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Abstract

In this paper the hyperequational theory for strong and strong regular
varieties of partial algebras will be extended to strong and strong regular
quasivarieties of partial algebras. Two kinds of strong quasi-identities
are defined and the corresponding model classes are characterized.

1 Introduction

Let P n(A) := {f : An �→ A} be the set of all n − ary partial operations

defined on the set A and let P (A) :=
∞⋃

n=1
P n(A) be the set of all partial

operations on A. A partial algebra A = (A; (fA
i )i∈I ) of type τ = (ni)i∈I is

a pair consisting of a set A and an indexed set (fA
i )i∈I of partial operations

where fA
i is ni − ary. Let PAlg(τ ) be the class of all partial algebras of type

τ . If f ∈ P n(A) is a partial operation, then domf denotes the domain of f .
To define the language corresponding to partial algebras of type τ we need
an indexed set (fi)i∈I of operation symbols, where fi is ni-ary and a finite
or a countably infinite alphabet Xn = {x1, x2, . . . , xn} (X = {x1, x2, . . .}) of
variables. Then n-ary terms of type τ are defined inductively as follows:
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62 M-solid Strong Quasivarieties of Partial algebras

(i) The variables x1, . . . , xn are n-ary terms.

(ii) If t1, . . . , tni are n-ary terms and if fi is an ni-ary operation symbol, then
fi(t1, . . . , tni) is an n-ary term.

We denote by Wτ (Xn) the set of all n-ary terms of type τ and let Wτ(X) :=
∞⋃

n=1
Wτ (Xn) be the set of all terms of type τ . From given terms by superpo-

sition one can produce new terms. For each m and n in N
+ := N \ {0}, the

superposition operation Sn
m maps one n-ary term and n m-ary terms to an

m-ary term, so that

Sn
m : Wτ (Xn) × Wτ (Xm)n → Wτ (Xm).

The operation Sn
m is defined inductively, by setting

Sn
m(xj , t1, . . . , tn) = tj for any variable xj ∈ Xn, and

Sn
m(fr(s1, . . . , snr), t1, . . . , tn) = fr(Sn

m(s1, t1, . . . , tn), . . . , Sn
m(snr , t1, . . . , tn)).

To each term t ∈ Wτ (Xn) and to each partial algebra A = (A; (fA
i )i∈I ) of

type τ we obtain a partial operation tA, called term operation induced by t as
follows:

(i) If t = xi ∈ Xn then tA = xA
i := en,A

i , where en,A
i is the n-ary total

projection on the i-th component.

(ii) Now assume that t = fi(t1, . . . , tni) where fi is an ni-ary operation sym-
bol, and assume also that tA1 , . . . , tAni

are the term operations induced by
the terms t1, . . . , tni, and that the tAj (a1, . . . , an) are defined, with values
tAj (a1, . . . , an) = bj, for 1 ≤ j ≤ ni. If fA

i (b1, . . . , bni) is defined, then
tA(a1, . . . , an) is defined and tA(a1, . . . , an) = fA

i (tA1 (a1, . . . , an), . . . ,
tAni

(a1, . . . , an)).

Let Wτ (Xn)A be the set of all n-ary term operations of type τ . On the right
hand side we formed the superposition of partial operations. This superpo-
sition can also be described by a (total) superposition operation (on partial
operations) as follows

Sn,A
m (fA, gA

1 , . . . , gA
n )(a1, . . . , am) := fA(gA

1 (a1, . . . , am), . . . , gA
n (a1, . . . , am))

for all (a1, . . . , am) for which gA
1 , . . . , gA

n are defined and for which the values
b1 = gA

1 (a1, . . . , am), . . . , bn = gA
n (a1, . . . , am) form an n-tuple (b1, . . . , bn) be-

longing to the domain of fA. In general the set Wτ (X)A is different from the
set of all partial operations which is generated by {fA

i | i ∈ I} using the oper-
ation Sn,A

m (see e.g. [9]).

In this paper we are interested in the following kind of identities in partial
algebras.
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Definition 1.1. ([8]) A pair t1 ≈ t2 ∈ Wτ (X)2 is called a strong identity in a
partial algebra A (in symbols A |=

s
t1 ≈ t2) iff the right hand side is defined

whenever the left hand side is defined and both are equal, i.e. when both sides
are defined, then the induced partial term operations tA1 and tA2 are equal.

Definition 1.2. A quasi-equation of type τ is a first order formula of the form

e : ∀x1, . . . , xs(s1 ≈ t1 ∧ s2 ≈ t2 ∧ . . . ∧ sn ≈ tn ⇒ u ≈ v)

where s1, . . . , sn, t1, . . . , tn, u, v ∈ Wτ (X) and where ∧,⇒ are the binary propo-
sitional connectives conjunction and implication.
For abbreviation with e′ : s1 ≈ t1 ∧ s2 ≈ t2 ∧ . . . ∧ sn ≈ tn and e′′ : u ≈ v we
write

e : ∀x1, . . . , xs(e′ ⇒ e′′).

