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Abstract

We prove the following results. (1) If R is a semiring such that (ab)k =
akbk for all a, b ∈ R and (i) fixed non negative integers k = n, n+1, n+2
or (ii) fixed positive integers k = m, m + 1, n, n + 1 where (m, n) = 1
then R is semicommutative. If R is also additively cancellative then R
is commutative. Thus we generalize the results of [7] and [2]. (2) If R is
a (n + 1)! – torsion free semiring such that (ab)n + bnan = (ba)n + anbn

is central for all a, b ∈ R then R is semicommutative. (3) If R is a
n! – torsion free semiring such that anb+ bna = ban +abn for all a, b ∈ R
or (ab)n = anbn for all a, b ∈ R then R is semicommutative.

For the definition of semiring we refer [4]. All semirings in this paper are
with an identity element. Z

+
0 will denote the set of all non negative integers. A

finite additively cancellative semiring (not necessarily with an identity element)
is a ring. If R is an additively cancellative semiring (not necessarily with an
identity element) such that am = a for all a ∈ R and fixed integer m > 1
then R is a ring: For, let a ∈ R. Then (2a)m = 2a. This can be written as
(2m − 2)a + 2a = 2a. Thus (2m − 2)a = 0. Moreover we prove the following.

Theorem 1. Let R be an additively cancellative semiring such that am = an

for all a ∈ R and fixed positive integers m, n (m �= n). Then R is a ring.

Proof Let a ∈ R. We have 2mam = (2a)m = (2a)n = 2nan. Assume
that m > n. Therefore (2m − 2n)an + 2nan = 2nan. Hence (2m − 2n)an = 0.
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Replacing a by a+1, expanding by Binomial Theorem and multiplying by an−1,
we get (2m − 2n)an−1 = 0. Continuing in this way, we get (2m − 2n)a = 0.

Example 2. Let R =

⎧⎨
⎩
⎡
⎣0 a b

0 0 c
0 0 0

⎤
⎦ : a, b, c ∈ (Z+

0 , +, ·)
⎫⎬
⎭ Then R is an addi-

tively cancellative semiring without identity and A4 = A3 for all A ∈ R. But
R is not a ring.

A semiring R will be called semicommutative if for each a, b ∈ R, there
exists x ∈ R such that ab + x = ba + x.

Example 3. Let R =
{[

a b
c d

]
: a, b, c, d ∈ ({0, 1}, max, min)

}
. Then R is a

semicommutative semiring but not commutative.
The following theorem generalizes the theorem of Ligh and Richoux [7] and

a theorem of Bell [2].

Theorem 4. Let R be a semiring such that

(ab)k = akbk for all a, b ∈ R (∗)
and (i) fixed non negative integers k = n, n + 1, n + 2 or (ii) fixed positive
integers k = m, m+1, n, n+1 where (m, n) = 1. Then R is semicommutative.

Proof (i) Assume that n > 0. From first and second equations in (∗), we get

anbnab = an+1bn+1 . (1)

Replacing a by a+1 in (1), expanding by Binomial Theorem, then multiplying
by an−1 from left and using (1), we get an−1bnab + x1 = anbn+1 + x1 for some
x1 ∈ R. Continuing this process, we have

bnab + xn = abn+1 + xn for some xn ∈ R . (2)

Similarly from second and third equations in (∗), we get

bn+1ab + yn+1 = abn+2 + yn+1 for some yn+1 ∈ R . (3)

Adding bxn in (3) , multiplying (2) by b from left and then using it, we get

babn+1 + z = abn+2 + z where z = bxn + yn+1 ∈ R . (4)

Applying the argument as above, we have ba + u = ab + u for some u ∈ R. If
n = 0 then the result follows easily.
(ii) There exist positive integers r and s such that 1 + rn = sm. Applying the
argument as in (i), we get

bnab + x1 = abn+1 + x1 (1)
bmab + x2 = abm+1 + x2 (2)
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for some x1, x2 ∈ R. Replacing b by br in (1) and b by bs in (2), we get

br nabr + x3 = abr n+r + x3 (3)
bs mabs + x4 = abs m+s + x4 (4)

for some x3, x4 ∈ R. Now (4) can be written as

b1+r nabs + x4 = abs m+s + x4 . (5)

If r ≥ s then multiplying (5) by br−s from right, we get

b1+r nabr + x5 = abs m+r + x5 where x5 = x4b
r−s ∈ R . (6)

Adding bx3 in (6) and using (3), we get babr (n+1)+x6 = abr (n+1)+1 +x6 where
x6 = bx3 + x5 ∈ R. Hence ba + x7 = ab + x7 for some x7 ∈ R. If s ≥ r then
adding bx3b

s−r in (5) and using (3), we get babr n+s + x8 = ab1+r n+s + x8

where x8 = bx3b
s−r + x4 ∈ R. Now ba + x9 = ab + x9 for some x9 ∈ R.

