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Abstract

We deal with bilinear forms over commutative rings which are of the
type scaled trace form.

Introduction

We are interested in the following two statements:
Every bilinear space of constant rank over a commutative ring is isomorphic

to a scaled trace space.
Every bilinear space of even constant rank over a commutative ring is iso-

morphic to a hermitian scaled trace space.
As it is well known, both the cases have been considered in the literature

in the setting of hilbertian fields of characteristic different from 2. The bilinear
case was independently considered by Scharlau [11] and Waterhouse [14] and
the hermitian case by Berhuy [1].

In this paper we show that their underlying ideas work in a more general
context and we prove that the above two statements hold for rings with many
units whose residue fields are infinite of characteristic different from 2.
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84 On scaled trace forms over commutative rings

Following [9] a ring with many units is a commutative ring R which sat-
isfies the following local-global principle: for any polynomial f(X1 , . . . , Xn) ∈
R[X1, . . . , Xn], whenever f(X1 , . . . , Xn) represents a unit over Rp, for every
maximal ideal p of R, then f(X1 , . . . , Xn) represents a unit over R. Such a
ring is also called in the literature a local-global ring (see [5]). Such kind of rings
includes fields and commutative rings which are semi-local, zero-dimensional
or, more generally, commutative rings which are von Neumann regular modulo
their Jacobson radical.

We refer to [5] for basic facts on bilinear spaces over rings with many units
and to [3] and [4] for basic facts on separable algebras and Galois theory of
commutative rings.

1. The bilinear case

Throughout this paper R will denote a commutative ring with identity.
By a bilinear space over R we mean a pair (E, ϕ), where E is a finitely

generated projective R-module and ϕ : E×E → R is a nonsingular symmetric
bilinear form over E.

Let S ⊇ R be a commutative ring extension. We say that S is a strongly
separable extension of R if S is separable as R-algebra and finitely generated
projective as R-module. As it is well known, the trace map trS/R of a strongly
separable extension S of R induces a nonsingular symmetric bilinear form over
R. A bilinear space is called a scaled trace space if it is of the type (S, tλ),
where S is a strongly separable extension of R, λ is a unit of S and tλ(s, s′) =
trS/R(〈λ〉)(s, s′) = trS/R(λss′), for all s, s′ ∈ S.

Our purpose in this section is to prove the following theorem.

Theorem 1.1 Let R be a ring with many units whose residue fields are infinite
of characteristic different from 2. Then every bilinear space of constant rank
over R is isomorphic to a scaled trace space.

For this we need some preparation. We start by observing that, in the
case that R is under the assumptions of Theorem 1.1, every strongly separable
extensions S of R of constant rank has a primitive element, i.e, S is of the type
R[X]

(f(X)) , for some separable polynomial f(X) ∈ R[X] [10, Theorem 2.4].

An ideal I of R[X] is said to be a separable ideal if the R-algebra R[X]
I is

separable. A polynomial f(X) ∈ R[X] is said to be a separable polynomial if
f(X) is monic and (f(X)) is a separable ideal.

Given an R-module E and ν ∈ EndR(E), we say that ν is a separable
endomorphism if I(ν) = {f(X) ∈ R[X] | f(ν) = 0}, the ideal of the relations
satisfied by ν , is separable.

In the following lemma we will see that if ν is separable and E is free over
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R, then I(ν) is in fact the characteristic ideal of ν .

Lemma 1.2 Let E be a finitely generated R-module and ν ∈ EndR(E).
(i) There exists f(X) ∈ R[X] monic such that I(ν) = (f(X)).
(ii) If ν is separable and E is projective of rank deg(f(X)) over R, then E is a
projective R[X]

I(ν) -module of rank one.
(iii) If ν is separable and E is a free R-module then f(X) is the characteristic
polynomial of ν over R.

Proof (i) From Cayley-Hamilton Theorem [8, Theorem IV.17] I(ν) contains
a monic polynomial. By the division algorithm it follows easily that I(ν) is
generated by the monic polynomial of smallest degree in I(ν).