Then the quasi-equation e is satisfied in the partial algebra A as a strong quasi-
identity if from sA1 = tA1 ∧ . . . ∧ sAn = tAn it follows uA = vA. In this case we
write A |=

sq
e.

We notice that in [2] strong quasi-identities are denoted as QE-equations.

Using the relation |=
sq

for every class K of partial algebras of type τ and

for every set Σ of quasi-equations (i.e. implications of the form e′ ⇒ e′′) we
form the sets

QIdsK := {e ∈ Σ | ∀A ∈K (A |=
sq

e)} and

QModsΣ := {A∈ PAlg(τ ) | ∀ e ∈ Σ (A |=
sq

e)}.

Definition 1.3. Let QV ⊆ PAlg(τ ) be a class of partial algebras. The class
QV is called a strong quasivariety of partial algebras if QV = QModsQIdsQV .

We have that strong quasivarieties different from {∅} (i.e. the empty partial
algebra) are closed under formation of closed subalgebras, isomorphic images,
and filtered products ([2]). Conversely, a class QV of partial algebras of type
τ which is closed under formation of closed subalgebras, isomorphic images,
and filtered products is a strong quasivariety of partial algebras. For more
background on theories for partial algebras see [6].

2 Strong Quasi-identities

Since in general the set Wτ (Xn)A is different from the set of all partial opera-
tions generated by {fA

i | i ∈ I} we need a new definition of terms over partial
algebras of type τ .
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Let {fi | i ∈ I} be a set of operation symbols of type τ , where each fi has arity
ni and X ∩ {fi | i ∈ I} = ∅. We need additional symbols εk

j �∈ X, for every
k ∈ N

+ := N \ {0} and 1 ≤ j ≤ k. Let Xn = {x1, . . . , xn} be an n-element
alphabet and let X be an arbitrary countable alphabet. The set of all n-ary
terms of type τ over Xn is defined inductively as follows (see [1]):

(i) Every xi ∈ Xn is an n-ary term of type τ .

(ii) If w1, . . . , wk are n-ary terms of type τ , then εk
j (w1, . . . , wk) is an n-ary

term of type τ for all 1 ≤ j ≤ k and all k ∈ N
+.

(iii) If w1, . . . , wn are n-ary terms of type τ and if fi is an ni-ary operation
symbol, then fi(w1, . . . , wni) is an n-ary term of type τ .

Let WC
τ (Xn) be the set of all n-ary terms of type τ defined in this way. Then

WC
τ (X) :=

∞⋃
n=1

WC
τ (Xn) denotes the set of all terms of this type.

Remark 2.1. Wτ (X) ⊆ WC
τ (X).

Every n-ary term w ∈ WC
τ (Xn) induces an n-ary term operation wA on

any partial algebra A = (A; (fA
i )i∈I ) of type τ . For a1, . . . , an ∈ A, the value

wA(a1, . . . , an) is defined in the following inductive way (see [1]):

(i) If w = xi then wA = xA
i = en,A

i , where en,A
i is as usual the n-ary total

projection on the i-th component.

(ii) If w = εk
j (w1, . . . , wk) and we assume that wA

1 , . . . , wA
k are the term opera-

tions induced by the terms w1, . . . , wk and that the wA
i (a1, . . . , an) are de-

fined for 1 ≤ i ≤ k, then wA(a1, . . . , an) is defined and wA(a1, . . . , an) =
wA

j (a1, . . . , an).

(iii) Now assume that w = fi(w1, . . . , wni) where fi is an ni-ary operation
symbol, and assume that the wA

j (a1, . . . , an) are defined, with values
wA

j (a1, . . . , an) = bj for 1 ≤ j ≤ ni. If fA
i (b1, . . . , bni) is defined, then

wA(a1, . . . , an) is defined and wA(a1, . . . , an) = fA
i (wA

1 (a1, . . . , an), . . . ,
wA

ni
(a1, . . . , an)).

On the sets WC
τ (Xn) we may introduce the following superposition oper-

ations. Let w1, . . . , wm be n-ary terms and let t be an m-ary term. Then we
define an n-ary term S

m
n (t, w1, . . . , wm) inductively by the following steps:

(i) For t = xj, 1 ≤ j ≤ m (m-ary variable), we define
S

m

n (xj, w1, . . . , wm) = wj.

