NW(T, 0)+ O(1). (3.7)

Jj=1

We will estimate Zq: Ny(r,Q;) — %Nw(r, 0) on the right hand side of the
j=1
above inequality. For each z € K, without loss of generality, we may assume
that @; o f vanishes at z for 1 < j < ¢ and Q; o f does not vanish at z
for j > gqi. By the hypothesis @; are “in general position”, we know ¢; < n.
There are integers k; > 0 and nowhere vanishing analytic functions -y; in a
neighborhood U of z such that

Q] Of = (g_ Z)kjr)/j) fOI'j = 1) - q,

where k; = 0if ¢1 < j < ¢. For {Q1,...,Qn} C {Q1,...,Qq}, we can obtain a
basis {t1,...,%a} of Vx and linearly independent linear forms Ly, ..., La such
that ¢ (f) = Li(F'). By the property of Wronskian,

W = W(FL, ..., Fa) = CW(Ly(F), ..., La(F))

(A (wa(f)) By

Let ¢ be an element of basis, constructed with respect to Wy /Wiy, so we
may write ¢ = QY"...Q%'n, n € VN_ar(i). We have

() = (Q1(f)™ . (@u(H) " n(f),

where (Q;(f))% = (¢ — z)i-f"-w;j,j =1,...,,n. Also we can assume that k; > A
ifl1<j<gand1l<k; <Aif go < j < qi. And we observe that there are
d(i) such ¢ in our basis. Thus W vanishes at z with order at least

> (Zij(’fj - A)>5<i> =Y i Yk —A) =8 (k= A).
(i) j=1 j=1

(1 “i=1

Therefore,

N2 (r,Q)). (3.8)

q
=1

q
1
> Ny(r,Q;) — gNW(T, 0) <
=1

J
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We now estimate on the left hand side of the inequality (3.7). Assume that
N is divisible by d and N > nd. Then

a= () = B

: (3.9)

On the other hand, since the number of non-negative integer m-tuples with
sum < T is equal to the number of non-negative integer (m + 1)-tuples with

sum exactly 7' € Z, which is ("1™). It follows from Lemma 1 that,
R e, dr
® 6 6 (i 7=t 6
(3.10)
" (N/d N(N = d)...(N = nd)
:n+1(n>uwd_m: (n+1)ld ’

where the sum ) is taken over the nonnegative integer (n+ 1)-tuples with sum
1)
exactly N/d and ) is taken over the nonnegative integer (n + 1)-tuples with
@
sum exactly N/d — n. So since (3.9) and (3.10) we have
(N+1)...(N+mn)
(N —d)...(N —nd)’

AN i+ 1)d
0
therefore
AN (N+1)...(N+d)
=) >dfq- 1) — -1 :
(gd = =5=) d@ (n+1) QN—@(N—M) (n+1)
It follows, for every € > 0,

(4~ 2Ty () 2 dlg —n — 1~ )50, (3.11)

if we take N large enough such that
(N+1)...(N+mn) €
< .
(N —d)...(N — nd) (n+1)
Combining the formulas (3.7), (3.8), (3.11) and (3.12) together, for each £ > 0,
and A in Main Theorem, we have

(3.12)

dg— (n+1)—e)Ty(r) <Y _Nf(r,Q;) +O(1),

Jj=1

I _WWQﬂ O(1)
Z(l T ><(n+1+5)+de(T).

SO

j=1
This is conclusion the proof of Main Theorem.



140 On Truncated Defect relation for...

References

[1] T. T. H. An, A defect relation for non-Archimedean analytic curves in
arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), 1255-
1261.

[2] T. T.H. An and J. T-Y Wang, An effective Schmidt’s subspace theorem for
non-linear forms over function fields, Journal of Number Theory, Volume
125(1) (2007), 210-228.

[3] T.T.H. An, H.T. Phuong, An ezplicit estimate on multiplicity truncation in
the second main theorem for holomorphic curves encountering hypersurfaces
in general position in projective space, to appear in Houston Journal of
Mathematics.

[4] A. Boutabba, Sur les courbes holomorphes p-adiques, Ann. Fac. Sci.
Toulouse Math. (6) 5(1996), 29-52.

[5] W. Cherry and Z.Ye, Non-Archimedean Nevanlinna Theory in several vari-
ables and the Non-Archimedean Nevanlinna inverse problem, Tran. Amer.
Math. Soc., 349(12)(1997), 5043-5071.

[6] P. Corvaja and U. M. Zannier, On a general Thue’s equation, Amer. J.
Math. 126 (2004), 1033-1055.

[7] P.C. Hu and C.C Yang, “Meromorphic Functions over Non-Archimedean
Fields”, Kluwer Academic Publishers, 2000.

[8] H.H. Khoai and M.V. Tu, P-adic Nevanlinna Cartan theorem, Inter. J.
Math., 6 (5) (1995), 719-731.

[9] Y. Liu and M.Ru, A defect relation for meromorphic maps on parabolic
manifolds intersecting hypersurfaces, Illinois J.Math. 49, No 1 (2005), pp
237-257.

[10] M. Ru, A defect relation for holomorphic curves intersecting hypersurfaces
Amer. Journal of Math. 126 (2004), 215-226.

[11] M. Ru, A note on p-adic Nevanlinna theory, Proc.Amer.Math.Soc. 129
(2001), 1263-1269.

[12] B. L. Van Der Waerden, “Algebra”, vol 2, 7th, ed., Spinger-Verlag, New
York, 1991.

[13] P. Vojta,On Cartan’s theorem and Cartan’s conjecture, American Journal
of Mathematics 119 (1997), 1-17.

[14] Yan, Q.M and Chen, Z.H, Weak Cartan-type Second Main Theorem for
Holomorphic Curves, to appear in Acta Mathematica Sinica.



