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Abstract

The purpose of this paper is to introduce a generalized α-β-FG-
contraction and prove some fixed point theorems in b-metric spaces.
These theorems are generalizations of some results in literature. An
example is given to illustrate the obtained results and to show that these
results are proper extensions of the existing ones. Then we apply the
obtained theorem to study the existence of solutions of the integral equa-
tion.

1 Introduction and preliminaries

In recent times, there have been many types of contractions to ensure the
existence and uniqueness of the fixed point of mapings in various spaces. In
2012 Wardowski [11] introduced the notion of an F -contraction and proved
fixed point results in metric spaces as generalization of the Banach contraction
principle. After that, the notion of an F -contraction has been generalized and
considered under the name F -weak contraction or F -generalized contraction.
Moreover, the fixed point results for F -weak contraction in metric spaces were
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also established and proved by many authors in [9, 10, 12]. Later, F -weak
contraction was continuously extended to generalized F -contraction in [3].

In 2016 Parvaneh et al. [7] introduced the notion of an α-β-FG-contraction
and stated some fixed point theorems in b-metric spaces. The results extended
those of Wardowski and several authors in b-metric spaces.

In this paper, we introduce the notion of a generalized α-β-FG-contraction
and prove some fixed point results in b-metric spaces. An example is given
to illustrate the obtained results and to show that these results are proper
extensions of the existing ones. Then we also apply the obtained theorem to
study the existence of solutions of the integral equation.

Now, we recall some notions and lemmas which will be useful in what fol-
lows.

Definition 1.1 ([11], Definition 2.1). Let F be the family of all functions
F : (0,∞) −→ R such that

(F1) F is strictly increasing;

(F2) For each sequence {αn} ⊂ (0,∞),

lim
n→∞αn = 0 if and only if lim

n→∞F (αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

(αkF (α)) = 0.

Definition 1.2 ([3], Definition 7). Let (X, d) be a metric space and T :
X −→ X be a mapping. Then T is called a generalized F -contraction on
(X, d) if there exist F ∈ F and τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ τ + F
(
d(Tx, Ty)

) ≤ F
(
M(x, y)

)
where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

d(T 2x, Tx), d(T 2x, y), d(T 2x, Ty,
d(T 2x, x) + d(T 2x, Ty)

2

}
.

Definition 1.3 ([2], Definition 2.7). Let X be a nonempty set, s ≥ 1 be a
real number and D : X × X −→ [0,∞) satisfy the following properties.

1. D(x, y) = 0 if and only if x = y;

2. D(x, y) = D(y, x) for all x, y ∈ X;

3. D(x, z) ≤ s
[
D(x, y) + D(y, z)

]
for all x, y, z ∈ X.

Then (X, D, s) is called a b-metric space.
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Definition 1.4 ([7], Definition 2). Let ΔF be a family of all functions
F : (0,∞) −→ R such that

(F1) F is continuous and increasing;

(F2) For each sequence {αn} ⊂ (0,∞),

lim
n→∞αn = 0 if and only if lim

n→∞F (αn) = −∞.

Let Δ be a family all of pairs (G, β), where G : (0,∞) −→ R, β : [0,∞) −→
[0, 1), such that

(G1) For each sequence {tn} ⊂ (0,∞), lim sup
n→∞

G(tn) ≥ 0 if and only if

lim sup
n→∞

tn ≥ 1;

(G2) For each sequence {tn} ⊂ [0,∞), lim sup
n→∞

β(tn) = 1 implies lim
n→∞ tn = 0;

(G3) For each sequence {tn} ⊂ (0,∞),
∞∑

n=1

G
(
β(tn)

)
= −∞.

Example 1.5 ([7], Example 2.1). Let k ∈ (0, 1), F (t) = G(t) = ln t for
all t ∈ (0,∞) and β(t) = k ∈ (0, 1) for all t ∈ [0,∞). Then F ∈ ΔF and
(G, β) ∈ Δ.

Definition 1.6 ([7], Definition 2.2). Let (X, D, s) be a b-metric space, T :
X −→ X be a mapping and α : X × X −→ [0,∞) be a function. Then
T is called an α-β-FG-contraction if for all x, y ∈ X with α(x, y) ≥ 1 and
D(Tx, Ty) > 0, we have

F
(
sD(Tx, Ty)

) ≤ F
(
Ms(x, y)

)
+ G

(
β(Ms(x, y))

)
(1.1)

where F ∈ ΔF , (G, β) ∈ Δ and

Ms(x, y) = max
{

D(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) + D(y, Tx)

2s

}
.

Definition 1.7 ([6], Definition 7). Let (X, D, s) be a b-metric space.

1. A sequence {xn} is called convergent to x ∈ X if lim
n→∞D(xn, x) = 0.

2. A sequence {xn} is called Cauchy if lim
n,m→∞D(xn, xm) = 0.

3. (X, D, s) is called complete if every Cauchy sequence is a convergent se-
quence.
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Lemma 1.8 ([1], Lemma 1). Let (X, D, s) be a b-metric space and {xn},
{yn} be two sequences in X such that lim

n→∞xn = u and lim
n→∞ yn = v. Then

1.
1
s2

D(u, v) ≤ lim inf
n→∞ D(xn, yn) ≤ lim sup

n→∞
D(xn, yn) ≤ s2D(u, v).