(ii) For t = εk
j (s1, . . . , sk) we set

S
m

n (t, w1, . . . , wm) = εk
j (S

m

n (s1, w1, . . . , wm), . . . , S
m

n (sk, w1, . . . , wm)),
where s1, . . . , sk are m-ary, for all k ∈ N

+ and 1 ≤ j ≤ k.
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(iii) For t = fi(s1, . . . , sni) we set
S

m
n (t, w1, . . . , wm) = fi(S

m
n (s1, w1, . . . , wm), . . . , S

m
n (sni , w1, . . . , wm)),

where s1, . . . , sni are m-ary.

This defines operations

S
m
n : WC

τ (Xm) × (WC
τ (Xn))m −→ WC

τ (Xn),

which describe the superposition of terms.
The term clone of type τ is the heterogeneous algebra

cloneτC := ((WC
τ (Xn)); S

m
n , ek

j )n,m,k∈N+,1≤j≤k,

where ek
j := xj ∈ Xk, 1 ≤ j ≤ k.

Definition 2.2. A pair s ≈ t ∈ WC
τ (X)2 is called a strong c-identity in a

partial algebra A (in symbols A |=
s

s ≈ t) iff the right hand side is defined

whenever the left hand side is defined and both are equal, i.e. when both sides
are defined, then the induced partial term operations sA and tA are equal.

Definition 2.3. A quasi-equation ce of type τ is satisfied in the partial algebra
A as a strong c-quasi-identity if from sA1 = tA1 ∧. . .∧sAn = tAn it follows uA = vA.
In this case we write A |=

sq
ce.

Let cΣ be a set of c-quasi-equations (i.e. implications of the form ce′ ⇒ ce′′).
Let cQτ denote the set of all c-quasi-equations of type τ and let K ⊆ PAlg(τ )
be a class of partial algebras of type τ . Consider the connection between
PAlg(τ ) and cQτ given by the following two operators:

QIds : P(PAlg(τ )) → P(cQτ) and

QMods : P(cQτ) → P(PAlg(τ )) with

cQIdsK := {ce ∈ cΣ | ∀A ∈K (A |=
sq

ce)} and

QModscΣ := {A∈ PAlg(τ ) | ∀ ce ∈ cΣ (A |=
sq

ce)}.
Clearly, the pair (QMods, cQIds) is a Galois connection between PAlg(τ )

and cQτ , i.e it satisfies the following properties:

K1 ⊆ K2 ⇒ cQIdsK2 ⊆ cQIdsK1, cΣ1 ⊆ cΣ2 ⇒ QModscΣ2 ⊆ QModscΣ1

and
K ⊆ QModscQIdsK, cΣ ⊆ cQIdsQModscΣ.

The products QModscQIds and cQIdsQMods are closure operators and their
fixed points form complete lattices.

Definition 2.4. Let QV ⊆ PAlg(τ ) be a class of partial algebras. The class
QV is called a strong c-quasivariety of partial algebras if QV = QModscQIdsQV .
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3 Strong Hyperquasi-identities

In [3] (see also [5]) hyperquasi-identities for total algebras were introduced. We
want to generalize this approach to partial algebras but instead of terms from
Wτ (X) as in [3] we will use terms from WC

τ (X). Since from now on we want
to consider only terms from WC

τ (X) instead of c-terms we will simply speak of
terms.

To define strong hyperquasi-identities we need the concept of a hypersub-
stitution.

Definition 3.1. ([9]) Let {fi | i ∈ I} be a set of operation symbols of type τ
and WC

τ (X) be the set of all terms of this type. A mapping σ : {fi | i ∈ I} −→
WC

τ (X) which maps each ni-ary fundamental operation fi to a term of arity
ni is called a hypersubstitution of type τ .

Any hypersubstitution σ of type τ can be extended to a map σ̂ : WC
τ (X) −→

WC
τ (X) defined for all terms, in the following way:

(i) σ̂[xi] = xi for every xi ∈ Xn,

(ii) σ̂[εk
j (s1, . . . , sk)] = S

k

n(εk
j (x1, . . . , xk), σ̂[s1], . . . , σ̂[sk]), where s1, . . . , sk ∈

WC
τ (Xn),

(iii) σ̂[fi(t1, . . . , tni)] = S
ni

n (σ(fi), σ̂[t1], . . . , σ̂[tni]), where t1, . . . , tni ∈ WC
τ (Xn).

Let V ar(t) be the set of all variables occurring in the term t.

Definition 3.2. ([7]) The hypersubstitution σ is called regular if V ar(σ(fi)) =
{x1, . . . , xni}, for all i ∈ I.

Let HypC
R(τ ) be the set of all regular hypersubstitutions of type τ and let

σR denote some member of HypC
R(τ ). Now we define a product of regular

hypersubstitutions in the usual way, by σR1 ◦h σR2 := σ̂R1 ◦ σR2 where ◦ is the
usual composition of functions and obtain:

Theorem 3.3. ([9]) The algebra (HypC
R(τ ); ◦h, σid) with σid(fi)=fi(x1, . . . , xni)

is a monoid.