Theorem 5. Let R be a semiring such that (ab)k−1 + bak−1 = (ba)k−1 +ak−1b
is central for all a, b ∈ R and fixed positive integers k = m, n where (m, n) = 1.
Then R is semicommutative.

Proof Let (ab)k−1 + bak−1 = (ba)k−1 + ak−1b = z for some central element z
of R. Then akb + x = bak + x where x = (ab)k−1a ∈ R. Similarly as above, R
is semicommutative.

Definition 6. Let n > 1 be an integer. A semiring R will be called n-torsion
free if for any a, b, x ∈ R, na + x = nb + x implies that a + y = b + y for some
y ∈ R.

Theorem 7. Let R be a (n+1)!-torsion free semiring such that (ab)n +bnan =
(ba)n + anbn is central for all a, b ∈ R. Then R is semicommutative.

Proof (ab)n +bnan = (ba)n +anbn = z for some central element z of R. Then
an+1bn+x = bnan+1+x where x = (ab)na ∈ R. Replacing a by a+1, expanding
by Binomial Theorem and using above equation we get, αbn + y = bnα + y for

some y = an+1bn + x + bn + u and u ∈ R where α =
n∑

i=1

(
n + 1

i

)
an+1−i.

Again replacing a by a+l and repeating the process, after nth step we get
(n + 1)! abn + v = (n + 1)! bna + v for some v ∈ R. Repeating the same
technique we get (n + 1)! n! ab + w = (n + 1)! n! ba + w for some w ∈ R.

Theorem 8. Let R be a n!-torsion free semiring such that anb+bna = ban+abn

for all a, b ∈ R or (ab)n = anbn for all a, b ∈ R. Then R is semicommutative.

Proof (i) Replaying a by a + 1, expanding by Binomial Theorem and using

above equation we get

(
n−1∑
i=1

(
n

i

)
an−i

)
b + x = b

(
n−1∑
i=1

(
n

i

)
an−i

)
+ x for
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some x ∈ R. Again repeating the process, after (n − 1)th step we obtain
(n!) ab + y = (n!)ba + y for some y ∈ R.
(ii) Let g(u, j; v, k) be a monomial in u and v where the sum of powers of the
factors u is j and the sum of powers of the factors v is k. Let us take u = ab
and v = b. Replacing a by (a + 1), expanding by Binomial Theorem and using
the equation we get g(ab, n− 1; b, 1) + g(ab, n− 2; b, 2)+ . . . + g(ab, 1; b, n− 1)

+x1 =

(
n−1∑
i=1

(
n

i

)
an−i

)
bn +x1 for some x1 ∈ R. Again replacing a by (a +1)

and repeating the process, we obtain g(ab, n− 2; b, 2)+ g(ab, n− 3; b, 3)+ . . .+

g(ab, 1; b, n− 1) +x2 =

⎛
⎝n−1∑

i=1

(
n

i

)⎛⎝n−i−1∑
j=1

(
n − i

j

)
an−i−j

⎞
⎠
⎞
⎠ bn + x2 for some

x2 ∈ R. Repeating the process, after nth step, we obtain g(ab, 1; b, n − 1)
+xn = (n!)abn+xn for some xn ∈ R where g(ab, 1; b, n−1) = (n−1)!(ab)bn−1+
(n − 1)!b(ab)bn−2 + . . . + (n − 1)!bn−1(ab). Repeating the same technique, we
obtain (n!)2ba + yn = (n!)2ab + yn for some yn ∈ R.

Theorem 9. Let R be (n!)-torsion free semiring such that anbm = bman for
all a, b ∈ R and fixed integers n ≥ m ≥ 1. Then R is semicommutative.

Proof Similarly as above.

The existence of an identity element in the theorems 1, 4, 5, 7, 8 and 9 is
essential (see Example 2).

We are thankful to the referee for his helpful suggestions.
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