2.
1
s
D(u, y) ≤ lim inf

n→∞ D(xn, y) ≤ lim sup
n→∞

D(xn, y) ≤ sD(u, y) for all y ∈ X.

Definition 1.9 ([5], Definition 1). Let X be a nonempty set, T : X −→ X
be a mapping and α : X × X −→ [0,∞) be a function. Then T is called a
triangular α-admissible mapping if for all x, y ∈ X,

(T1) α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1;

(T2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1.

Definition 1.10 ([7], Definition 1.3). Let (X, D, s) be a b-metric space,
T : X −→ X be a mapping and α : X × X −→ [0,∞) be two functions. Then
T is called an α-continuous mapping on (X, D, s) if for all x ∈ X,

lim
n→∞xn = x and α(xn, xn+1) ≥ 1 for all n ∈ N imply lim

n→∞Txn = Tx.

Lemma 1.11 ([5], Lemma 7). Let X be a nonempty set, T : X −→ X be a
triangular α-admissible mapping and x0 ∈ X such that α(x0, Tx0) ≥ 1. Define
a sequence {xn} by xn+1 = Txn for all n ∈ N. Then α(xn, xm) ≥ 1 for all
m, n ∈ N with n < m.

2 Main results

By adding four terms

D(T 2x, Tx),
D(T 2x, y)

s
,
D(T 2x, Ty)

s2
,
D(T 2x, x) + D(T 2x, Ty)

2s2

to the notion of an α-β-FG-contraction, we introduce the notion of a general-
ized α-β-FG-contraction in b-metric spaces as follows.

Definition 2.1. Let (X, D, s) be a b-metric space, T : X −→ X be a mapping
and α : X × X −→ [0,∞) be two functions. Then T is called a generalized
α-β-FG-contraction if there exist F ∈ ΔF and (G, β) ∈ Δ such that for all
x, y ∈ X with α(x, y) ≥ 1 and D(Tx, Ty) > 0,

F
(
sD(Tx, Ty)

) ≤ F
(
Ls(x, y)

)
+ G

(
β(Ls(x, y))

)
(2.1)
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where

Ls(x, y)

= max
{

D(x, y), D(x, Tx), D(y, Ty),
D(x, Ty) + D(y, Tx)

2s
, D(T 2x, Tx),

D(T 2x, y)
s

,
D(T 2x, Ty)

s2
,
D(T 2x, x) + D(T 2x, Ty)

2s2

}
. (2.2)

The following example shows that there exists a generalized α-β-FG-contraction
which is not an α-β-FG-contraction.

Example 2.2. Let X = {1, 2, 3, 4, 5} and

D(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if (x, y) ∈ {(1, 1); (2, 2); (3, 3); (4, 4); (5, 5)}
1 if (x, y) ∈ {(1, 2); (1, 3); (2, 1); (3, 1)}
2 if (x, y) ∈ {(2, 3), (3, 2)}
10 if (x, y) ∈ {(1, 4); (1, 5); (4, 1); (5, 1)}
4 otherwise.

Define T : X → X, α : X × X → [0,∞), β : [0,∞) → [0, 1) by

T1 = T2 = T3 = 1; T4 = 2, T5 = 3,

α(x, y) = 2 for all x, y ∈ X,

F (t) = G(t) = ln t for all t ∈ (0,∞) and β(t) =
4
5

for all t ∈ [0,∞).

Then

(1) (X, D, s) is a b-metric space with s = 2.

(2) T is a generalized α-β-FG-contraction but T is not an α-β-FG-contraction.

Proof. (1). It is easy to prove that (X, D, s) is a b-metric space with s = 2.
(2). Since α(x, y) = 2 > 1 for all x, y ∈ X. Since F (t) = G(t) = ln t for all

t ∈ (0,∞) and β(t) =
4
5

for all t ∈ [0,∞), (2.1) becomes

sD(Tx, Ty) ≤ 4
5
Ls(x, y) (2.3)

where Ls(x, y) is defined by (2.2). For D(Tx, Ty) > 0, we obtain the following
table.
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x y D(Tx, Ty) sD(Tx, Ty)
4
5
Ls(x, y) is equal or greater than

1 4 1 2 D(1, 4) = 8
1 5 1 2 D(1, 5) = 8

2 4 1 2 D(2, 4) =
16
5

2 5 1 2 D(2, 5) =
16
5

3 4 1 2 D(3, 4) =
16
5

3 5 1 2 D(3, 5) =
16
5

4 1 1 2 D(4, 1) = 8

4 2 1 2 D(4, 2) =
16
5

4 3 1 2 D(4, 3) =
16
5

4 5 2 4 D(T 24, 5) = 8
5 1 1 2 D(5, 1) = 8

5 2 1 2 D(5, 2) =
16
5

5 3 1 2 D(5, 3) =
16
5

5 4 2 4 D(T 25, 4) = 8

From the above table, the inequality (2.3) is satisfied for all x, y ∈ X
with α(x, y) ≥ 1 and D(Tx, Ty) > 0. Therefore, T is a generalized α-β-
FG-contraction.

However, let x = 4, y = 5, we have D(T4, T5) = D(2, 3) = 2 and

Ms(x, y) = max
{
D(4, 4), D(4, T4), D(5, T5),

D(4, T5) + D(5, T4)
2s

}
= 4.

