ON COMMUTATIVITY OF SEMIRINGS

Vishnu Gupta and J. N. Chaudhari
Department of Mathematics, University of Delhi
Delhi - 110007, India
e-mail: vishnu_gupta2k3@yahoo.co.in
Department of Mathematics, M. J. College
Jalgaon-425002, India

Abstract

We prove the following results. (1) If R is a semiring such that $(a b)^{k}=$ $a^{k} b^{k}$ for all $a, b \in R$ and (i) fixed non negative integers $k=n, n+1, n+2$ or (ii) fixed positive integers $k=m, m+1, n, n+1$ where $(m, n)=1$ then R is semicommutative. If R is also additively cancellative then R is commutative. Thus we generalize the results of [7] and [2]. (2) If R is a $(n+1)!$ - torsion free semiring such that $(a b)^{n}+b^{n} a^{n}=(b a)^{n}+a^{n} b^{n}$ is central for all $a, b \in R$ then R is semicommutative. (3) If R is a $n!$ - torsion free semiring such that $a^{n} b+b^{n} a=b a^{n}+a b^{n}$ for all $a, b \in R$ or $(a b)^{n}=a^{n} b^{n}$ for all $a, b \in R$ then R is semicommutative.

For the definition of semiring we refer [4]. All semirings in this paper are with an identity element. \mathbb{Z}_{0}^{+}will denote the set of all non negative integers. A finite additively cancellative semiring (not necessarily with an identity element) is a ring. If R is an additively cancellative semiring (not necessarily with an identity element) such that $a^{m}=a$ for all $a \in R$ and fixed integer $m>1$ then R is a ring: For, let $a \in R$. Then $(2 a)^{m}=2 a$. This can be written as $\left(2^{m}-2\right) a+2 a=2 a$. Thus $\left(2^{m}-2\right) a=0$. Moreover we prove the following.

Theorem 1. Let R be an additively cancellative semiring such that $a^{m}=a^{n}$ for all $a \in R$ and fixed positive integers $m, n(m \neq n)$. Then R is a ring.

Proof Let $a \in R$. We have $2^{m} a^{m}=(2 a)^{m}=(2 a)^{n}=2^{n} a^{n}$. Assume that $m>n$. Therefore $\left(2^{m}-2^{n}\right) a^{n}+2^{n} a^{n}=2^{n} a^{n}$. Hence $\left(2^{m}-2^{n}\right) a^{n}=0$.

Key words: Semiring, semicommutativity of semiring, commutativity of semiring. 2000 AMS Mathematics Subject Classification: 16Y60, 16 U80.

Replacing a by $a+1$, expanding by Binomial Theorem and multiplying by a^{n-1}, we get $\left(2^{m}-2^{n}\right) a^{n-1}=0$. Continuing in this way, we get $\left(2^{m}-2^{n}\right) a=0$.
Example 2. Let $R=\left\{\left[\begin{array}{lll}0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0\end{array}\right]: a, b, c \in\left(\mathbb{Z}_{0}^{+},+, \cdot\right)\right\}$ Then R is an additively cancellative semiring without identity and $A^{4}=A^{3}$ for all $A \in R$. But R is not a ring.

A semiring R will be called semicommutative if for each a, $b \in R$, there exists $x \in R$ such that $a b+x=b a+x$.
Example 3. Let $R=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in(\{0,1\}, \max , \min)\right\}$. Then R is a semicommutative semiring but not commutative.

The following theorem generalizes the theorem of Ligh and Richoux [7] and a theorem of Bell [2].

Theorem 4. Let R be a semiring such that

$$
\begin{equation*}
(a b)^{k}=a^{k} b^{k} \quad \text { for all } a, b \in R \tag{*}
\end{equation*}
$$

and (i) fixed non negative integers $k=n, n+1, n+2$ or (ii) fixed positive integers $k=m, m+1, n, n+1$ where $(m, n)=1$. Then R is semicommutative.

