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Abstract

Let R be a ring. An R-module M is called a weak generator for a class
C of R-modules if HomR(M, V ) is non-zero for every non-zero module V
in C. A projective module M is a weak generator for C if and only if
M �= MA for every annihilator A of a non-zero module V in C. Given
any class C of R-modules, a finitely annihilated R-module M is a weak
generator for the class of injective hulls of modules in C if and only if the
R-module R/A is a weak generator for C, where A is the annihilator of M .
Moreover a finitely annihilated R-module M is a weak generator for the
class of all injective R-modules if and only if the annihilator of M is a left
T-nilpotent ideal. In case the ring R is commutative, a finitely generated
R-module M is a weak generator for the class of all R-modules if and
only if M is a weak generator for the class of injective R-modules. In
addition, if the ring R is Morita equivalent to a commutative semiprime
Noetherian ring, then M is a weak generator for the class of all R-modules
if and only if the trace of M in R is an essential right ideal of R.

1. Introduction

All rings are associative with unit elements and all modules are unitary right
modules. Let R be any ring. By a class C of R-modules we mean a collection
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C of R-modules which contains a non-zero module and which is closed under
taking isomorphisms. An R-module M is called a weak generator for a class
C of R-modules if HomR(M, V ) �= 0 for every non-zero module V in C. We
call an R-module M a weak generator if M is a weak generator for Mod-R, the
class of all R-modules. Weak generators are discussed in [12]. Note that if M
is a weak generator for a class C of R-modules then M �= 0.

Clearly any generator is a weak generator (for Mod-R) and every weak
generator is a weak generator for C for every class C of R-modules. More
generally, if C′ ⊆ C are classes of R-modules then every weak generator for
C is also a weak generator for C′. Moreover, the converse holds in case every
non-zero module in C contains a non-zero submodule in C′. Let M be an R-
module. It is clear that if there exists a submodule K of M with M/K a weak
generator for C, then M is a weak generator for C. In particular, if M/K is
a weak generator, for some submodule K of M , then M is a weak generator.
On the other hand, if Z denotes the ring of integers and Q the field of rational
numbers then the Z-module Q contains the submodule Z which is a generator
but the Z-module Q is not a weak generator because HomZ(Q, Z) = 0. Let S
and T be rings and let R denote the ring S ⊕ T , let A = S ⊕ 0 and B = 0⊕ T .
Then A and B are non-zero idempotent ideals of R such that R = A ⊕ B.
The R-module R is a generator but the R-modules A and B are not weak
generators, by [12, Lemma 3.12].

For any non-empty subset Y of an R-module M , we denote the annihilator
of Y (in R) by annR(Y ), i.e. annR(Y ) = {r ∈ R : xr = 0 for all x ∈ Y }.
In particular, annR(M) denotes the annihilator of M . Any terminology not
defined here may be found in [1],[7], [10].

We begin with the following elementary observation.

Lemma 1.1 Let M and V be R-modules such that HomR(M, R/A) �= 0, where
A = annR(V ). Then HomR(M, V ) �= 0.

Proof Since the R-module R/A embeds in a product
∏

V of copies of V , it
follows that HomR(M, R/A) embeds in HomR(M,

∏
V ) �

∏
HomR(M, V ) by

[1, 20.2]. Thus HomR(M, V ) �= 0.

Let C be any class of R-modules. We denote the collection of annihilators
(in R) of non-zero modules in C by A(C). For any I in A(C), the set {V ∈ C |
V I = 0} will be denoted by ZC(I). Note that if C = Mod-R then ZC(I) =
Mod-(R/I).

Proposition 1.2 Let C be any non-empty class of R-modules. Consider the
following statements for an R-module M .
(i) HomR(M, R/A) �= 0 for every ideal A in A(C).
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(ii) HomR(M/MA, R/A) �= 0 for every ideal A in A(C).
(iii) M is a weak generator for C.
(iv) The (R/A)-module M/MA is a weak generator for ZC(A) for every ideal
A in A(C).
Then (i) ⇔(ii)⇒(iii)⇒(iv). Furthermore, statements (i)-(iv) are equivalent if
(R/A) belongs to C for every ideal A in A(C).

Proof (i) ⇔(ii) By [12, Lemma 2.1].
(ii)⇒(iii) By Lemma 1.1.
(iii)⇒(iv) Let A be any ideal in A(C). There exists a non-zero module in
ZC(A). Now let V be any non-zero module in C such that V A = 0. By our
assumption, there exists a non-zero R-homomorphism ϕ : M → V . Note
that ϕ(MA) = ϕ(M)A ⊆ V A = 0. Thus ϕ induces a non-zero (R/A)-
homomorphism θ : M/MA → V . It follows that the (R/A)-module M/MA is
a weak generator for ZC(A).
The last statement is now clear because, by our assumption, the R-module
(R/A) belongs to ZC(A) for every ideal A in A(C) so that (iv)⇒(i).

Corollary 1.3 The R-module M is a weak generator if and only if HomR(M, R/A) �=
0 for every proper ideal A in R.

Proof Apply Proposition 1.2 in case C = Mod-R.