This implies that the inequality (1.1) in Definition 1.6 is not satisfied and hence
T is not an α-β-FG-contraction. �

The following theorem states the existence and uniqueness of fixed points
for generalized α-β-FG-contraction in b-metric spaces.

Theorem 2.3. Let (X, D, s) be a complete b-metric space, T : X −→ X be a
mapping and α : X × X −→ [0,∞) be two functions, F ∈ ΔF and (G, β) ∈ Δ
such that

(1) T is a triangular α-admissible mapping;
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(2) T is a generalized α-β-FG-contraction;

(3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(4) T is α-continuous.

Then

(1) T has a fixed point x∗ ∈ X and lim
n→∞Tnx0 = x∗.

(2) If α(x, y) ≥ 1 for all x, y ∈ F ix(T ), then T has a unique fixed point, where
F ix(T ) = {x ∈ X|Tx = x}.

Proof. (1). First, we define the sequence {xn} in X by xn = Tnx0 = Txn−1.
Since T is a triangular α-admissible mapping and there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1, using Lemma 1.11 we conclude that the following statement
for all m, n ∈ N with n < m,

α(xn, xm) ≥ 1. (2.4)

This implies that

α(xn, xn+1) ≥ 1 for all n ∈ N. (2.5)

If there exists n0 ∈ N such that xn0 = xn0+1, then xn0 is a fixed point of
T and lim

n→∞Tnxn0 = xn0 by definition of the sequence {xn}. So, we assume

that xn 	= xn+1 for all n ∈ N. Then D(xn, Txn) = D(Txn−1, Txn) > 0 for all
n ∈ N. Since T is a generalized α-β-FG-contraction, we have

F
(
sD(xn, xn+1)

)
= F

(
sD(Txn−1, Txn)

)
≤ F

(
Ls(xn−1, xn)

)
+ G

(
β(Ls(xn−1, xn))

)
(2.6)
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where

Ls(xn−1, xn) = max
{

D(xn−1, xn), D(xn−1, Txn−1), D(xn, Txn),

D(xn−1, Txn) + D(xn, Txn−1)
2s

,

D(T 2xn−1, Txn−1),
D(T 2xn−1, xn)

s
,
D(T 2xn−1, Txn)

s2
,

D(T 2xn−1, xn−1) + D(T 2xn−1, Txn)
2s2

}
= max

{
D(xn−1, xn), D(xn−1, xn), D(xn, xn+1),

D(xn−1, xn+1) + D(xn, xn)
2s

,

D(xn+1, xn),
D(xn+1, xn)

s
,
D(xn+1, xn+1)

s2
,

D(xn+1, xn−1) + D(xn+1, xn+1)
2s2

}

= max
{

D(xn−1, xn), D(xn, xn+1),
D(xn−1, xn+1)

2s

}
= max

{
D(xn−1, xn), D(xn, xn+1)

}
.

If there exists some n ≥ 1 such that D(xn, xn+1) ≥ D(xn−1, xn), then
(2.6) becomes

F
(
sD(xn, xn+1)

) ≤ F
(
D(xn, xn+1)

)
+ G

(
β(D(xn , xn+1))

)
.

This implies that G
(
β(D(xn , xn+1))

) ≥ 0. By using the condition (G1) of Δ,
we get that β(D(xn , xn+1)) ≥ 1. It is a contradiction. Hence, for all n ≥ 1,
D(xn, xn+1) ≤ D(xn−1, xn). Then (2.6) becomes

F
(
sD(xn , xn+1)

) ≤ F
(
D(xn−1, xn)

)
+ G

(
β(D(xn−1 , xn))

)
. (2.7)

By using the increasing of F and (2.7), we obtain

F
(
D(xn, xn+1)

)
≤ F

(
sD(xn, xn+1)

)
≤ F

(
D(xn−1, xn)

)
+ G

(
β(D(xn−1, xn))

)
≤ F

(
sD(xn−1, xn)

)
+ G

(
β(D(xn−1 , xn))

)
≤ F

(
D(xn−2, xn−1)

)
+ G

(
β(D(xn−2 , xn−1))

)
+ G

(
β(D(xn−1, xn))

)
· · ·

≤ F
(
D(x0, x1)

)
+

n∑
i=1

G
(
β(D(xi−1 , xi))

)
.
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Taking the limit in above inequality as n → ∞ and using the condition (G3)
of Δ, we have

lim
n→∞F

(
D(xn, xn+1)

)
= −∞.

By combining this with the condition (F 2) of ΔF , we get

lim
n→∞D(xn, xn+1) = 0. (2.8)

Next, we will show that {xn} is a Cauchy sequence in X. On the contrary,
suppose that {xn} is not a Cauchy sequence in X. Then there exist ε > 0 and
two subsequences {xmk} and {xnk} of {xn} such that nk is the smallest index
for which

nk > mk > k ≥ 1 and D(xmk , xnk) ≥ ε. (2.9)

This implies
D(xmk , xnk−1) < ε. (2.10)

From (2.9), we get

ε ≤ D(xmk , xnk) ≤ sD(xmk , xmk+1) + sD(xmk+1, xnk). (2.11)

Taking the upper limit as k → ∞ in (2.11) and using (2.8), we obtain

ε

s
≤ lim sup

k→∞
D(xmk+1, xnk). (2.12)

Furthermore, we have

D(xmk , xnk) ≤ sD(xmk , xnk−1) + sD(xnk−1, xnk),
D(xmk+1, xnk−1) ≤ sD(xmk+1, xmk) + sD(xmk , xnk−1),
D(xmk+2, xnk−1) ≤ sD(xmk+2, xmk) + sD(xmk , xnk−1)

≤ s2D(xmk+2, xmk+1) + s2D(xmk+1, xmk)
+sD(xmk , xnk−1),

D(xmk+2, xnk) ≤ sD(xmk+2, xnk−1) + sD(xnk−1, xnk),
D(xmk+2, xmk) ≤ sD(xmk+2, xmk+1) + sD(xmk+1, xmk).