Proof (i) Assume that $n>0$. From first and second equations in ($*$), we get

$$
\begin{equation*}
a^{n} b^{n} a b=a^{n+1} b^{n+1} \tag{1}
\end{equation*}
$$

Replacing a by $a+1$ in (1), expanding by Binomial Theorem, then multiplying by a^{n-1} from left and using (1), we get $a^{n-1} b^{n} a b+x_{1}=a^{n} b^{n+1}+x_{1}$ for some $x_{1} \in R$. Continuing this process, we have

$$
\begin{equation*}
b^{n} a b+x_{n}=a b^{n+1}+x_{n} \text { for some } x_{n} \in R . \tag{2}
\end{equation*}
$$

Similarly from second and third equations in $(*)$, we get

$$
\begin{equation*}
b^{n+1} a b+y_{n+1}=a b^{n+2}+y_{n+1} \text { for some } y_{n+1} \in R \tag{3}
\end{equation*}
$$

Adding $b x_{n}$ in (3), multiplying (2) by b from left and then using it, we get

$$
\begin{equation*}
b a b^{n+1}+z=a b^{n+2}+z \text { where } z=b x_{n}+y_{n+1} \in R . \tag{4}
\end{equation*}
$$

Applying the argument as above, we have $b a+u=a b+u$ for some $u \in R$. If $n=0$ then the result follows easily.
(ii) There exist positive integers r and s such that $1+r n=s m$. Applying the argument as in (i), we get

$$
\begin{align*}
b^{n} a b+x_{1} & =a b^{n+1}+x_{1} \tag{1}\\
b^{m} a b+x_{2} & =a b^{m+1}+x_{2} \tag{2}
\end{align*}
$$

for some $x_{1}, x_{2} \in R$. Replacing b by b^{r} in (1) and b by b^{s} in (2), we get

$$
\begin{align*}
b^{r n} a b^{r}+x_{3} & =a b^{r n+r}+x_{3} \tag{3}\\
b^{s m} a b^{s}+x_{4} & =a b^{s m+s}+x_{4} \tag{4}
\end{align*}
$$

for some $x_{3}, x_{4} \in R$. Now (4) can be written as

$$
\begin{equation*}
b^{1+r n} a b^{s}+x_{4}=a b^{s m+s}+x_{4} \tag{5}
\end{equation*}
$$

If $r \geq s$ then multiplying (5) by b^{r-s} from right, we get

$$
\begin{equation*}
b^{1+r n} a b^{r}+x_{5}=a b^{s m+r}+x_{5} \quad \text { where } x_{5}=x_{4} b^{r-s} \in R \tag{6}
\end{equation*}
$$

Adding $b x_{3}$ in (6) and using (3), we get $b a b^{r(n+1)}+x_{6}=a b^{r(n+1)+1}+x_{6}$ where $x_{6}=b x_{3}+x_{5} \in R$. Hence $b a+x_{7}=a b+x_{7}$ for some $x_{7} \in R$. If $s \geq r$ then adding $b x_{3} b^{s-r}$ in (5) and using (3), we get $b a b^{r n+s}+x_{8}=a b^{1+r n+s}+x_{8}$ where $x_{8}=b x_{3} b^{s-r}+x_{4} \in R$. Now $b a+x_{9}=a b+x_{9}$ for some $x_{9} \in R$.
Theorem 5. Let R be a semiring such that $(a b)^{k-1}+b a^{k-1}=(b a)^{k-1}+a^{k-1} b$ is central for all $a, b \in R$ and fixed positive integers $k=m$, n where $(m, n)=1$. Then R is semicommutative.

Proof Let $(a b)^{k-1}+b a^{k-1}=(b a)^{k-1}+a^{k-1} b=z$ for some central element z of R. Then $a^{k} b+x=b a^{k}+x$ where $x=(a b)^{k-1} a \in R$. Similarly as above, R is semicommutative.
Definition 6. Let $n>1$ be an integer. A semiring R will be called n-torsion free if for any $a, b, x \in R, n a+x=n b+x$ implies that $a+y=b+y$ for some $y \in R$.

Theorem 7. Let R be a $(n+1)$!-torsion free semiring such that $(a b)^{n}+b^{n} a^{n}=$ $(b a)^{n}+a^{n} b^{n}$ is central for all $a, b \in R$. Then R is semicommutative.