Corollary 1.4 Let C be any class of R-modules and let M be a weak generator
for C. Then M �= MA for every ideal A in A(C).

Proof By Proposition 1.2.

Corollary 1.5 Let B ⊆ A be proper ideals of a ring R. Then the R-module
R/B is a weak generator for Mod-(R/A).

Proof Apply Proposition 1.2 in case M = R/B and C = Mod-R/A. Note
that if D is an ideal in A(C) then A ⊆ D and so M/MD � R/D.

For projective modules the converse of Corollary 1.4 holds.

Theorem 1.6 Let C be any class of R-modules. Then a projective R-module
M is a weak generator for C if and only if M �= MA for every ideal A in A(C).

Proof The necessity follows from Corollary 1.4. Conversely, suppose that
V is a non-zero module in C, A = annR(V ) and M �= MA. Then M/MA is
a non-zero projective (R/A)-module so that HomR(M/MA, R/A) �= 0. It fol-
lows that HomR(M, R/A) �= 0. By Lemma 1.1, HomR(M, V ) �= 0. The result
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follows.

Corollary 1.7 The following statements are equivalent for a projective R-
module M .
(i) M is a generator.
(ii) M is a weak generator.
(iii) HomR(M, X) �= 0 for every simple R-module X.
(iv) M �= MP for right primitive ideal P of R.

Proof (i)⇒(ii)⇒(iii). Clear.
(iii)⇔(iv) By Theorem 1.6.
(iii)⇒(i) By [1, Proposition 17.9].

It is very easy to give an example of a ring R and a (non-projective) R-
module M such that HomR(M, X) �= 0 for every simple R-module X, but M
is not a weak generator. For example, let R be any ring with zero right socle
and let {Uλ : λ ∈ Λ} be a set of representatives of the isomorphism classes of
simple R-modules. Let M = ⊕λ∈Λ Uλ. Clearly HomR(M, X) �= 0 for every
simple R-module X, but M is not a weak generator because HomR(M, R) = 0.

Let M be any R-module. The singular submodule Z(M) of M is defined to
be the set of all elements m in M such that mE = 0 for some essential right
ideal E of R. The socle Soc(M) of M is defined to be the sum of all simple
submodules of M or 0 if M has no simple submodule.

Proposition 1.8 Let R be any ring with Z = Z(RR) and S = Soc(RR) and let
A be any right ideal of R. Then the R-modules A⊕ (R/A) and (R/Z)⊕ (R/S)
are both weak generators.

Proof Suppose that M = A ⊕ (R/A) and I is a proper ideal of R. If
A ⊆ I then there exists a non-zero homomorphism ϕ : R/A → R/I defined by
ϕ(r + A) = r + I for all r ∈ R. On the other hand, if A �⊆ I then there exists
a non-zero homomorphism θ : A → R/I defined by θ(a) = a + I for all a ∈ A.
In any case, HomR(M, R/I) �= 0. By Corollary 1.3, M is a weak generator.
Next, suppose that L = (R/Z) ⊕ (R/S) and V is a non-zero R-module. Sup-
pose that Z(V ) �= 0. Let 0 �= z ∈ Z(V ). By [1, 9.7], zS = 0. The mapping
ϕ : R/S → V defined by ϕ(r + S) = zr for all r ∈ R is a non-zero homomor-
phism. Now suppose that Z(V ) = 0. Because V Z ⊆ Z(V ), we have V Z = 0.
Let 0 �= v ∈ V . Then the mapping θ : R/Z → V defined by θ(r + Z) = vr
for all r ∈ R is a non-zero homomorphism. In any case, HomR(L, V ) �= 0. It
follows that L is a weak generator.

Let M be an R-module. For any R-module N , the submodule
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Tr(M, N) = Σ{Im f | f : M → N} ⊆ N

is called the trace of M in N .

Lemma 1.9 Let C be any class of R-modules closed under taking submodules
and let M be a weak generator for C. Then Tr(M, N) is an essential submodule
of N for each non-zero module N in C.

Proof Clear.

Proposition 1.10 A ring R is semiprime if and only if every weak generator
R-module is faithful.

Proof The sufficiency follows by Proposition 1.8. Conversely, let R be a
semiprime ring and M be a weak generator. Then I = Tr(M, R) is an essential
right ideal in the semiprime ring R by Lemma 1.9. Thus r.annR(I) = 0. It
follows that M is a faithful R-module.

For certain rings R, Corollary 1.3 can be improved. First we prove:

Lemma 1.11 Let P be a non-empty collection of proper ideals of a ring R
such that for every proper ideal A of R there exists a right ideal B properly
containing A such that annR(B/A) belongs to P. Then an R-module M is a
weak generator if and only if HomR(M, R/P ) �= 0 for every P in P.

Proof The necessity is clear. Conversely, suppose that HomR(M, R/P ) �= 0
for all P ∈ P. Let A be any proper ideal of R. By hypothesis there exists a
right ideal B properly containing A such that if P = annR(B/A) then P ∈ P.
By Lemma 1.1 and Corollary 1.3, M is a weak generator.