(ii) Take S = R[X]
I(ν) . Clearly E is an S-module via the action g(X).v = g(ν)(v)

for all g(X) = g(X)+I(ν) ∈ S and v ∈ E. Since ν is separable, S is a separable
R-algebra and then E is also a projective S-module by [6, Lemma 1.2]. Now,
by comparing ranks the assertion follows.

(iii) Let h(X) be the characteristic polynomial of ν over R. Note that for any
maximal ideal p of R, ν ⊗ R

p is separable and f(X) and h(X) have the same
irreducible factors modulo p[X]. Thus f(X) = h(X) (mod p[X]). Now, since
f(X) divides h(X) and both are monic, it easily follows that f(X) = h(X). �

Corollary 1.3 Let E and ν be as above. Assume that E is R-projective of
constant rank and ν is separable. If R is a ring with many units, then I(ν) is
generated by the characteristic polynomial of ν over R and E is a rank one free
R[X]
I(ν)

-module.

Proof The first assertion is ensured by [5, Theorem 2.10] and Lemma 1.2(iii).
The second one follows from Lemma 1.2(ii), observing that R[X]

I(ν) is also a ring
with many units [5, Corollary 2.3]. �

Lemma 1.4 Let (E, ϕ) be a bilinear space over R. Assume that every strongly
separable extension of R of constant rank has a primitive element. Then (E, ϕ)
is isomorphic to a scaled trace space if and only if there exists ν ∈ EndR(E)
such that:
(i) ν is separable over R;
(ii) ν is self-adjoint with respect to ϕ;
(iii) E is a rank one free R[X]

I(ν) -module.

Proof By assumption there exist a separable polynomial f(X) ∈ R[X] and a
unit λ in S = R[X]

(f(X))
= R[α], with α = X + (f(X)), such that ϕ � trS/R(〈λ〉).

Hence, there is an R-module isomorphism θ : S → E such that ϕ(θ(s), θ(s′)) =
trS/R(〈λ〉)(s, s′) = trS/R(λss′), for all s, s′ ∈ S.

Define ψ : S → S by ψ(s) = αs for all s ∈ S and ν : E → E by ν(v) =
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θψθ−1(v) for all v ∈ E. It is easy to check that ν ∈ EndR(E). We shall prove
that ν satisfies (i),(ii) and (iii).

Since I(ν) = I(θψθ−1) = I(ψ) = (f(X)) and f(X) is separable, ν satisfies
(i). Furthermore, for all u, v ∈ E we have

ϕ(ν(u), v) = ϕ(θψθ−1(u), θθ−1(v)) = trS/R(λψθ−1(u)θ−1(v))
= trS/R(λαθ−1(u)θ−1(v)) = trS/R(λθ−1(u)αθ−1(v))
= ϕ(θθ−1(u), θψθ−1(v)) = ϕ(u, ν(v)),

which implies (ii).
For (iii), it is enough to show that θ : S → E is S-linear. This is ob-

tained from the action of S on E and the definition of ν , as follows: α(θ(s)) =
ν(θ(s)) = θψθ−1(θ(s)) = θ(αs), for all s ∈ S.

Conversely, from (i) we have that S = R[X]
I(ν)

is a separable R-algebra and
from (iii) E is a free S-module of rank one. So E = Suo for some uo ∈ E
free over S. From Lemma 1.2(i), I(ν) = (f(X)) for some monic polynomial
f(X) ∈ R[X]. So, E is a free R-module and by Lemma 1.2(iii) f(X) is the
characteristic polynomial of ν .

We need to ensure the existence of a unit λ ∈ S such that ϕ(suo, s
′uo) =

trS/R(λss′) for all s, s′ ∈ S. On the other hand, the units of S are in one-
to-one correspondence with the nonsingular symmetric S-bilinear forms b :
E × E → S. Hence we have to determine a nonsingular symmetric S-bilinear
form b : E × E → S such that ϕ(u, v) = trS/R(b(u, v)) for all u, v ∈ E.