Let M ⊆ HypC
R(τ ) be a submonoid of the monoid of all regular hypersubsti-

tutions. If A = (A; (fA
i )i∈I) is a partial algebra of type τ , then we say that the

equation s ≈ t ∈ WC
τ (X)2, is an M-hyperidentity in A if A |=

s
σ̂R[s] ≈ σ̂R[t]

for every σR ∈ M . In this case we write A |=
sMh

s ≈ t.

The relation |=
sMh

defines a Galois-connection (HMMods, HMIds) where these

operators for classes K ⊆ PAlg(τ ) of partial algebras of type τ and for sets
Σ ⊆ WC

τ (X)2 of equations of type τ are defined by
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HMModsΣ := {A∈ PAlg(τ ) | ∀ s ≈ t ∈ Σ (A |=
sMh

s ≈ t)},
HMIdsK := {s ≈ t ∈ WC

τ (X)2 | ∀A ∈K (A |=
sMh

s ≈ t)}.
The products HMModsHMIds and HMIdsHMMods are closure opera-

tors and their fixed points form two complete lattices which are dually iso-
morphic. The application of a regular hypersubstitution to a partial algebra
A = (A; (fA

i )i∈I ) of type τ = (ni)i∈I leads us to the concept of a derived alge-
bra σR(A) = (A; (σR(fi)A)i∈I), where σR(fi)A is the term operation induced
by the term σR(fi) on the algebra A.
For a class K of partial algebras of type τ and for a set Σ of equations of regular
terms of type τ (i.e. the both sides of the equation contain the same variables),
we may form

χE
M [Σ] :=

⋃
σR∈M

⋃
s≈t∈Σ

σ̂R[s] ≈ σ̂R[t] and χA
M [K] :=

⋃
σR∈M

⋃
A∈K

σR(A).

In ([9]), was shown that χE
M and χA

M are closure operators which are completely
additive by their definition and this means that they satisfy the condition

(�) A |=
s

χE
M [s ≈ t] ⇔ χA

M [A] |=
s

s ≈ t.

The property (�) is called the conjugate property and (χE
M , χA

M ) is called a
conjugate pair of additive closure operators. A strong variety V of partial
algebras of type τ is called M -solid if χA

M [V ] = V (see [9]).

Theorem 3.4. ([9]) Let V be a strong variety of partial algebras of type τ and
let M be a monoid of regular hypersubstitutions of type τ . Then the following
conditions are equivalent:

(i) There is a set Σ ⊆ WC
τ (X)2 such that V = HMModsΣ.

(ii) V is M -solid, i.e. χA
M [V ] = V .

(iii) IdsV = HMIdsV , i.e. every strong identity in V is an M -hyperidentity
in V .

(iv) χE
M [IdsV ] = IdsV .

Every set Σ ⊆ WC
τ (X)2 for which there is a strong variety V of partial

algebras of type τ with Σ = HMIdsV is called an M-hyperquational theory. If
M = HypC

R(τ ) we speak of a hyperequational theory and if M = {σid}, we
have the usual case of an equational theory. M -hyperequational theories can
be characterized by the following equivalent conditions:

Theorem 3.5. ([9]) Let Σ be an equational theory of type τ and let M be a
monoid of regular hypersubstitutions of type τ . Then the following conditions
are equivalent:
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(i) There is a class V of partial algebras of type τ such that Σ = HMIdsV .

(ii) χE
M [Σ] = Σ.

(iii) ModsΣ = HMModsΣ.

(iv) χA
M [ModsΣ] = ModsΣ.

Definition 3.6. Let A be a partial algebra of type τ and let M be a submonoid
of the monoid HypC

R(τ ). Then the quasi-equation

ce := (s1 ≈ t1 ∧ . . . ∧ sn ≈ tn ⇒ u ≈ v)

of type τ in A is a strong M -hyperquasi-identity in A if for every regular hy-
persubstitution σR ∈ M , the formulas

σ̂R[ce] := (σ̂R[s1] ≈ σ̂R[t1] ∧ . . . ∧ σ̂R[sn] ≈ σ̂R[tn] ⇒ σ̂R[u] ≈ σ̂R[v])

are strong quasi-identities in A. For M = HypC
R(τ ), we speak simply of a

strong hyperquasi-identity in A.
A strong quasivariety V of type τ is called M-solid if χA

M [V ] = V . If ce is a
strong M -hyperquasi-identity in A or in V , we will write A |=

sMhq
ce or V

|=
sMhq

ce, respectively.