Taking the upper limit as k → ∞ in the above inequalitys and using (2.8),
(2.10), we get

lim sup
k→∞

D(xmk , xnk) ≤ εs, (2.13)

lim sup
k→∞

D(xmk+1, xnk−1) ≤ εs, (2.14)

lim sup
k→∞

D(xmk+2, xnk−1) ≤ εs, (2.15)

lim sup
k→∞

D(xmk+2, xnk) ≤ εs2 , (2.16)

lim sup
k→∞

D(xmk+2, xmk) = 0. (2.17)
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Furthermore, we have

D(xmk , xnk) ≤ sD(xmk , xmk+1) + sD(xmk+1, xnk).

Taking the lower limit as k → ∞ in the above inequality and using (2.8), (2.9),

we conclude that lim inf
k→∞

D(xmk+1 , xnk) ≥
ε

s
> 0. Therefore, there exists k0 ∈ N

such that D(xmk+1, xnk) > 0 for all k ≥ k0. Combining this with (2.4) and
using (2.1), we obtain the following for all k ≥ k0,

F
(
sD(xmk+1, xnk)

)
= F

(
sD(Txmk , Txnk−1)

)
≤ F

(
Ls(xmk , xnk−1)

)
+ G

(
β(Ls(xmk , xnk−1))

)
(2.18)

where

Ls(xmk , xnk−1) = max
{

D(xmk , xnk−1), D(xmk , Txmk), D(xnk−1, Txnk−1),

D(xmk , Txnk−1) + D(xnk−1, Txmk)
2s

,

D(T 2xmk , Txmk),
D(T 2xmk , xnk−1)

s
,
D(T 2xmk , Txnk−1)

s2
,

D(T 2xmk , xmk) + D(T 2xmk , Txnk−1)
2s2

}
.

= max
{

D(xmk , xnk−1), D(xmk , xmk+1), D(xnk−1, xnk),

D(xmk , xnk) + D(xnk−1, xmk+1)
2s

,

D(xmk+2, xmk+1),
D(xmk+2 , xnk−1)

s
,
D(xmk+2 , xnk)

s2
,

D(xmk+2, xmk) + D(xmk+2, xnk)
2s2

}
.

Taking the upper limit of Ls(xmk , xnk−1) as k → ∞ and using (2.9), (2.13) -
(2.17), we get

0 <
ε

2s
≤ lim sup

k→∞
Ls(xmk , xnk−1) ≤ ε. (2.19)

Now, taking the upper limit in (2.18) as k → ∞, using (2.12), (2.19) and the
properties of F, we obtain

F (s.
ε

s
) ≤ F

(
s lim sup

k→∞
D(xmk+1, xnk)

)
≤ lim sup

k→∞
F
(
Ls(xmk , xnk−1)

)
+ lim sup

k→∞
G
(
β(Ls(xmk , xnk−1))

)
≤ F (ε) + lim sup

k→∞
G
(
β(Ls(xmk , xnk−1))

)
.
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Therefore,
lim sup

k→∞
G
(
β(Ls(xmk , xnk−1))

) ≥ 0.

This implies that
lim sup

k→∞
β(Ls(xmk , xnk−1)) ≥ 1.

Since β(t) < 1 for all t ≥ 0, we have

lim sup
k→∞

β(Ls(xmk , xnk−1)) = 1.

By using the property of β, we obtain

lim sup
k→∞

Ls(xmk , xnk−1) = 0,

which contradicts (2.19). Hence, {xn} is a Cauchy sequence in X. Since
(X, D, s) is a complete b-metric space, there exists x∗ ∈ X such that

lim
n→∞xn = x∗. (2.20)

This implies that lim
n→∞Tnx0 = x∗ by definition of the sequence {xn}.

Now, we will prove that x∗ is a fixed point of T . By using (2.5), (2.20) and
the α-continuous property of T , we obtain lim

n→∞Txn = Tx∗. Therefore,

x∗ = lim
n→∞xn+1 = lim

n→∞Txn = Tx∗.

This implies that x∗ is a fixed point of T and lim
n→∞Tnx0 = x∗.

(2). Let x, y be two fixed points of T. Suppose that x 	= y. Then, Tx 	= Ty.
Note that, α(x, y) ≥ 1. Following (2.1), we have

F
(
sD(Tx, Ty)

) ≤ F
(
Ls(x, y)

)
+ G

(
β(Ls(x, y))

)

where

Ls(x, y) = max
{
D(x, y), D(x, Tx), D(y, Ty),

D(x, Ty) + D(y, Tx)
2s

,

D(T 2x, Tx),
D(T 2x, y)

s
,
D(T 2x, Ty)

s2
,
D(T 2x, x) + D(T 2x, Ty)

2s2

}
= D(x, y).