In order to obtain b we observe that every pair (u, v) ∈ E × E determines
a unique element f(u,v) ∈ HomR(S,R) such that f(u,v)(s) = ϕ(su, v) for all
s ∈ S. On the other hand, by the separability of S over R there exists a
unique λ(u,v) ∈ S such that trS/R(λ(u,v)s) = f(u,v)(s) for all s ∈ S. Define
b : E × E → S by b(u, v) = λ(u,v). Since trS/R is nonsingular and ν is self-
adjoint, it easily follows that b is symmetric and S-bilinear.

It remains to show that b is nonsingular and it is enough to check that
λ = b(uo, uo) is a unit of S. Suppose that λ ∈ q, for some maximal ideal q
of S. ¿From the separability of S over R it follows that S

pS is a finite direct
sum of finite separable field extensions of R

p
, where p = q ∩ R. So λ ∈ q im-

plies that there exists s ∈ S � q such that sλ = 0 (mod pS) and consequently
ϕ(suo, suo) = trS/R(b(suo, suo)) = trS/R(s2λ) = 0 (mod p). Since ϕ is non-
singular, suo = 0 (mod pE), which is a contradiction. The proof is complete.
�

We say that a bilinear space (E, ϕ) is proper if the ideal of R generated by
ϕ(v, v), v ∈ E, is equal to R.

Proposition 1.5 Let (E, ϕ) a bilinear space of rank n over R. Assume that
R is a ring with many units and |R

p
| > n, for every maximal ideal p of R. If

(E, ϕ) is proper then (E, ϕ) is isomorphic to a scaled trace space.
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Proof We start pointing out that R is under the assumptions of Lemma
1.4 [10, Theorem 2.4]. So, it is enough to find ν ∈ EndR(E) satisfying the
conditions (i)-(iii) of this lemma.

By [5, Theorem 7.3(ii)] there exist units d1, . . . , dn ∈ R such that
ϕ = 〈d1, . . . , dn〉 with respect to some orthogonal basis B of E over R. Consider
the polynomial in the variables Xij = Xji, 1 ≤ i, j ≤ n,

f(Xij , X) = det(D−1X − (Xij)) ∈ K[Xij][X]

where D = diag(d1, . . . , dn). Denote by g(Xij) ∈ R[Xij] the discriminant of
f(Xij , X). We claim that there exists a symmetric matrix (λij) ∈Mn(R) such
that g(λij) is a unit in R. Since R is a ring with many units, it is enough to
show that this is true modulo each maximal ideal p of R.

Putting Xij = 0 for all i �= j we have f(Xii, X) =
∏n

i=1(d
−1
i X − Xii),

whose discriminant is g(Xii) =
∏

i �=j(diXii − djXjj). Since |Rp | > n we can
find λ1, . . . , λn ∈ R such that g(λ1, . . . , λn) �= 0 (mod p), for each maximal
ideal p of R. Thus, there exists A = (λij) ∈ Mn(R) symmetric and such that
f(λij , X) is separable over R.

Now, consider ν ∈ EndR(E) given by the matrix A′ = AD with re-
spect to the orthogonal basis B. By construction, ν is separable. Indeed,
by Lemma 1.2 the ideal I(ν) is generated by the polynomial det(XIn − A′) =
(detD)f(λij , X) ∈ R[X].

From (A′u)tDv = utDtAtDv = utD(A′v), for all u, v ∈ E, it follows that
ν is self-adjoint with respect to ϕ. Finally, it follows from Corollary 1.3 that ν
also satisfies the condition (iii) of Lemma 1.4. �

Proof of Theorem 1.1. Since 2 is a unit in R, every bilinear space over R is
proper and the result follows from Proposition 1.5. �

Corollary 1.6 If R is a ring with many units, whose residue fields are infinite,
then every bilinear space over R is Witt-equivalent to a scaled trace space.