Example 3.7. Consider the strong regular quasivariety V of type τ = (2)
defined by the following strong quasi-identities:

(S1) x(yz) ≈ (xy)z,

(S2) x2 ≈ x,

(S3) xyx ≈ ε2
1(x, y),

(S4) xy ≈ yx ⇒ ε2
1(x, y) ≈ ε2

2(x, y).

Because of (S1), (S2), (S3) we have to consider exactly the following binary
terms over V :

t1(x, y) = ε2
1(x, y), t2(x, y) = ε2

2(x, y), t3(x, y) = xy, t4(x, y) = yx

and the regular hypersubstitutions σti, i = 1, . . . , 4 which map the binary op-
eration symbol f to the terms ti, i = 1, . . . , 4. It is easy to see that the ap-
plication of each of these regular hypersubstitutions to (S1), (S2), (S3), (S4)
gives a strong identity or a strong quasi-identity which is satisfied in V . This
is enough to show that V is a solid strong quasivariety.
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As usual, the relation |=
sMhq

induces a Galois-connection. For any set cΣ

of quasi-equations of type τ and for any class K of partial algebras of type τ
we define:

HMQModscΣ := {A ∈ PAlg(τ ) | ∀ce ∈ cΣ(A |=
sMhq

ce)},
HMQIdsQK := {ce ∈ cΣ | ∀A ∈ QK(A |=

sMhq
ce)}.

The products HMQModsHMQIds and HMQIdsHMQMods are closure op-
erators. The fixed points with respect to these closure operators form two com-
plete lattices. For a quasi-equation ce, we define χQE

M [ce] := {σ̂R[ce] | σR ∈ M},
and for a set cΣ of quasi-equations we set χQE

M [cΣ] :=
⋃

ce∈cΣ

χQE
M [ce]. Then the

following lemma is very easy to prove.

Lemma 3.8. Let M be a submonoid of HypC
R(τ ). Then the pair (χA

M , χQE
M ) is

a pair of additive closure operators having the property χA
M [A] |=

sq
ce ⇔ A |=

sq

χQE
M [ce] for any quasi-equation ce (a conjugate pair).

Proof By definition χA
M and χQE

M are additive closure operators. We will
use that for every term t of type τ , for every regular hypersubstitution σR and
for every partial algebra A, we have tσR(A) = σ̂R[t]A ([9]). Further we have
χA

M [A] |=
sq

ce

⇔ χA
M [A] |=

sq
(s1 ≈ t1 ∧ . . .∧ sn ≈ tn ⇒ u ≈ v)

⇔ ∀σR ∈ M (σR(A) |=
sq

(s1 ≈ t1 ∧ . . . ∧ sn ≈ tn ⇒ u ≈ v))

⇔ ∀σR ∈ M (sσR(A)
1 = t

σR(A)
1 ∧ . . . ∧ s

σR(A)
n = t

σR(A)
n ⇒ uσR(A) = vσR(A))

⇔ ∀σR ∈ M (σ̂R[s1]A = σ̂R[t1]A ∧ . . . ∧ σ̂R[sn]A = σ̂R[tn]A ⇒ σ̂R[u]A =
σ̂R[v]A)

⇔ ∀σR ∈ M (A |=
sq

(σ̂R[s1] ≈ σ̂R[t1] ∧ . . . ∧ σ̂R[sn] ≈ σ̂R[tn] ⇒ σ̂R[u] ≈
σ̂R[v]))

⇔ ∀σR ∈ M(A |=
sq

σ̂R[ce])

⇔ A |=
sq

χQE
M [ce].

If cΣ is a set of quasi-equations of type τ , then classes of the form
HMQModscΣ are called strong M -hyperquasi-equational classes and the fixed
points under HMQIdsHMQMods are called strong M -hyperquasi-equational
theories. Therefore we can characterize M -solid strong quasivarieties by the
following conditions:
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Theorem 3.9. Let M be a submonoid of HypC
R(τ ). Then for every strong

quasivariety QV ⊆ PAlg(τ ) the following conditions are equivalent:

(i) QV is a strong M -hyperquasi-equational class.

(ii) QV is M -solid, i.e. χA
M [QV ] = QV .

(iii) QIdsQV = HMQIdsQV , i.e. every strong quasi-identity in QV is strong
M -hyperidentity in QV .

(iv) χQE
M [QIdsQV ] = QIdsQV ,i.e. QIdsQV is closed under the operator

χQE
M .