This implies that F
(
sD(Tx, Ty)

) ≤ F
(
D(x, y)

)
+G

(
β(D(x, y))

)
. By using the

increasing property of F , we get that G
(
β(D(x, y))

) ≥ 0 which yields that
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β(D(x, y)) ≥ 1. It is a contradiction. Therefore, x = y, that means T has a
unique fixed point. �

In the following theorem, the assumption on α-continuous of T in Theorem
2.3 is replaced by another condition.

Theorem 2.4. Let (X, D, s) be a complete b-metric space, T : X −→ X be a
mapping and α : X × X −→ [0,∞) be two functions, F ∈ ΔF and (G, β) ∈ Δ
such that

(1) T is a triangular α-admissible mapping;

(2) T is a generalized α-β-FG-contraction;

(3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(4) If {xn} is a sequence in X and lim
n→∞xn = x such that α(xn, xn+1) ≥ 1 for

all n ∈ N, then α(xn, x) ≥ 1 for all n ∈ N.

Then

(1) T has a fixed point x∗ in X and lim
n→∞Tnx0 = x∗.

(2) If α(x, y) ≥ 1 for all x, y ∈ F ix(T ), then T has a unique fixed point.

Proof. (1). As in the proof of Theorem 2.3 we conclude that the sequence
{xn} is defined by xn = Tnx0 = Txn−1 satisfying

α(xn, xm) ≥ 1, (2.21)

lim
n→∞D(xn, xn+1) = 0. (2.22)

for all n, m ∈ N with n > m and there exists x∗ ∈ X such that

lim
n→∞xn = x∗. (2.23)

This implies that lim
n→∞Tnx0 = x∗. Now, we will show that x∗ is a fixed point

of T . If for each n ∈ N there exists in ∈ N such that xin+1 = Tx∗ and
in > in−1, i0 = 1, we have x∗ = lim

n→∞xin+1 = lim
n→∞Txin = Tx∗. Thus, x∗ is a

fixed point of T. If there exists n0 ∈ N such that xn+1 	= Tx∗ for all n ≥ n0, we
have D(Txn, Tx∗) > 0 for all n ≥ n0. Combining (2.21) and (2.23) with the
assumption (4), we obtain α(xn, x∗) ≥ 1. Then, by using (2.1) we conclude
that for all n ≥ n0,

F
(
sD(Txn, Tx∗)

) ≤ F
(
Ls(xn, x∗)

)
+ G

(
β(Ls(xn, x∗))

)
. (2.24)
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where

Ls(xn, x∗) = max
{

D(xn, x∗), D(xn, Txn), D(x∗, Tx∗),

D(xn, Tx∗) + D(x∗, Txn)
2s

,

D(T 2xn, Txn),
D(T 2xn, x∗)

s
,
D(T 2xn, Tx∗)

s2
,

D(T 2xn, xn) + D(T 2xn, Tx∗)
2s2

}
= max

{
D(xn, x∗), D(xn, xn+1), D(x∗, Tx∗),

D(xn, Tx∗) + D(x∗, xn+1)
2s

,

D(xn+2, xn+1),
D(xn+2, x

∗)
s

,
D(xn+2, Tx∗)

s2
,

D(xn+2, xn) + D(xn+2, Tx∗)
2s2

}
.

Taking the upper limit in Ls(xn, x∗) as n → ∞ and using (2.22) and Lemma 1.8,
we obtain

lim sup
n→∞

Ls(xn, x∗) = D(x∗, Tx∗). (2.25)

Suppose that D(x∗, Tx∗) > 0, taking the upper limit in (2.24) as n → ∞,
using (2.25), the properties of F and Lemma 1.8, we have

F
(
D(x∗, Tx∗)

) ≤ F
(
D(x∗, Tx∗)

)
+ lim sup

n→∞
G
(
β(Ls(xn, x∗))

)
.

Then lim sup
n→∞

G
(
β(Ls(xn, x∗))

) ≥ 0 which yields that lim sup
n→∞

β
(
Ls(xn, x∗)

) ≥ 1.

Since β(t) < 1 for all t ≥ 0, we have lim sup
n→∞

β
(
Ls(xn, x∗)

)
= 1 which implies

lim
n→∞Ls(xn, x∗) = 0.

By combining this with (2.25), we get D(x∗, Tx∗) = 0. It is a contradiction.
Hence, x∗ is a fixed point of T.

(2). As in the proof of Theorem 2.3. �

From the Theorem 2.3 and Theorem 2.4, we obtain the following results.

Corollary 2.5. Let (X, D, s) be a complete b-metric space, T : X −→ X be a
mapping and α : X × X −→ [0,∞) be two functions, F ∈ ΔF and (G, β) ∈ Δ
such that
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(1) T is a triangular α-admissible mapping;

(2) There exist F ∈ ΔF and (G, β) ∈ Δ such that for all x, y ∈ X, D(Tx, Ty) > 0,

α(x, y)F
(
sD(Tx, Ty)

) ≤ F
(
Ls(x, y)

)
+ G

(
β(Ls(x, y))

)
where Ls(x, y) is defined by (2.2);

(3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(4) (i) Either T is α-continuous or

(ii) If {xn} is a sequence in X and lim
n→∞xn = x such that α(xn, xn+1) ≥ 1

for all n ∈ N, then α(xn, x) ≥ 1 for all n ∈ N.