Proof It follows from the fact that, under the assumptions, every element in
the Witt ring of R is represented by a proper bilinear space. �

2. The hermitian case

Recall that also in this section R denotes a commutative ring with identity.
By a hermitian scaled trace space over R we mean a bilinear space (S, t(τ,λ)),
where S is a strongly separable extension of R, τ is an R-linear involution on
S, λ is a τ -invariant unit of S and t(τ,λ)(s, s′) = trS/R(λsτ (s′)), for all s, s′ ∈ S.
We observe, in particular, that if S has constant rank over R and, for instance,
R is a ring with many units whose residue fields are infinite of characteristic
different from 2, then the existence of the involution τ implies that rankRS is
even.
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Our purpose in this section is to prove the following theorem.

Theorem 2.1 Let R be a ring with many units whose residue fields are infinite
of characteristic different from 2. Then every bilinear space of even constant
rank over R is isomorphic to a hermitian scaled trace space.

As in Section 1, before proving this theorem we also need some preparation.
We start with the following lemma which is crucial for the sequel. It generalizes
and extends to the setting of commutative rings an old and well known result
due to O.Taussky [12].

We say that a vector column v = (a1 . . . an)t in R(n) is unimodular if the
ideal of R generated by a1, . . . , an is equal to R.

Lemma 2.2 Let A ∈ Mn(R), f(X) = det(A − XIn) ∈ R[X] and S =
R[X]

(f(X)) = R[α], with α = X + (f(X)). Let vα = (v1 . . . vn)t ∈ S(n) be such that
Avα = αvα. Assume that f(X) is separable over R and that vα is unimodular.
Then {v1, . . . , vn} is a basis of S over R. Furthermore, there exists v′α =
(v′1 . . . v

′
n)t ∈ S(n) such that v′α is unimodular, Atv′α = αv′α and {v′1, . . . , v′n} is

the dual basis of {v1, . . . , vn} with respect to trS/R.

Proof Observe that S is a separable R-algebra and a free R-module with
rankRS = n. Then there exists a Galois extension T of R, with group G, and
a subgroup H of G such that S = TH := {t ∈ T | h(t) = t, for all h ∈ H} (see
[13], Section 3). Note that [G : H ] = rankRS = n. Let {σ1 = 1, σ2, . . . , σn} ⊆
G be a left transversal of H in G and consider M = (σj(vi))1≤i,j≤n ∈Mn(T ).

From now on we will proceed by steps.
Claim 1: M is invertible in Mn(T ).

Let d = det(M) ∈ T denote the determinant of M . It is enough to verify
that d is a unit modulo pT for every maximal ideal p of R. Indeed, by local-
ization we can suppose that R is local with maximal ideal p and then, in this
case, pT is the Jacobson radical of T [6, Lemma 1.1].

Considering that T
pT = R

p ⊗R T is a Galois extension of R
p , with group G

acting in the second component, we may also assume that R is a field. By
[7, Lemma 1.1] there exist primitive idempotents e1, . . . , em ∈ T such that
T =

⊕
1≤k≤m Tek. Then for each k we have:

• Tek is a field,

• σi(α)ek �= σj(α)ek for every 1 ≤ i, j ≤ n, i �= j, by [10, Proposition 2.1],

• σi(vα)ek �= 0 for every 1 ≤ i ≤ n, since vα is unimodular,

• σi(vα)ek = (σi(v1)ek . . . σi(vn)ek)t is an eigenvector of Aek corresponding
to σi(α)ek, for every 1 ≤ i ≤ n,

• {σi(vα)ek | 1 ≤ i ≤ n} is a basis of (Tek)(n) over Tek.
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Hence Mek is invertible in Mn(Tek). Now taking dk = det(Mek) and ck =
d−1

k ∈ Tek we obtain d =
∑m

k=1 dk and d(
∑m

k=1 ck) =
∑m

k=1 dkck =
∑m

k=1 ek =
1.

Claim 2: There exist v′1, . . . , v′n ∈ S such that M−1 = (σi(v′j))1≤i,j≤n.