We shall be interested in the following two properties of a ring R:

(P1) For every proper ideal A of R there exists a positive integer n and
prime ideals Pi(1 ≤ i ≤ n), each containing A, such that P1 · · ·Pn ⊆ A.

(P2) R satisfies the ascending chain condition on prime ideals.

Clearly simple rings satisfy (P1) and (P2). More generally, any ring which
satisfies the ascending chain condition on (two-sided) ideals satisfies (P1) and
(P2) (see [11, Lemma 1]). Next suppose that R is a ring with right or left Krull
dimension. Then R satisfies (P1) by [8, Theorem 7.4] and R satisfies (P2) by
[8, Theorem 7.1]. On the other hand, in [13] an example is given of a ring R
which satisfies (P1) and (P2) but does not have ascending chain condition on
ideals, nor does it have right or left Krull dimension.
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Lemma 1.12 (See [11, Lemma 2].) Let R be any ring satisfying (P1) and
(P2) and let M be a non-zero R-module. Then there exists a submodule K of
M and a prime ideal P of R such that P = annR(K).

Proposition 1.13 Let R be a ring which satisfies (P1) and (P2). Then an
R-module M is a weak generator if and only if HomR(M, R/P ) �= 0 for every
prime ideal P of R.

Proof By Lemmas 1.11 and 1.12.

Note that Proposition 1.13 generalizes [12, Theorem 3.7]. Now we show
that for the rings of Proposition 1.13, to investigate weak generators we can
suppose that R is a prime ring. Let R be any ring which satisfies (P1). Then
R contains only a finite number of minimal prime ideals.

Lemma 1.14 Let R be any ring, let n be a positive integer and let Ij(1 ≤ j ≤ n)
be ideals of R such that I1I2 . . . In = 0. Then the R-module M is a weak gen-
erator if and only if the (R/Ij)-module M/MIj is a weak generator for all
1 ≤ j ≤ n.

Proof The necessity follows by Proposition 1.2. Conversely, let X be any
non-zero R-module. Then X �= 0 but XI1 . . . In = 0. There exists 1 ≤ j ≤ n
such that XI1 . . . Ij−1 �= 0 but XI1 . . . Ij = 0. Let Y = XI1 . . . Ij−1. Then Y
is a non-zero (R/Ij)-module. By hypothesis, there exists a non-zero (R/Ij)-
homomorphism φ : M/MIj → Y . Clearly φ is an R-homomorphism. If
π : M → M/MIj is the canonical projection and i : Y → X is inclusion
then iφπ : M → X is a non-zero R-homomorphism. Thus HomR(M, X) �= 0
for every non-zero R-module X. Hence M is a weak generator.

Theorem 1.15 Let R be any ring which satisfies (P1) and let P1, · · · , Pn be
the minimal prime ideals of R for some positive integer n. Then an R-module
M is a weak generator if and only if the (R/Pi)-module M/MPi is a weak
generator for all 1 ≤ i ≤ n.

Proof The necessity follows by Proposition 1.2. Conversely, suppose that the
(R/Pi)-module M/MPi is a weak generator for all 1 ≤ i ≤ n. Because R satis-
fies (P1), there exists a positive integer k and prime ideals Qi ∈ {P1, · · · , Pn}
(1 ≤ i ≤ k) such that Q1 · · ·Qk = 0. By Lemma 1.14, M is a weak generator.

We end this section with the following result that will be useful later.

Lemma 1.16 Let R and S be rings such that there exists a ring homomor-
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phism from R to S. If the R-module M is a weak generator then the S-module
M ⊗R S is a weak generator. The converse is true if RS is free.

Proof Let MR be a weak generator . For any S-module V , we have V is an R-
module and by [1, Proposition 20.6], HomS(M⊗RS, V ) � HomR(M,HomS(S, V ))
� HomR(M, V ) as Z-modules. It follows that the S-module M ⊗R S is a weak
generator. Conversely, suppose that RS is free and M ⊗R S is a weak generator
and L ∈ Mod-R. Let V = L ⊗R S, in the above relations, then HomR(M, V )
�

⊕
HomR(M, L). It follows that MR is a weak generator.

2. Weak generators for module classes

Let R be any ring. For any R-module V , E(V ) will denote the injective en-
velope of V . Let C be any class of R modules. Then X (C) (resp. I(C)) will
denote the collection of extensions (resp. injective envelopes) of modules in C,
i.e. a non-zero module V belongs to X (C) (resp. I(C)) if and only if V contains
a non-zero submodule U such that U ∈ C (resp. V = E(U) for some non-zero
U ∈ C). Note that X (C) and I(C) are also classes of R-modules. Note further
that C

⋃
I(C) ⊆ X (C). Thus an R-module M is a weak generator for a class

C of R-modules if and only if M is a weak generator for X (C). In this section
we shall investigate when an R-module M is a weak generator for a class C of
R-modules. We begin with the following elementary lemma.

Lemma 2.1 Let C be any class of R modules and let an R-module M be a weak
generator for C. Then M is a weak generator for C′ for any class C′ ⊆ X (C).

Proof By the above remarks.