Proof $(a b)^{n}+b^{n} a^{n}=(b a)^{n}+a^{n} b^{n}=z$ for some central element z of R. Then $a^{n+1} b^{n}+x=b^{n} a^{n+1}+x$ where $x=(a b)^{n} a \in R$. Replacing a by $a+1$, expanding by Binomial Theorem and using above equation we get, $\alpha b^{n}+y=b^{n} \alpha+y$ for some $y=a^{n+1} b^{n}+x+b^{n}+u$ and $u \in R$ where $\alpha=\sum_{i=1}^{n}\binom{n+1}{i} a^{n+1-i}$. Again replacing a by $\mathrm{a}+\mathrm{l}$ and repeating the process, after nth step we get $(n+1)!a b^{n}+v=(n+1)!b^{n} a+v$ for some $v \in R$. Repeating the same technique we get $(n+1)!n!a b+w=(n+1)!n!b a+w$ for some $w \in R$.

Theorem 8. Let R be a n!-torsion free semiring such that $a^{n} b+b^{n} a=b a^{n}+a b^{n}$ for all $a, b \in R$ or $(a b)^{n}=a^{n} b^{n}$ for all $a, b \in R$. Then R is semicommutative.

Proof (i) Replaying a by $a+1$, expanding by Binomial Theorem and using above equation we get $\left(\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i}\right) b+x=b\left(\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i}\right)+x$ for
some $x \in R$. Again repeating the process, after $(n-1)$ th step we obtain $(n!) a b+y=(n!) b a+y$ for some $y \in R$.
(ii) Let $g(u, j ; v, k)$ be a monomial in u and v where the sum of powers of the factors u is j and the sum of powers of the factors v is k. Let us take $u=a b$ and $v=b$. Replacing a by $(a+1)$, expanding by Binomial Theorem and using the equation we get $g(a b, n-1 ; b, 1)+g(a b, n-2 ; b, 2)+\ldots+g(a b, 1 ; b, n-1)$ $+x_{1}=\left(\sum_{i=1}^{n-1}\binom{n}{i} a^{n-i}\right) b^{n}+x_{1}$ for some $x_{1} \in R$. Again replacing a by $(a+1)$ and repeating the process, we obtain $g(a b, n-2 ; b, 2)+g(a b, n-3 ; b, 3)+\ldots+$ $g(a b, 1 ; b, n-1)+x_{2}=\left(\sum_{i=1}^{n-1}\binom{n}{i}\left(\sum_{j=1}^{n-i-1}\binom{n-i}{j} a^{n-i-j}\right)\right) b^{n}+x_{2}$ for some $x_{2} \in R$. Repeating the process, after nth step, we obtain $g(a b, 1 ; b, n-1)$ $+x_{n}=(n!) a b^{n}+x_{n}$ for some $x_{n} \in R$ where $g(a b, 1 ; b, n-1)=(n-1)!(a b) b^{n-1}+$ $(n-1)!b(a b) b^{n-2}+\ldots+(n-1)!b^{n-1}(a b)$. Repeating the same technique, we obtain $(n!)^{2} b a+y_{n}=(n!)^{2} a b+y_{n}$ for some $y_{n} \in R$.
Theorem 9. Let R be ($n!$)-torsion free semiring such that $a^{n} b^{m}=b^{m} a^{n}$ for all $a, b \in R$ and fixed integers $n \geq m \geq 1$. Then R is semicommutative.
Proof Similarly as above.
The existence of an identity element in the theorems $1,4,5,7,8$ and 9 is essential (see Example 2).

We are thankful to the referee for his helpful suggestions.

References

[1] P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
[2] H. E. Bell, On the power map and ring commutativity, Canad. Math. Bull. 21 (1978), 399-404.
[3] S. Bourne, On the multiplicative idempotent of a potent semiring, Proc. Nat. Acad. USA 42 (1956), 632-638.
[4] J. S. Golan, The Theory of Semirings with Applications in Mathematics and the Theoretical Computer Science, John Wiley and sons, New York 1992.
[5] V. Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Matematicki 12 (2003), 13-18.
[6] U. Hebisch and H. J. Weinert, Semirings Algebraic Theory and Applications in Computer Science, World Scientific Publishing Co. Pte. Ltd., Singapore.
[7] S. Ligh and A. Richoux, A commutativity theorem for rings, Bull. Aust. Math. Soc. 16 (1977), 75-77.