It is straightforward that M−1 = (σi(v′j))1≤i,j≤n with v′1, . . . , v′n ∈ T . So it
remains to verify that v′i ∈ S, for every 1 ≤ i ≤ n. Since S = TH it is enough
to check that h(v′i) = v′i, for all h ∈ H . It follows from G =

⋃n
i=1 σiH that for

each h ∈ H and 1 ≤ i ≤ n there exist hi ∈ H and 1 ≤ i(h) ≤ n such that hσi =
σi(h)hi. Then we have h(M)h(M−1) = In, where h(M) = (σj(h)(vi))1≤i,j≤n

and h(M−1) = (σi(h)hi(v′j))1≤i,j≤n. Consequently h(M−1) = h(M)−1. On the
other hand, it is also straightforward that h(M)−1 = (σi(h)(v′j))1≤i,j≤n. Note
in particular that the first row of h(M−1) (resp. h(M)−1) is (h(v′1), . . . , h(v

′
n))

(resp. (v′1, . . . , v′n)). So the required follows.

Claim 3: {v1, . . . , vn} is a basis of S over R.

If
∑n

i=1 aivi = 0, with ai ∈ R then M(a1 . . . an)t = 0 and since M is
invertible we have ai = 0, 1 ≤ i ≤ n. For any v ∈ S, let (y1 . . . yn) =
(σ1(v) . . . σn(v))M−1 . Then yi =

∑n
j=1 σj(vv′i) = trS/R(vv′i) ∈ R, 1 ≤ i ≤ n,

and from (σ1(v) . . . σn(v)) = (y1 . . . yn)M we have v = σ1(v) =
∑n

i=1 yivi.

Claim 4: {v′1, . . . , v′n} is the dual basis of {v1, . . . , vn} with respect to trS/R,
v′α = (v′1 . . . v′n)t is unimodular and Atv′α = αv′α.

By the same arguments used in Claim 3 we see that {v′1, . . . , v′n} is a basis
of S(n). From Claim 2 it follows easily that it is the dual of {v1, . . . , vn} with
respect to trS/R as well as v′α is unimodular. Thus, it remains to verify that
Atv′α = αv′α. Since M is invertible it follows that Cα = {σj(vα) | 1 ≤ j ≤ n}
and C ′

α == {σi(v′α) | 1 ≤ i ≤ n} are basis of T (n) over T . If we denote by C
the canonical basis of T (n) over T , then M (resp. (M−1)t) is the matrix of the
identity map on T (n) with respect to Cα (resp. C ′

α) and C. Finally denoting
by [TA]Cα (resp. [TAt ]C′

α
) the matrix of the T -linear map defined by A (resp.

At) on T (n), with respect to Cα (resp. C ′
α), we have

diag(σ1(α), . . . , σn(α)) = (diag(σ1(α), . . . , σn(α)))t = [TA]tCα

= (M−1AM)t = M tAt(M−1)t = [TAt ]C′
α
.

This completes the Proof �
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For the next proposition we will consider matrices of the type

B2n(t4, t6, . . . , t2n) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t2n

t2n 0 1
1 0 t2n−2

t2n−2 0 1

1 0
. . .

. . . . . . t4
t4 0 1

1 0 1
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

These matrices are due to G. Berhuy and have been appeared in the literature
in [2].
Proposition 2.3 Let B,D ∈ M2n(R) be such that B = B2n(t4, . . . , t2n) and
D = diag(s2n, . . . , s1), with si, tj units in R. Assume that f(X) = det(DB −
XI2n) ∈ R[X] is separable and let S = R[X]

(f(X))
= R[α], with α = X + (f(X)).

Then there exist a unit λ ∈ R[α2] and a basis {v1, . . . , v2n} of S over R such
that D = (trS/R(λvivj))1≤i,j≤2n.

Proof Let A = DB and vij = (−1)i+jΔij(A − αI2n) where Δij(A − αI2n)
denotes the determinant of the matrix obtained by cancellation of the ith-row
and the jth-column of A − αI2n. It follows from (A − αI2n)(vij)t = det(A −
αI2n)I2n = 0 that A(vi1 . . . vi2n)t = α(vi1 . . . vi2n)t. Set vj = v1j and vα =
(v1 . . . v2n)t. It is easy to verify that v2n = −s1 . . . s2n−1t4 . . . t2n. So v2n is a
unit of R and vα is unimodular. By Lemma 2.2 {v1, . . . , v2n} is a basis of S
over R and there exists a unimodular element v′α = (v′1 . . . v′2n)t ∈ S(2n) such
that {v′1, . . . , v′2n} is its dual basis and Atv′α = αv′α.