Lemma 2.2 Let an R-module M be a weak generator for a class C of R-
modules. Then the R-module R/A is also a weak generator for C, where A =
annR(M).

Proof Suppose that T is the collection of R-modules N such that N = φ(M)
where φ is a homomorphism from M to V for some V in C. Note that by
hypothesis T is a class of R-modules. Clearly, C ⊆ X (T ). Thus, by Lemma
2.1, it is enough to shown that R/A is a weak generator for T . If D ∈ A(T ),
then D = annRW for some non-zero W ∈ T . Consequently, A ⊆ D. Thus
HomR(R/A, R/D) �= 0. Now apply Proposition 1.2 in case M = R/A and
C = T .

The converse of Lemma 2.2 is false in general and it is easy to give a counter
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example. Let R be the ring Z of integers and M be the R-module Q. If A =
annR(M) then A = 0 and hence the R-module R/A is a generator. However,
HomR(M, R) = 0 so that M is not a weak generator (for Mod-R). In view of
Lemma 2.2 we shall consider, for any ring R, when an R-module of the form
R/A, where A is a proper ideal of R, is a weak generator for a class C of R-
modules.

Lemma 2.3 Let A be a proper (right) ideal of a ring R. Then the R-module
R/A is a weak generator for a class C of R-modules if and only if each non-zero
module V in C contains a non-zero element v such that vA = 0.

Proof This is clear because, for any R-module V , HomR(R/A, V ) �= 0 if and
only if there exists a non-zero v ∈ V such that vA = 0.

Corollary 2.4 Let A be an ideal of a ring R and let M be any non-zero
R-module. Then the R-module M/MA is a weak generator for the class S of
simple R-modules if and only if A is contained in the Jacobson radical J of R
and M is a weak generator for S.

Proof (⇒) Clearly, M is a weak generator for S. Let B = annR(M/MA).
Then A ⊆ B and by Lemma 2.2, R/B is a weak generator for S. Now, by
Lemma 2.3, B ⊆ J . Thus A ⊆ J .
(⇐) Apply Proposition 1.2.

Corollary 2.5 Let A be an ideal of a ring R. Then the R-module R/A is a
weak generator for the class of simple R-modules if and only if A is contained
in the Jacobson radical of R.

Proof By Corollary 2.4.

Theorem 2.6 Let C be a class of R-modules and let A be a proper ideal of R.
Then the following statements are equivalent.
(i) The R-module R/A is a weak generator for C.
(ii) The R-module R/A is a weak generator for I(C).
(iii) The R-module R/A is a weak generator for X (C).

Proof (i)⇔(iii) By the remarks preceding Lemma 2.1.
(i)⇒(ii) By Lemma 2.1 because I(C) ⊆ X (C).
(ii)⇒(i) Let V be any non-zero R-module in C. By Lemma 2.3, there exists
0 �= e ∈ E(V ) such that eA = 0. Now eR∩V �= 0 and (eR∩V )A = 0. Applying
Lemma 2.3 again we conclude that R/A is a weak generator for I(C).

Let R be any ring and let C be a class of R-modules such that C is closed
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under taking submodules, i.e. if V is any module in C then every submodule of
V also belongs to C. In particular, C contains a non-zero cyclic submodule X.
If X = xR for some 0 �= x ∈ X and F = {r ∈ R : xr = 0}, then F is a proper
right ideal of R such that R/F belongs to C. In this case, let F(C) denote the
collection of proper right ideals E of R such that the R-module R/E belongs
to C.

Theorem 2.7 Let A be a proper ideal of a ring R and let C be a class of R-
modules which is closed under taking submodules and homomorphisms. Then
the R-module R/A is a weak generator for C if and only if for each F in F(C)
and each sequence a1, a2, a3, · · · of elements of A there exists a positive integer
n such that a1a2 · · ·an ∈ F .

Proof Suppose first that R/A is a weak generator for C. Let F ∈ F(C) and let
a1, a2, a3, · · · be any sequence of elements of A. Suppose that a1a2 · · ·an �∈ F
for all n ≥ 1. By Zorn’s Lemma there exists a right ideal E of R such that
F ⊆ E and E is maximal in the collection of right ideals G of R such that
F ⊆ G and a1a2 · · ·ak �∈ G for all k ≥ 1. Clearly E �= R. Because R/E
is a homomorphic image of R/F , the module R/E belongs to C. By Lemma
2.3, there exists an element r ∈ R \ E such that rA ⊆ E. By the choice
of E, a1 · · ·at ∈ E + rR for some positive integer t. But this implies that
a1 · · ·atat+1 ∈ (E + rR)A ⊆ E + rA ⊆ E, a contradiction. Thus there exists a
positive integer n such that a1 · · ·an ∈ F .
Conversely, suppose that for each F in F(C) and each sequence a1, a2, a3, · · · of
elements of A there exists a positive integer n such that a1a2 · · ·an ∈ F . Let V
be any non-zero module in C. We claim that there exists 0 �= v ∈ V such that
vA = 0. Suppose not. Let 0 �= u ∈ V . There exists b1 ∈ A such that ub1 �= 0.
Next ub1A �= 0 so that ub1b2 �= 0 for some b2 ∈ A. Repeat this process. We
obtain a sequence b1, b2, · · · of elements of A such that ub1 · · · bn �= 0 for every
positive integer n. Let E = {r ∈ R | ur = 0}. Then E is a right ideal of R
such that E ∈ F(C) because R/E � uR. We have proved that b1 · · · bn �∈ E for
all n ≥ 1, a contradiction. Thus vA = 0 for some non-zero element v of V . By
Lemma 2.3, the R-module R/A is a weak generator for C.