Proof (i)⇒ (ii): Since χA
M is a closure operator, the inclusion QV ⊆ χA

M [QV ]
is clear and we have only to show the opposite inclusion. Assume that B ∈
χA

M [QV ]. Then there is a regular hypersubstitution σR ∈ M and a par-
tial algebra A ∈ QV such that B = σR(A). Since QV is a strong M -
hyperquasi-equational class, there is a set cΣ of quasi-equations such that
QV = HMQModscΣ and A ∈ QV means that for all regular hypersubsti-
tution σR ∈ M and for all ce ∈ cΣ, we have A |=

sq
σ̂R[ce]. By the con-

jugate property from Lemma 3.8 we have that σR(A) |=
sq

ce and therefore

σR(A) ∈ QModscΣ = QV since QV is a strong quasivariety.

(ii)⇒ (iii): From χA
M [QV ] = QV implies that QIdsχA

M [QV ] = QIdsQV .
Because of

QIdsχA
M [QV ] = {ce | ∀σR ∈ M, ∀A ∈ QV (σR(A) |=

sq
ce)}

= {ce | ∀σR ∈ M, ∀A ∈ QV (A |=
sq

σ̂R[ce])}
= HMQIdsQV

we have HMQIdsQV = QIdsQV .

(iii)⇒ (iv): The inclusion QIdsQV ⊆ χQE
M [QIdsQV ] follows from the prop-

erty of χQE
M . We only have to show the opposite inclusion. Let σR ∈ M and

ce ∈ QIdsQV . Then σ̂R[ce] ∈ QIdsQV since QIdsQV = HMQIdsQV .

(iv)⇒ (i): From χQE
M [QIdsQV ] = QIdsQV by applying the operator QMods

on both sides we obtain the equation

QV = QModsQIdsQV = QMods(χQE
M [QIdsQV ]).

Considering the right hand side, we get
QMods(χQE

M [QIdsQV ]) = {A ∈ PAlg(τ ) | ∀ce ∈ QIdsQV, ∀σR ∈ M
(A |=

sq
σ̂R[ce])}

= HMQModsQIdsQV
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and therefore with cΣ = QIdsQV and we have shown that QV is a strong
M -hyperquasi-equational class.

The following Theorem is a consequence of the general theory of conjugate
pairs of additive closure operators (see[7]).

Theorem 3.10. Let M be a submonoid of HypC
R(τ ). Then for every strong

quasi-equational theory cΣ, the following conditions are equivalent:

(i) cΣ is a strong M -hyperquasi-equational theory, i.e. there is a class QV
of partial algebras of type τ such that cΣ = HMQIdsQV .

(ii) χQE
M [cΣ] = cΣ.

(iii) QModscΣ = HMQModscΣ.

(iv) χA
M [QModscΣ] = QModscΣ.

Proof The proof can be given in a similar way as in ([3]).

4 Weakly M-solid strong quasivarieties

Now we define a different concept of M -hypersatisfaction of a quasi-equation.
This leads us to weakly M -solid strong quasivarieties. We will use the operator
χE

M introduced in Section 3.

Definition 4.1. Let A be a partial algebra of type τ , let M be a monoid of
regular hypersubstitutions, and let ce := (s1 ≈ t1 ∧ . . . ∧ sn ≈ tn ⇒ u ≈ v) be
a quasi-equation of type τ . Then ce is called a weakly strong M -hyperquasi-
identity in A if the implication:

χE
M [{s1 ≈ t1 ∧ . . .∧ sn ≈ tn}] ⇒ χE

M [u ≈ v]

is satisfied in A. In this case we write A |=
wsMhq

ce. If every partial algebra A
of a class QV has this property, we write QV |=

wsMhq
ce.

Proposition 4.2. If ce is a strong M -hyperquasi-identity in the class QV of
partial algebras of type τ , then ce is a weakly strong M -hyperquasi-identity in
QV but not conversely.

Proof If ce is a strong M -hyperquasi-identity in QV then for every σR ∈ M
we have σ̂R[ce] ∈ QIdsQV . Therefore we have

∀σR ∈ M((σ̂R[s1] ≈ σ̂R[t1]∧. . .∧σ̂R[sn] ≈ σ̂R[tn] ⇒ σ̂R[u] ≈ σ̂R[v]) ∈ QIdsQV ).(∗)
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Using the rules of the predicate calculus from (∗) we get,

(∀σR ∈ M(σ̂R[s1] ≈ σ̂R[t1] ∧ . . .∧ σ̂R[sn] ≈ σ̂R[tn]) ⇒
⇒ ∀σR ∈ M(σ̂R[u] ≈ σ̂R[v])) ⊆ QIdsQV

and this means

(χE
M [s1 ≈ t1 ∧ . . . ∧ sn ≈ tn] ⇒ χE

M [u ≈ v]) ⊆ QIdsQV (∗∗)
and therefore ce is satisfied as a weakly strong M -hyperquasi-identity in QV .
The converse is not true since it could be possible to find a regular hypersub-
stitution σR1 ∈ M with

σ̂R1 [s1] ≈ σ̂R1 [t1] ∧ . . .∧ σ̂R1 [sn] ≈ σ̂R1 [tn] �⇒ σ̂R1 [u] ≈ σ̂R1 [v] �∈ QIdsQV

even if (∗∗) is satisfied.