Furthermore, Svα = Vα := {v ∈ S(2n) | Av = αv}. In fact, it is enough
to verify this locally, so assume that R is local with maximal ideal p. Clearly
Svα ⊂ Vα. Take v ∈ Vα and consider the S-module Wv = Svα + Sv. Since
vα is unimodular and f(X) is separable we have Wv = Svα (mod Wv) or
Wv = Svα +pWv. By Nakayama’s Lemma Wv = Svα and the assertion follows.

It follows from αv′α = Atv′α = D−1ADv′α that Dv′α ∈ Vα = Svα. Thus there
exists a unit λ ∈ S such that Dv′α = λvα and consequently λvj = s2n−j+1v

′
j,

for all 1 ≤ j ≤ 2n. Hence trS/R(λvivj) = trS/R(s2n−j+1viv
′
j) = δijs2n−j+1,

that is, D = (trS/R(λvivj))1≤i,j≤2n.
In order to prove that λ ∈ R[α2] we will proceed again by localization.

Set Λ = R[α2] + Rλ and assume that R is local with maximal ideal p. By
Nakayama’s Lemma it is enough to prove that Λ = R[α2] (mod pΛ). So, for
the rest of the proof we will suppose that R is a field. As in the proof of Lemma
2.2, take T a Galois extension of R with group G, H a subgroup of G such that
S = TH and {σ1 = 1, σ2, . . . , σ2n} a left transversal of H in G.
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It is easy to verify that f(X) = f(−X) (see, for instance, the proof of
Proposition 1 of [1]), so the R-linear map τ : S → S, given by τ (αi) = (−α)i,
is a well defined involution. Also, S[τ] = R[α2].

On the other hand, by [7, Lemma 1.1] there exist primitive idempotents
e1, . . . , em ∈ T such that T =

⊕
1≤k≤m Tek. Each Tek is a field Galois ex-

tension of Rek � R containing Sek as subfield. Moreover, it follows from [4,
Lemma 3.2.7] that for each 1 ≤ i ≤ 2n there exists 1 ≤ j ≤ 2n, j �= i such that
ekσiτ (s) = ekσj(s), for all s ∈ S. Now, by the same arguments used in the
proof of Proposition of [2] we get τ (λ)ek = λek, for every 1 ≤ k ≤ m. Therefore
τ (λ) =

∑m
k=1 τ (λ)ek =

∑m
k=1 λek = λ, which completes the Proof �

Now consider the diagonal matrix D = diag(s2n, . . . , s1), with si units of
R, and independent variables T4, . . . , T2n, X on R. Take the polynomial

f(T4 , . . . , T2n, X) = det(B2n(T4, . . . , T2n) −XD−1) ∈ R[T4, . . . , T2n, X].

Set Fn(X) = f(T4 , . . . , T2n, X) and let Gn(X) = ∂Fn(X)
∂X be the derivative

of Fn(X) with respect to X. We will denote by dn(X) the discriminant of
Fn(X). Clearly Fn(X) = det(D)−1X2n + (terms of lower degree), so Fn(X) is
a nonzero polynomial modulo pR[T4, . . . , T2n][X], for every maximal ideal p of
R. It follows from the next lemma that the same statement holds for Gn(X)
and dn(X), provided that 2 is a unit in R.

Lemma 2.4 Assume that R is a field of characteristic different from 2. Then,
Gn(X) and dn(X) are nonzero polynomials in R[T4, . . . , T2n][X].

Proof We will proceed by induction on n. For n = 1 we have

G1(X) = 2s−1
1 s−1

2 X �= 0 and

d1(X) = disc(F1(X)) = det

⎛
⎝
s−1
1 s−1

2 0 −1
2s−1

1 s−1
2 0 0

0 2s−1
1 s−1

2 0

⎞
⎠ = −4s−2

1 s−2
2 �= 0.