Theorem 2.7 can be applied to many classes of R-modules, We mention only
one application. Let G denote the class of singular R-modules V , i.e. modules
V such that V = Z(V ). Note that a module V ∈ X (G) if and only if V = 0 or
V contains a non-zero singular submodule and this occurs if and only if V = 0
or V �= 0 and V is not nonsingular. Note that an R-module M is a weak
generator for G if and only if it is a weak generator for X (G). Moreover we
have the following result.

Corollary 2.8 Let G denote the class of singular R-modules and let A be a
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proper ideal of the ring R. Then the R-module R/A is a weak generator for G
if and only if for each essential right ideal E of R and sequence a1, a2, a3, · · ·
of elements of A there exists a positive integer n such that a1 · · ·an ∈ E.

Proof By Theorem 2.7.

In contrast to Theorem 2.6, if an R-module M is a weak generator for I(C),
for some class C of R-modules, then it does not follow that M is a weak gener-
ator for C. For example, if R is the ring Z of integers and M is the R-module
Q then M is a (weak) generator for the class of all injective R-modules but
HomR(M, R) = 0. However there is a fact we can mention at this point.

Theorem 2.9 Let C be any class of R-modules. Then an R-module M is a
weak generator for I(C) if and only if there exist an index set Λ and an (es-
sential) submodule L of the module M (Λ) such that L is a weak generator for C.

Proof Suppose first that M is a weak generator for I(C). Let U = {Vλ : λ ∈
Λ} be a set of representatives of the isomorphism classes of R-modules in C. Let
V be any non-zero module in U . Then there exists a non-zero homomorphism
ϕ : M → E(V ). Let LV = ϕ−1(V ) and note that LV is an essential submodule
of M such that HomR(LV , V ) �= 0. Let M ′ =

⊕
V ∈U MV , where MV = M for

all V in U , and let L =
⊕

V ∈U LV . Then L is an essential submodule of M ′

such that HomR(L, V ) �= 0 for all V in C, i.e. L is a weak generator for C.
Conversely, suppose that there exist an index set Λ and a submodule L of M (Λ)

such that L is a weak generator for C. Let U be any non-zero module in C.
Then there exists a non-zero homomorphism θ : L → U . If i : U → E(U) de-
notes the inclusion mapping then iθ : L → E(U) is a non-zero homomorphism.
Because E(U) is injective, the homomorphism iθ can be lifted to a (non-zero)
homomorphism θ′ : M (Λ) → E(U). Hence HomR(M (Λ),E(U)) �= 0 so that
HomR(M,E(U)) �= 0. It follows that M is a weak generator for I(C).

Let C be a class of R-modules. Theorem 2.9 gives a characterization of when
an R-module M is a weak generator for I(C) in terms of a related module being
a weak generator for C. A simpler characterization can be given in case M is
finitely annihilated. An R-module M is called finitely annihilated provided
there exist a positive integer n and elements mi ∈ M (1 ≤ i ≤ n) such that
A := annR(M) = {r ∈ R | mir = 0 for all 1 ≤ i ≤ n}, equivalently there exists
an embedding θ : R/A → M (n). Finitely annihilated modules are considered
by various authors ( see, for example, [3], [15]). It is proved independently
by Faith [5, Theorem 17A], Ghorbani [6], Hajarnavis (unpublished), Lenagan
(unpublished) and essentially also by Beachy [2] that a ring R is right Artinian
if and only if every right R-module is finitely annihilated. For an improvement
of this theorem see [14].
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Theorem 2.10 Let C be a class of R-modules and let M be a finitely an-
nihilated R-module with A = annR(M). Then the following statements are
equivalent.
(i) M is a weak generator for I(C).
(ii) R/A is a weak generator for C.
(iii) R/A is a weak generator for I(C).

Proof (i)⇒(iii). By Lemma 2.2.
(ii)⇔(iii). By Theorem 2.6.
(iii)⇒(i). Let 0 �= V ∈ I(C). Then there exists a non-zero homomorphism
ϕ : R/A → V . But M finitely annihilated implies that R/A embeds in M (n)

for some positive integer n. Because V is injective, ϕ lifts to a non-zero ho-
momorphism θ : M (n) → V . Hence HomR(M, V ) �= 0. It follows that M is a
weak generator for I(C).

Note that Theorem 2.10 is false in general if M is not finitely generated. Let
R be the ring Z of integers and M be the Prufer p-group Zp∞ for some prime
number p. Then A = annR(M) = 0 so that the R-module R/A is a generator.
However, HomR(M, Q) = 0, so that M is not a weak generator for injective
R-modules. Note that any finitely generated module over a commutative ring
is finitely annihilated and for such modules we have the following result.