Then

(1) T has a fixed point x∗ ∈ X and lim
n→∞Tnx0 = x∗.

(2) If α(x, y) ≥ 1 for all x, y ∈ F ix(T ), then T has a unique fixed point.

By choosing F (t) = G(t) = ln t for all t ∈ (0,∞) in Theorem 2.3 and
Theorem 2.4, we get the following corollary which is analogous with [7, Corol-
lary 2.5].

Corollary 2.6. Let (X, D, s) be a complete b-metric space, T : X −→ X be a
mapping and α : X × X −→ [0,∞) be two functions such that

(1) T is a triangular α-admissible mapping;

(2) For all x, y ∈ X with α(x, y) ≥ 1 and D(Tx, Ty) > 0,

sD(Tx, Ty) ≤ β
(
Ls(x, y)

)
Ls(x, y)

where (ln, β) ∈ Δ, and Ls(x, y) is defined by (2.2);

(3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(4) (i) Either T is α-continuous or

(ii) If {xn} is a sequence in X and lim
n→∞xn = x such that α(xn, xn+1) ≥ 1

for all n ∈ N, then α(xn, x) ≥ 1 for all n ∈ N.

Then

(1) T has a fixed point x∗ in X and lim
n→∞Tnx0 = x∗.

(2) If α(x, y) ≥ 1 for all x, y ∈ F ix(T ), then T has a unique fixed point.
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Taking G(t) = ln t, t ∈ [0,∞), β(t) = k ∈ (0, 1), t ∈ (0,∞) and put
τ = − lnk, from the Theorem 2.3 and Theorem 2.4, we obtain a generaliza-
tion of the results in [3], [7] in the setting of b-metric spaces.

Corollary 2.7. Let (X, D, s) be a complete b-metric space, T : X −→ X be a
mapping and α : X × X −→ [0,∞) be two functions, and F ∈ ΔF such that

(1) T is a triangular α-admissible mapping;

(2) There exists τ > 0 such that for all x, y ∈ X with α(x, y) > 1 and
D(Tx, Ty) > 0,

τ + F
(
sD(Tx, Ty)) ≤ F

(
Ls(x, y)

)
where Ls(x, y) is defined by (2.2);

(3) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(4) (i) Either T is α-continuous or

(ii) If {xn} is a sequence in X and lim
n→∞xn = x such that α(xn, xn+1) ≥ 1

for all n ∈ N, then α(xn, x) ≥ 1 for all n ∈ N.

Then

(1) T has a fixed point x∗ and lim
n→∞Tnx0 = x∗.

(2) If α(x, y) ≥ 1 for all x, y ∈ F ix(T ), then T has a unique fixed point.

Next, by using Theorem 2.3, we study a Suzuki-Wardowski-type fixed point
result in b-metric spaces.

Corollary 2.8. Let (X, D, s) be a complete b-metric space, T : X −→ X be a
mapping, F ∈ ΔF and (G, β) ∈ Δ such that

(1) T is continuous;

(2) For all x, y ∈ X and x 	= y, we have D(x, Tx) ≤ D(x, y);

(3) For all x, y ∈ X and D(Tx, Ty) > 0, we have

F
(
sD(Tx, Ty)

) ≤ F
(
Ls(x, y)

)
+ G

(
β(Ls(x, y))

)
(2.26)

where Ls(x, y) is defined by (2.2).

Then T has a unique fixed point x∗ in X and lim
n→∞Tnx0 = x∗.
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Proof. Let α : X × X −→ [0,∞) be defined by

α(x, y) =

{
1 if D(x, Tx) ≤ D(x, y),
0 if otherwirse.

Then α(x, y) ≥ 1 for all x, y ∈ X, x 	= y. From (2.26), we conclude that T is
a generalized α-β-FG-contraction. Since T is continuous, T is α-continuous.
Then the conclusions hold by Theorem 2.3. �

The following example shows that Theorem 2.3 is different from [7, Theo-
rem 2.3, Theorem 2.4].

Example 2.9. Let b-metric space (X, D, s) and T, F, G, β be given as in Ex-
ample 2.2. Define α : X × X → [0,∞) by α(x, y) = 1 and for all x, y ∈ X.
Then

(1) T is not an α-β-FG-contraction. It implies that [7, Theorem 2.3, Theorem
2.4] are not applicable to T, F, G, β, α.

(2) Theorem 2.3 is applicable to T, F, G, β, α.

Proof. (1). As in the proof of Example 2.2, T is not an α-β-FG-contraction.
Then [7, Theorem 2.3, Theorem 2.4] are not applicable to T, F, G, β, α.

(2). Also, from Example 2.2, T is a generalized α-β-FG-contraction. Since
α(x, y) > 1 for all x, y ∈ X, T is a triangular α-admissible mapping. Fur-
thermore, X is finite, then T is an α-continuous. Therefore, Theorem 2.3 is
applicable to T, F, G, β, α. �

Next, we apply Corollary 2.6 to study the existence of solutions to a class
of integral equation.