For n > 1 assume that Gn−1(X) �= 0 and dn−1(X)) �= 0. Note that

Fn(X) = Un(X) − Fn−1(X)T 2
2n and Gn(X) = Vn(X) −Gn−1(X)T 2

2n

where Un(X) = −s−1
2nXPn(X), Vn(X) = ∂Un(X)

∂X and Pn(X) is the determinant
of the matrix obtained by cancellation of the first row and the first column of
B2n(T4, . . . , T2n) − XD−1 . Since Un(X) does not depend on T2n, it easily
follows that Gn(X) �= 0.

Now suppose that dn(X) = 0. Then, as it is well known, there exist nonzero
polynomials hn(X), ln(X) ∈ R[T4, . . . , T2n][X] such that

hn(X)Gn(X) + ln(X)Fn(X) = 0. (�)
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From (�) it easily follows that hn(X) and ln(X) have the same degree as poly-
nomials in the variable T2n. Thus hn(X) =

∑r
i=0 ai(X)T i

2n and ln(X) =∑r
i=0 bi(X)T i

2n with ai(X), bi(X) ∈ R[T4, . . . , T2n−2, X], 1 ≤ i ≤ r, ar(X) �= 0
and br(X) �= 0. We will show in the sequel that we can restrict our discus-
sion to the cases r = 0 and r = 1. Firstly, in order to simplify notation put
Fm = Fm(X), Gm = Gm(X), Um = Um(X), Vm = Vm(X), dm = dm(X),
ai = ai(X) and bi = bi(X), for every 1 ≤ m ≤ n and 1 ≤ i ≤ r.

Claim: For every 1 ≤ k ≤ [ r
2
] there exist polynomials f2k(X), f2k−2(X) ∈

R[T4 . . . , T2n−2][X], with degrees equal to 2k and 2k− 2 respectively, such that

ar−2k = f2k(X)Fn−1 − f2k−2(X)Un

and
br−2k = −(f2k(X)Gn−1 − f2k−2(X)Vn).

In fact, we will proceed again by induction on k. Assume that k = 1. So
r ≥ 2 and it follows from (�) that

arGn−1 + brFn−1 = 0 (1)

arVn + brUn − (ar−2Gn−1 + br−2Fn−1) = 0. (2)

Note that R[T4, . . . , T2n, X] is a factorial domain. So we can assume that ar and
br are relatively prime. Since by assumption dn−1 �= 0 then Fn−1 and Gn−1 are
also relatively prime. Therefore, it follows from (1) that there exists a nonzero
constant f0 = f0(X) ∈ R[T4, . . . , T2n−2][X] such that ar = f0(X)Fn−1 and
br = −f0(X)Gn−1. Thus we get from (2) that

(f0(X)Vn − br−2)Fn−1 = (f0(X)Un + ar−2)Gn−1, (3)

which implies that Fn−1 divides f0(X)Un + ar−2. Observe that f0(X)Un +
ar−2 �= 0 since deg(f0(X)Un + ar−2) = deg(Un) = 2n. Hence there exists a
nonzero polynomial f2(X) ∈ R[T4, . . . , T2n−2][X] such that f0(X)Un + ar−2 =
f2(X)Fn−1. Clearly deg(f2(X)) = 2 and it follows from (3) that

ar−2 = f2(X)Fn−1 − f0(X)Un

and
br−2 = −(f2(X)Gn−1 − f0(X)Vn).

Now assume that k ≥ 2 and that the claim holds for l = k − 1. Replacing
ar−2l and br−2l by their respective formulas in the coefficient of T r−2l

2n in (�),
we obtain

(f2l(X)Vn − br−2k)Fn−1 = (f2l(X)Un + ar−2k)Gn−1. (4)
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And using the same arguments as above we obtain from (4) the assertion re-
quired.