Theorem 2.11 Let R be a commutative ring and let C be a class of R-modules.
Then a finitely generated R-module M is a weak generator for I(C) if and only
if M is a weak generator for C.

Proof The sufficiency follows by Lemma 2.1. Conversely, suppose that M is
a weak generator for I(C). Let V be any non-zero module in C. There exists
a non-zero homomorphism ϕ : M → E(V ). Note that M = m1R + · · ·+ mnR
for some positive integer n. Because ϕ(M) = ϕ(m1)R + · · · + ϕ(mn)R is a
non-zero finitely generated submodule of E(V ), there exists an element r ∈ R
such that 0 �= ϕ(M)r ⊆ V . Define a mapping θ : M → V by θ(m) = ϕ(m)r,
for all m ∈ M . It is clear that θ is a non-zero homomorphism. It follows that
M is a weak generator for C.

3. T-nilpotence

Let R be an arbitrary ring. It will be convenient to denote the class Mod-R
of all R-modules by M. In this section we apply the results of §2 to the case
when C is M. Note that I(M) is the class of all injective R-modules. Follow-
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ing [1], a non-empty subset Y of R is called left T-nilpotent provided for each
sequence y1, y2, y3, · · · of elements of Y there exists a positive integer n such
that y1y2 . . . yn = 0.

Theorem 3.1 The following statements are equivalent for an ideal A of a ring
R.
(i) A is left T-nilpotent.
(ii) For every non-zero R-module V there exists a non-zero element v ∈ V such
that vA = 0.
(iii) The R-module R/A is a weak generator (for M).
(iv) The R-module R/A is a weak generator for the class I(M) of injective
R-modules.

Proof (i)⇔(iii). By Theorem 2.7.
(ii)⇔(iii). By Lemma 2.3.
(iii)⇔(iv). By Theorem 2.6.

We saw in Proposition 1.2 that an R-module M is a weak generator (for M)
if and only if the (R/A)-module M/MA is a weak generator (for Mod-R/A)
for every proper ideal A of R. Compare the following result.

Corollary 3.2 Let A be any left T-nilpotent ideal of R. Then an R-module M
is a weak generator if and only if the (R/A)-module M/MA is weak generator.

Proof Note first that A is a proper ideal of R. The necessity follows by ap-
plying Proposition 1.2 to C = M. Conversely, suppose that the (R/A)-module
M/MA is a weak generator. Let U be any non-zero R-module. By Theorem 3.1
there exists a non-zero element u ∈ U such that uA = 0. Thus U contains a sub-
module uR which is annihilated by A. By hypothesis, HomR/A(M/MA, uR) �=
0 so that HomR(M, U) �= 0. It follows that the R-module M is a weak genera-
tor.

Corollary 3.3 Let R be any ring and I be a proper ideal of R. Then the
following statements are equivalent.
(i) I is a left T-nilpotent ideal.
(ii) I[x] is a left T-nilpotent ideal of the polynomial ring R[x].
(iii) I[[x]] is a left T-nilpotent ideal of the power series ring R[[x]].

Proof (iii)⇒(ii) and (ii)⇒(i) are clear.
(i)⇒(iii). Note that R[[x]]/I[[x]]� R/I ⊗R R[[x]] as right R[[x]]-modules. Ap-
ply Theorem 3.1 and Lemma 1.16.

Theorem 3.4 Let M be any non-zero R-module. If M is a weak generator
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for I(M), then annR(M) is left T-nilpotent. Moreover, the converse holds in
case M is a finitely annihilated module.

Proof The first statement is proved by applying Lemma 2.2 to C = I(M)
and then using Theorem 3.1. The converse is proved by applying Theorem 2.10
to C = M and then again using Theorem 3.1.

In [12, Theorem 3.5], rings are characterized over which every non-zero mod-
ule is a weak generator. As a corollary of Theorem 3.4, we can characterize
rings over which all non-zero finitely annihilated modules are weak generators
for I(M).

Corollary 3.5 Let R be any ring and let J be the Jacobson radical of R. Then
the following statements are equivalent.
(i) There exists a left T-nilpotent ideal A of R such that R/A is a simple ring.
(ii) Every proper ideal of R is left T-nilpotent.
(iii) R/J is a simple ring and J is a left T-nilpotent ideal.
(iv) Every finitely annihilated R-module is a weak generator for I(M).

Proof (i)⇒(ii). Let I be a proper ideal of R. Since A is a left T-nilpotent
ideal of R, it must be small so that I +A �= R. Thus (I +A)/A is a proper ideal
of R/A. Now by hypothesis, I lies in A. It follows that I is a left T-nilpotent
ideal.
(ii)⇒(iii). This is true because any left T-nilpotent ideal of R lies in J .
(iii)⇒(i). Clear.
(ii)⇒(iv). By Theorem 3.4.
(iv)⇒(ii). Note that if I is a proper ideal of R then M = R/I is a non-zero
finitely annihilated R-module with annR(M) = I. Thus the result follows from
Theorem 3.4.