Example 2.10. Let C[a, b] be the set of all continuous function on [a, b], the
b-metric D with s = 2p−1 be defined by

D(x, y) = sup
t∈[a,b]

|x(t)− y(t)|p

for all x, y ∈ X and some p > 1. Consider the nonlinear integral equation

x(t) = g(t) +
∫ b

a

K(t, s, x(s))ds (2.27)

where t ∈ [a, b], g ∈ C[a, b] and K : [a, b] × [a, b] × x[a, , b] −→ R for each
x ∈ C[a, b]. Suppose that the following statements hold:

(1) K(t, s, x(s)) is integrable with respect to s on [a, b];
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(2) Tx ∈ C[a, b] for all x ∈ C[a, b] where Tx(t) = g(t) +
∫ b

a
K(t, s, x(s))ds for

all t ∈ [a, b];

(3) For all x ∈ C[a, b] and x(t) ≥ 0 for all t ∈ [a, b], we have Tx(t) ≥ 0 for all
t ∈ [a, b];

(4) For all t, s ∈ [a, b] and x, y ∈ C[a, b] such that x(t), y(t) ∈ [0,∞) and
x(t) 	= y(t) for all t ∈ [a, b], we have

|K(t, s, x(s)) − K(t, s, y(s))|p

≤ ϕp(t, s)max
{
|x(t)− y(t)|p, |x(t)− Tx(t)|p,

|y(t) − Ty(t)|p,
|x(t) − Ty(t)|p + |y(t) − Tx(t)|p

2p
,

|T 2x(t) − Tx(t)|p, |T
2x(t) − y(t)|p

2p−1
,
|T 2x(t) − Ty(t)|p

22p−2
,

|T 2x(t) − x(t)|p + |T 2x(t) − Ty(t)|p
22p−1

}
,

where ϕ : [a, b]× [a, b] −→ R is continuous function satisfying

0 < sup
t∈[a,b]

(∫ b

a

ϕp(t, s)ds
)

<
1

2p−1(b − a)p−1
.

Then the nonlinear integral equation (2.27) has a solution x ∈ C[a, b].

Proof. Define a mapping T : C[a, b] −→ C[a, b] by

Tx(t) = g(t) +
∫ b

a

K(t, s, x(s))ds

for all x ∈ C[a, b] and for all t ∈ [a, b]. It follows from hypothesis (1) and
hypothesis (2) that T is well-defined. Notice that the existence of a solution to
(2.27) is equivalent to the existence of a fixed point of T . Now, we show that
all the hypotheses of Corollary 2.6 are satisfied.

Define a mapping α : C[a, b]× C[a, b] −→ R by

α(x, y) =
{

2 if x(t), y(t) ∈ [0,∞) for all t ∈ [a, b],
0 otherwise.

(1). We shall show that T is a triangular α-admissible mapping. Indeed,
for x, y ∈ C[a, b] such that α(x, y) ≥ 1, we have x(t) ≥ 0 and y(t) ≥ 0 for
all t ∈ [a, b]. It follows from condition (3) that Tx(t) ≥ 0 and Ty(t) ≥ 0 for
all t ∈ [a, b]. Therefore, α(Tx, Ty) ≥ 1. In addition, for x, y, z ∈ C[a, b] such



N. T. Thanh Ly and N. T. Hieu 103

that α(x, z) ≥ 1 and α(z, y) ≥ 1, we get x(t), y(t), z(t) ≥ 0 for all t ∈ [a, b]. It
implies that α(x, y) ≥ 1. Therefore, T is a triangular α-admissible mapping.

(2). We claim that assumption (2) in Corollary 2.6 holds. Indeed, let q > 1

such that
1
p

+
1
q

= 1. For x, y ∈ C[a, b] with α(x, y) ≥ 1 and D(Tx, Ty) > 0,

we conclude that x(t), y(t) ∈ [0,∞) and x(t) 	= y(t) for all t ∈ [a, b]. Combining
this with condition (4), we have

2p−1 |Tx(t) − Ty(t)|p

≤ 2p−1

∣∣∣∣∣
∫ b

a

K(t, s, x(s))ds−
∫ b

a

K(t, s, y(s))ds

∣∣∣∣∣
p

= 2p−1

∣∣∣∣∣
∫ b

a

(K(t, s, x(s)) − K(t, s, y(s)))ds

∣∣∣∣∣
p

≤ 2p−1

(∫ b

a

|K(t, s, x(s)) − K(t, s, y(s))| ds

)p

≤ 2p−1

⎡
⎣
(∫ b

a

ds

) 1
q
(∫ b

a

|K(t, s, x(s)) − K(t, s, y(s))|pds

) 1
p

⎤
⎦

p

≤ 2p−1(b − a)p−1

(∫ b

a

ϕ(t, s)pds

)
max

{
|x(t) − y(t)|p, |x(t) − Tx(t)|p,

|y(t) − Ty(t)|p,
|x(t) − Ty(t)|p + |y(t) − Tx(t)|p

2p
,

|T 2x(t) − Tx(t)|p, |T
2x(t) − y(t)|p

2p−1
,
|T 2x(t) − Ty(t)|p

22p−2
,

|T 2x(t) − x(t)|p + |T 2x(t) − Ty(t)|p
22p−1

}

= 2p−1(b − a)p−1
( ∫ b

a

ϕp(t, s)ds
)
Ls(x, y)