Finally, if r = 2k, replacing a0 and b0 by their respective formulas in the
coefficient of T 0

2n in (�) we get

0 = a0Vn + b0Un

= (f2k(X)Fn−1 − f2k−2(X)Un)Vn − (f2k(X)Gn−1 − f2k−2(X)Vn)Un

= f2k(X)(Fn−1Vn −Gn−1Un)

and, consequently Fn−1Vn = Gn−1Un. Thus Fn−1 divides Un and there exists
a nonzero polynomial h(X) ∈ R[T4 . . . , T2n−2][X] such that Un = h(X)Fn−1,
as well as Vn = h(X)Gn−1. Therefore,

h(X)Gn−1 = Vn =
∂Un

∂X
=
∂h(X)
∂X

Fn−1 + h(X)Gn−1

and so ∂h(X)
∂X

Fn−1 = 0. Since clearly deg(h(X)) = 2, we have a contradiction.
If r = 2k + 1 we proceed in a similar way, replacing a1 and b1 by their

respective formulas in the coefficient of T2n in (�), in order to get a similar
contradiction. The proof is complete. �

Corollary 2.5 Assume that R is a ring with many units whose residue fields
are infinite of characteristic different from 2, and let s1, . . . , s2n be units in
R. Then there exist units t4, t6, . . . , t2n in R such that the polynomial f(X) =
det(BD − XI2n) is separable over R, where D = diag(s2n, . . . , s1) and B =
B2n(t4, t6, . . . , t2n).

Proof Consider the polynomial

f(T4 , . . . , T2n, X) = det(B2n(T4, . . . , T2n) −XD−1) ∈ R[T4, . . . , T2n, X].

Set g(T4, . . . , T2n) = T4 . . . T2ndn(X) ∈ R[T4, . . . , T2n], where dn(X) denotes
the discriminant of f(T4 , . . . , T2n, X). We have to prove that g(T4, . . . , T2n)
represents a unit over R. Since R is a ring with many units, it is enough to
show this in the case that R is a field. Under this assumption, since R is
infinite, it remains only to ensure that g(T4 , . . . , T2n) is not zero. The assertion
follows now from Lemma 2.4. �

Proof of Theorem 2.1. Let (E, ϕ) be a bilinear space of rank 2n over R.
Since 2 is a unit in R, we have that (E, ϕ) is proper and by [5, Theorem 7.3(ii)]
there exist units s1, . . . , s2n ∈ R such that ϕ = 〈s2n, . . . , s1〉 with respect to
some orthogonal basis of E over R. LetD = diag(s2n, . . . , s1). By Corollary 2.5
there exist units t4, t6, . . . , t2n in R such that the polynomial f(X) = det(BD−
XI2n) is separable over R, where B = B2n(t4, t6, . . . , t2n). Set S = R[X]

(f(X)) =
R[α], with α = X + (f(X)). By Proposition 2.3 there exists a unit λ ∈
L = R[α2] such that (E, ϕ) is isomorphic to the scaled trace space (S, tλ).
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Furthermore, there exists a R-linear involution τ : S → S such that τ (α) = −α,
R[α2] = S[τ] and S = L[α] � L[X]

(X2−α2) is a strongly separable extension of L.

Putting S′ = L[X]
(X2+α2)

we have that S′ is also a strongly separable extension of
L and

trS/R(〈λ〉) � trL/R(〈2λ〉) ⊥ trL/R(〈2λα2〉) � trS′/R(〈λ〉τ ),

where trS′/R(〈λ〉τ )(s, s′) = trS′/R(λsτ (s′)) for all s, s′ ∈ S′. �

Remark 2.6 We end this paper giving some examples, taken from the litera-
ture (see for instance [5, 8]), of rings with many units, others than fields, which
satisfy the conditions of the main Theorems 1.1 and 2.1. (in these examples K
will always denote an infinite field of characteristic different from 2):

a) the ring of formal power series K[[X]] (its unique residue field is K),
b) the ring of fractions S−1A[Y ], where A = K[X] and S is the multiplica-

tive set of all polynomials in A such that the ideal generated by its coefficients
equals A (its residue fields are all finite field extensions of K),

c) any integral extension and any homomorphic image of a ring of the type
given in a) or b),

d) any direct product and any direct limit of rings of the type given in a),
b) or c).
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