Corollary 3.6 Let R be any ring and let n be any positive integer. Then an
ideal I of R is left T-nilpotent if and only if the ideal Matn×n(I) of Matn×n(R)
is left T-nilpotent.

Proof The sufficiency is clear. Conversely, suppose that S = Matn×n(R)
and let F : Mod-R → Mod-S be the standard Morita equivalence of R with S.
Then Matn×n(I) = annSF (R/I). Clearly, being a weak generator is a Morita
invariant property. Now apply Theorems 3.1 and 3.4.

Next we consider rings R over which an R-module M is a weak generator
for I(M) if and only if HomR(M,E(RR)) �= 0. However, we first prove the
following lemma.
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Lemma 3.7 Let M and N be non-zero R-modules and C be any class of R-
modules. If Tr(M, N) is a weak generator for C then so is M .

Proof Let L = Tr(M, N) be a weak generator for C. Note that if there exists
a non-zero homomorphism ϕ : L → V for some V ∈ C then there exists a
non-zero homomorphism φ : M → N such that ϕφ �= 0 ( otherwise, ϕ must
be zero). Thus HomR(M, V ) �= 0 for any non-zero V in C. It follows that M is
a weak generator for C.

Theorem 3.8 Let R be any ring. Then the following statements are equiva-
lent.
(i) For any R-module M , if HomR(M,E(RR)) �= 0 then M is a weak generator
for I(M).
(ii) Every non-zero ideal of R is a weak generator for I(M).

Proof (i)⇒(ii). This is clear.
(ii)⇒(i). Let M be an R-module such that HomR(M,E(RR)) �= 0. Let L =
Tr(M,E(RR)) and I = L ∩R. Then I is a non-zero ideal of R. By hypothesis,
I is a weak generator for I(M). Thus L is a weak generator for I(M) by The-
orem 2.9. Consequently, M is a weak generator for I(M) by applying Lemma
3.7 in case N = E(RR) and C = I(M).

Corollary 3.9 Let R be a left Noetherian ring with nilpotent Jacobson radical
J such that R/J is a simple ring. Then an R-module M is a weak generator
for I(M) if and only if HomR(M,E(RR)) �= 0.

Proof The necessity is clear. Conversely, by hypothesis and Corollary 3.5,
every finitely annihilated R-module is a weak generator for I(M). On the
other hand, because R is left Noetherian, it is easy to verify that every ideal of
R is finitely annihilated as a right ideal. Therefore every non-zero ideal of R is
a weak generator for I(M). Now apply Theorem 3.8.

Recall from [9] that a ring R is said to be right strongly prime if for any
r �= 0 in R, there exists a set {r1, · · · , rk} ⊆ R such that rria = 0 for each i,
a ∈ R, implies a = 0. Equivalently, R is right strongly prime if the injective
hull E(RR) has no non-trivial fully invariant R-submodules; see, for example
[4, Proposition 1.2]. Clearly, any domain is right strongly prime and so too
is any prime right Goldie ring. More generally, as we will observe in the next
lemma, any prime ring which satisfies the descending chain condition on right
annihilators is right strongly prime. We shall show that, for a right strongly
prime ring R, any R-module M with the property HomR(M,E(RR)) �= 0 is a
weak generator for the class of injective R-modules. However, we first prove
the following lemma. This may be found in the literature, but we state a proof
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for completeness.

Lemma 3.10 The following statement are equivalent for a ring R.
(i) R is a right strongly prime ring.
(ii) Every non-zero (right) ideal of R is faithful and finitely annihilated as a
right ideal.

Proof (i)⇒(ii). Let I be any non-zero right ideal of R. Then r.annR(I) = 0.
Let 0 �= r ∈ I. By hypothesis, there exist a positive integer n and elements
ai ∈ R such that ∩n

i=1 r.annR(rai) = 0. Thus I is finitely annihilated.
(ii)⇒(i). Suppose that every ideal of R is a faithful finitely annihilated right
R-module. Let 0 �= r ∈ R and let I denote the non-zero ideal RrR. By (ii)
there exist a positive integer k and elements bi, ci ∈ R (1 ≤ i ≤ k) such that
∩k

i=1 r.annR(birci) = 0 and hence ∩k
i=1 r.annR(rci) = 0. Now (i) follows.

Theorem 3.11 Let R be a right strongly prime ring. Then an R-module M
is a weak generator for I(M) if and only if HomR(M,E(RR)) �= 0.

Proof The necessity is clear. Conversely, by Lemma 3.10, every non-zero
ideal of R is faithful and finitely annihilated as a right ideal. Thus if I is a
non-zero ideal of R then IR is a weak generator for I(M) by Theorem 3.4. The
result now follows from Theorem 3.8.