Using this new concept we define:

Definition 4.3. A strong quasivariety QV of partial algebras of type τ is
weakly M -solid if every ce ∈ QIdsQV is a weakly strong M -hyperquasi-identity
in QV .

Our next aim is to characterize weakly M -solid strong quasivarieties.
In the usual way the relation |=

wsMhq
induces a Galois connection if we define:

WHMQModscΣ := {A ∈ PAlg(τ ) | ∀ce ∈ cΣ(A |=
wsMhq

ce)},
WHMQIdsQK := {ce ∈ Qτ | ∀A ∈ QK(A |=

wsMhq
ce)}.

For sets cΣ ⊆ Qτ of quasi-equations and QV ⊆ PAlg(τ ) of partial algebras
of type τ . Then the pair (WHMQMods, WHMQIds) is a Galois-connection
between the power sets P(PAlg(τ )) and P(Qτ) and the fixed points of the
closure operators WHMQModsWHMQIds and WHMIdsWHMQMods form
two complete lattices which are dually isomorphic.
We are going to show that strong quasivarieties which are fixed points with
respect to WHMQModsWHMQIds are weakly M -solid.

Proposition 4.4. If QV is a strong quasivariety of partial algebras of type τ
and WHMQModsWHMQIdsQV = QV then QV is weakly M -solid.

Proof ¿From the definition we get

QV = WHMQModsWHMQIdsQV = {A ∈ PAlg(τ ) | ∀ce ∈ QIdsQV (A
|=

wsMhq
ce)}

and this means that every strong quasi-identity in QV is a weak strong M -
hyperquasi-identity in QV .
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If we compare M -solid and weakly M -solid strong quasivarieties, we obtain:

Proposition 4.5. Every M -solid strong quasivariety of type τ is also weakly
M -solid.

Proof If QV is M -solid, then by definition we have χA
M [QV ] = QV . Ap-

plication of Theorem 3.9 gives QIdsQV = HMQIdsQV ⊆ WHMQIdsQV by
Proposition 4.2. But this means by Definition 4.3 that QV is weakly M -solid.

The fixed points with respect to the closure operato
WHMQModsWHMQIds form also a complete lattice and Proposition 4.5
shows that this complete lattice contains the complete lattice of all M -solid
strong quasivarieties of partial algebras of type τ . This does not yet mean that
the complete lattice of M -solid strong quasivarieties is a complete sublattice of
the complete lattice of weakly M -solid strong quasivarieties. We want to show
that the lattice of all weakly M -solid strong quasivarieties is a complete sublat-
tice of the complete lattice of all strong quasivarieties. A way to characterize
complete sublattices of a complete lattice is via Galois-closed subrelations. We
want to mention only the basic facts on Galois-closed subrelations and refer to
[4] for more details.

Definition 4.6. ([4]) Let R and R′ be relations between sets A and B, and
(μ, ι) and (μ′, ι′) be the Galois-connections between A and B induced by R and
R′, respectively. The relation R′ is called a Galois-closed subrelation of R if

1) R′ ⊆ R, and

2) ∀T ⊆ A, ∀S ⊆ B (μ′(T ) = S and ι′(S) = T ⇒ μ(T ) = S and ι(S) = T ).

Then the following Theorem is satisfied

Theorem 4.7. ([4]) Let R ⊆ A × B be a relation between sets A and B with
induced Galois connection (μ, ι). Let Hι,μ be the corresponding lattice of closed
subsets of A.

(i) If R′ ⊆ A × B is a Galois-closed subrelation of R, then the class UR′ :=
Hι′μ′ is a complete sublattice of Hιμ.

(ii) If U is a complete sublattice of H, then the relation

RU :=
⋃

{T × μ(T ) | T ∈ U}

is a Galois-closed subrelation R′ of R.

(iii) For any Galois-closed subrelation R′ of R and any complete sublattice U
of Hιμ we have URU = U and RUR′ = R′.
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We want to apply Theorem 4.7 and prove at first.

Lemma 4.8. |=
wsMhq

is a Galois closed subrelation of |=
sq

.

Proof Let A be a partial algebra of type τ and let ce be a quasi-equation
of type τ such that (A, ce) ∈ |=

wsMhq
. Then A |=

wsMhq
ce and by Definition

4.1 we have A |=
sq

ce. Therefore |=
wsMhq

⊆ |=
sq

.