≤ 2p−1(b − a)p−1 sup
t∈[a,b]

( ∫ b

a

ϕp(t, s)ds
)
Ls(x, y)

= λLs(x, y),

where λ = 2p−1(b − a)p−1 sup
t∈[a,b]

( ∫ b

a

ϕp(t, s)ds
)

∈ (0, 1). This implies that

assumption (2) in Corollary 2.6 is satisfied with β(t) = λ for all t ≥ 0.
(3). From the definition of α and using assumption (3), we conclude that

there exits x0 ∈ C[a, b] such that α(x0, Tx0) ≥ 1.
(4). Let {xn} ⊂ C[a, b] such that α(xn, xn+1) ≥ 1 and lim

n→∞xn = x ∈
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C[a, b]. Then x(t), xn(t) ∈ [0,∞) for all t ∈ [a, b] and n ≥ 0. Therefore,
α(xn, x) ≥ 1 for all n ≥ 1.

By the above, we conclude that all the assumptions in Corollary 2.6 are
satisfied. Thus, T has a fixed point x ∈ C[a, b] and hence equation (2.27) has
a solution x ∈ C[a, b]. �

The following example guarantees the existence of the functions K and g
satisfying all the assumption in Example 2.10.

Example 2.11. Let C[0, 1] be the set of all continuous functions on [0, 1],
b-metric D with s = 2 defined by

d(x, y) = sup
t∈[0,1]

|x(t) − y(t)|2

for all x, y ∈ C[0, 1]. Consider the integral equation

x(t) = − t3√
5

+ 3t2 + 1 +
∫ 1

0

(3s2 + 2)t3x(s)
2
√

5(1 + x(s))
ds (2.28)

for all t ∈ [0, 1] and x ∈ C[0, 1]. Put

g(t) = − t3√
5

+ 3t2 + 1, K(t, s, x(s)) =
(3s2 + 2)t3x(s)
2
√

5(1 + x(s))

and Tx(t) = − t3√
5

+ 3t2 + 1 +
∫ 1

0

(3s2 + 2)t3x(s)
2
√

5(1 + x(s))
ds for all t, s ∈ [0, 1] and

x ∈ C[0, 1]. Then
(1). g is continuous on [0, 1]. Since x ∈ C[0, 1], K(t, s, x(s)) is integral with

respect to s on [0, 1].
(2). For all t, s ∈ [0, 1] and the sequence tn ∈ [0, 1] with lim

n→∞ tn = t.
We have

|Tx(tn) − Tx(t)| ≤ |g(tn) − g(t)| + 1
2
√

5

∫ 1

0

(3s2 + 2)|t3n − t3|
∣∣∣∣ x(s)
1 + x(s)

∣∣∣∣ ds

≤ |g(tn) − g(t)| + 1
2
√

5

∫ 1

0

(3s2 + 2)|t3n − t3|ds

= |g(tn) − g(t)| + 3
2
√

5
|t3n − t3|.

This implies that Tx ∈ C[0, 1] for all x ∈ C[0, 1].
(3). It is easy to see that g(t) ≥ 0 for t ∈ [0, 1]. Furthermore, for x ∈ C[0, 1]

such that x(t) ≥ 0 for all t ∈ [0, 1], we get that K(t, s, x(s)) ≥ 0 for all
t, s ∈ [0, 1]. It implies that Tx(t) ≥ 0 for all x ∈ C[0, 1] and t ∈ [0, 1].
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(4). For x, y ∈ C[0, 1] and x(s) 	= y(s) ∈ [0,∞) for all s ∈ [0, 1], we get

|K(t, s, x(s)) − K(t, s, y(s))| =
(3s2 + 2)t3

2
√

5

∣∣∣ x(s)
1 + x(s)

− y(s)
1 + y(s)

∣∣∣
=

(3s2 + 2)t3

2
√

5

∣∣∣∣ x(s) − y(s)
[1 + x(s)][1 + y(s)]

∣∣∣∣
≤ (3s2 + 2)t3

2
√

5

∣∣x(s) − y(s)
∣∣.

By choosing ϕ(t, s) =
(3s2 + 2)t3

2
√

5
, it is easy to see that ϕ is continuous,

0 < sup
t∈[0,1]

( ∫ 1

0

ϕ2(t, s)ds
)

<
1
2
,

0 ≤ |K(t, s, x(s)) − K(t, s, y(s))| ≤ ϕ(t, s)
∣∣x(s) − y(s)

∣∣
and hence

|K(t, s, x(s)) − K(t, s, y(s))|2

≤ ϕ2(t, s)max
{
|x(t) − y(t)|2 , |x(t)− Tx(t)|2,

|y(t) − Ty(t)|2, |x(t) − Ty(t)|2 + |y(t) − Tx(t)|2
4

,

|T 2x(t) − Tx(t)|2, |T
2x(t) − y(t)|2

2
,
|T 2x(t) − Ty(t)|2

4
,

|T 2x(t) − x(t)|2 + |T 2x(t) − Ty(t)|2
8

}
.

From the above, all the assumption to K and g in Example 2.10 are satisfied.
Furthermore, it easy to check that x(t) = 3t2 + 1 for all t ∈ [0, 1] is a solution
of the integral equation (2.28).
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