Remarks 3.12 (1) In Theorem 3.11, it is crucial that R be a prime ring. For
let S and T be any two non-zero rings and let R = S ⊕ T . Let A denote the
ideal S ⊕ 0 of R. Then HomR(A,E(RR)) �= 0 but HomR(A,E(BR)) = 0 where
B is the ideal 0 ⊕ T of R.
(2) In a semiprime right Goldie ring R, an ideal I is a weak generator for I(M)
if and only if I is an essential (right) ideal. For every essential right ideal I of R
contains a regular element x so that I contains the weak generator xR � R and
hence IR is a weak generator for I(M). Conversely, if IR is a weak generator
for I(M), then r.annR(I) = 0 or equivalently I is an essential right ideal (see
Proposition 1.10 and Theorem 2.9).

Compare the next result with Theorem 3.4.

Theorem 3.13 Let M = m1R+ . . .+mnR be a finitely generated module over
an arbitrary ring R and let A =

⋂n
i annR(mi). Then the following statements

are equivalent.
(i) M is a weak generator for I(M).
(ii) The R-module R/A is a weak generator for I(M).
(iii) For every non-zero injective R-module E there exists a non-zero element
e of E such that eA = 0.



116 Weak generators for classes of R-modules

Proof (ii)⇔(iii). By Lemma 2.3.
(ii)⇒(i). By our assumption, the R-module R/A embeds in Mn and so M is
a weak generator for I(M) by applying Theorem 2.9 in case L = R/A and
C = I(M).
(i)⇒(iii). Let E be any non-zero injective R-module. There exists a non-zero
homomorphism ϕ : M → E. Therefore, ϕ(mi) �= 0 for some 1 ≤ i ≤ n. It
follows that ϕ(mi)A = ϕ(miA) = ϕ(0) = 0.

We complete this section by proving the following result for rings R which
are Morita equivalent to a commutative ring.

Theorem 3.14 Let R be a ring which is Morita equivalent to a commutative
ring S. Then the following statements are equivalent for a finitely generated
R-module M .
(i) The R-module M is a weak generator.
(ii) The R-module M is a weak generator for the class of injective R-modules.
(iii) The ideal annR(M) is left T-nilpotent.

Proof Let F : Mod-R → Mod-S be an equivalence. By [1, Proposition 21.8],
F (M) is a finitely generated S-module. Applying [1, Proposition 21.2] we see
that (i) holds if and only if the S-module F (M) is a weak generator. Next by
[1, Propositions 21.2 and 21.6], (ii) holds if and only if HomS(F (M), E′) �= 0
for every non-zero injective S-module E′. Let B denote the annihilator in S
of the S-module F (M) and let I denote the annihilator in R of the R-module
M . By [1, Proposition 21.11], R/I is Morita equivalent to S/A where A =
annS(F (R/I)). Since M is faithful as an R/I-module, B = A by [1, Propo-
sition 21.6]. Now, by Theorem 3.1, (iii) holds if and only if the ideal B is
T-nilpotent.
Thus we can suppose that R is commutative, then:
(i)⇔(ii). By Theorem 2.12.
(ii)⇔(iii). By Theorem 3.4.

Finally, we give a number of applications of Theorem 3.14.

Corollary 3.15 Let R be a ring which is Morita equivalent to a commutative
domain. Then a finitely generated R-module M is a weak generator if and only
if HomR(M, R) �= 0.

Proof The necessity is clear and the sufficiency follows by Theorems 3.11
and 3.14.

Note that in Corollary 3.15, the condition that M be finitely generated is
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necessary. For example, let R be any commutative domain which contains a
proper non-zero idempotent ideal. It is well known that in this case I cannot
be finitely generated. Also I is not a weak generator by [12, Lemma 3.12].

Corollary 3.16 Let R be a commutative ring such that P1 . . .Pn = 0 for some
positive integer n and (not necessarily distinct) prime ideals Pi(1 ≤ i ≤ n).
Then a finitely generated R-module M is a weak generator if and only if
HomR(M, R/Pi) �= 0 for all 1 ≤ i ≤ n.

Proof The necessity is clear. Conversely, suppose that HomR(M, R/Pi) �= 0
for all 1 ≤ i ≤ n. Let 1 ≤ i ≤ n and let φ : M → R/Pi be any non-zero R-
homomorphism. Note that φ(MPi) = φ(M)Pi ⊆ (R/Pi)Pi = 0, so φ induces a
non-zero R/Pi-homomorphism θ : M/MPi → R/Pi. Thus by Corollary 3.15,
the R/Pi-module M/MPi is a weak generator for all 1 ≤ i ≤ n. By Lemma
1.14, M is a weak generator.

In [12, Theorem 3.9], it is proved that over a commutative Noetherian do-
main R, an R-module M is a weak generator if and only if HomR(M, R) �= 0
(or equivalently Tr(M, R) �= 0). We generalize this result as follows:

Theorem 3.18 Let R be a ring which is Morita equivalent to a commutative
semiprime Noetherian ring. Then M is a weak generator if and only if the
ideal Tr(M, R) is an essential (right) ideal of R.

Proof The necessity follows by Lemma 1.9. Conversely, let M be an R-
module such that I := Tr(M, R) is an essential right ideal of R. By Remark
3.12(ii), I is a weak generator for the class of injective R-modules. Now by
Theorem 3.14, the finitely generated R-module I is a weak generator. Thus M
is a weak generator by Lemma 3.7.
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