Assume that K = WHMQModscΣ and cΣ = WHMQIdsK where K ⊆
PAlg(τ ). If A ∈ K, then A |=

wsMhq
cΣ, i.e. for all ce ∈ cΣ we have A |=

wsMhq

ce. But then also A |=
sq

ce by Definition 4.1, therefore A ∈ QModscΣ and

K ⊆ QModscΣ.
Conversely, if A ∈ QModscΣ, then for every ce ∈ cΣ we have A |=

sq
ce and

because of cΣ = WHMQIdsK also A |=
wsMhq

ce for every ce ∈ cΣ and this

means A ∈ WHMQIdsK = K. Altogether we have K = QModscΣ.
¿From ce ∈ cΣ = WHMQIdsK it follows A |=

wsMhq
ce for all A ∈ K. But then

by Definition 4.1, A |=
sq

ce and this means ce ∈ QIdsK and thus cΣ ⊆ QIdsK.

If ce ∈ QIdsK, then for all A ∈ K = WHMQModscΣ we have A |=
sq

ce, there-

fore A |=
wsMhq

ce and ce ∈ WHMQIdsK = cΣ. This shows that QIdsK ⊆ cΣ

and altogether cΣ = QIdsK.

As a consequence we have

Corollary 4.9. For every monoid M of regular hypersubstitutions the lattice of
all weakly M -solid strong quasivarieties is a complete sublattice of the complete
lattice of all strong quasivarieties of type τ .

Proof This follows with Lemma 4.8 from Theorem 4.7.

The next, step is to define the following operator χwQE
M on sets of quasi-

equations. Let ce : ce′ ⇒ ce′′ be a quasi-equation. Then

χwQE
M [ce] := χQE

M [ce′] ⇒ χQE
M [ce′′].

For sets cΣ of quasi-equations we define: χwEQ
M [cΣ] =

⋃
ce∈cΣ

χwQE
M [ce].

This operator has the following properties:

Proposition 4.10. The operator χwQE
M : P(Qτ) → P(Qτ) is monotone and

idempotent, but in general not extensive.
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Proof By definition the operator χwQE
M is additive and therefore monotone.

We show the idempotency. Let cΣ ⊆ Qτ and ce ∈ cΣ. Then χwQE
M [ce] =

χQE
M [ce′] ⇒ χQE

M [ce′′] if ce is the implication ce′ ⇒ ce′′. Then
χwQE

M [χwQE
M [ce]] = χQE

M [χQE
M [ce′]] ⇒ χQE

M [χQE
M [ce′′]]

= χQE
M [ce′] ⇒ χQE

M [ce′′]
= χwQE

M [ce]
for every ce ∈ cΣ since the operator χQE

M is idempotent. Since χwQE
M is

additive, we obtain the idempotency.

Finally we want to give an example showing that a strong quasivariety can
satisfy an implication as a weakly strong M -hyperquasi-identity, but not as a
strong M -hyperquasi-identity.
We consider the strong regular quasivariety V of type τ = (2) defined by

(i) x(yz) ≈ (xy)z,

(ii) x2 ≈ x,

(iii) xyuv ≈ xuyv,

(iv) xy ≈ yx ⇒ ε2
1(x, y) ≈ ε2

2(x, y).

There are exactly the following binary terms over QV : ε2
1(x, y), ε2

2(x, y), xy, yx,
xyx, yxy. We prove that (iv) is a weakly strong hyperquasi-identity in QV .
That means, for every partial algebra A ∈ QV we have to prove

(A |=
shq

xy ≈ yx) ⇒ (A |=
shq

ε2
1(x, y) ≈ ε2

2(x, y)).

This becomes clear because ofA |=
shq

xy ≈ yx ⇔ ∀σR(A |=
sq

σ̂R[xy] ≈ σ̂R[yx] ⇔
A |=

sq
ε2
1(x, y) ≈ ε2

2(x, y)∧A |=
sq

ε2
2(x, y) ≈ ε2

1(x, y)∧A |=
sq

xy ≈ yx∧A |=
sq

yx ≈
xy ∧ A |=

sq
xyx ≈ yxy ∧ A |=

sq
yxy ≈ xyx). The implication xy ≈ yx ⇒

ε2
1(x, y) ≈ ε2

2(x, y) is satisfied as a weakly strong hyperquasi-identity also in the
case if A |=

shq
xy ≈ yx is wrong, for instance, if A |=

shq
ε2
1(x, y) ≈ ε2

2(x, y) is not

satisfied and if A |=
shq

ε2
1(x, y) ≈ ε2

2(x, y) is satisfied. In this case A has more

than one element and is commutative. But then xy ≈ yx ⇒ ε2
1(x, y) ≈ ε2

2(x, y)
is not a strong quasi-identity in A and xy ≈ yx ⇒ ε2

1(x, y) ≈ ε2
2(x, y) is not

satisfied as a strong hyperquasi-identity.
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