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Abstract

In this paper we introduce the notion of digroup. It constitutes a
version of the concept of group for sets with two products, such that,
each element has an inverse which is the same for the two products.
The basic results of the digroups are proved and some open problems
are enunciated. Also, it is presented an approach of the representation
theory for digroups where the notion of regular vector in Leibniz algebras,
introduced recently by the author (see [3]), has a fundamental role.

1 Introduction

The Leibniz algebras and dialgebras first arose in algebraic K-theory and are
objects of current interest. They were introduced by J.L.Loday and these
constitute an extension of the concepts of Lie algebra and associative algebra
respectively. More exactly, the Leibniz algebras are a generalization of Lie
algebras, for which the skew-symmetry condition of the bracket is dropped
and only the Jacobi identity is retained. On the other hand the definition of
dialgebra is the following:

Definition 1. A dialgebra is a vector space V together with two associative
and bilinear operators, �, �, satisfying the following requirements
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28 Digroups and their linear representations

x � (y � z) = x � (y � z) ,
(x � y) � z = x � (y � z) ,
(x � y) � z = (x � y) � z,

for all x, y and z of V . These operators are called respectively, right and left
products.

We say that e is a bar-unit of a dialgebra (V,�,�) if e � v = v = v � e for
any v ∈ V . It is well known that if a dialgebra is given then it gives rise to a
Leibniz algebra which is obtained by defining the bracket as

[x, y] = x � y − y � x

see [9] and [10] for more detail.
A basic problem in this context is the construction of dialgebras with bar-

unit that are not associative algebras. Here it will be given an interesting dial-
gebra with a bar-unit: the so called “digroup dialgebra” which is not abelian.
Thus we shall generalize the concept of group. For this we introduce the no-
tion of digroup. Many questions arise around this concept that it should be
considered in forthcoming papers. Some of them are:

i) Abstract harmonic analysis on topology digroup and construction
of new dialgebras.

ii) Cohomology of digroups.
iii) To construct Hopf dialgebras and quantum digroups.
The aims of this paper are two: 1) to introduce the notion of digroup as a

possible extensions of the group theory to sets with two products, 2) for these
digroups to study their linear representations.

I would like to thank to M.Kinyon by correspondence and advices about
this paper.

This paper is dedicated to the memory of my cousin Ana Margarita.

2 The notion of digroup.

We begin this section introducing three sets each one of which will be equipped
with two suitable products. Subsets belong to these sets will be the first ex-
amples of digroups in our paper.

1) Let X be an arbitrary set. We define x � y = y for any x, y ∈ X and
z � w = z for all z, w ∈ X. Observe that in general y = x � y �= x � y = x.
Then
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(x � y) � z = y � z = z,
(x � y) � z = x � z = z,
x � (y � z) = x � y = x,
x � (y � z) = x � z = x,
(x � y) � z = y � z = y,
x � (y � z) = x � y = y,

Let us denote the set X equipped with these products by Xl.
2)Let V be a finite dimensional vector space over C and V ∗ its dual space.

If ϕ is a nonzero element of V ∗ then we define the following products:

x � y = ϕ (x)y, w � z = ϕ (z)w

where x, y, z and w are elements of V . Now if x, y and z are elements of V we
have

x � (y � z) = x � (ϕ (z) y) = ϕ (ϕ (z) y) x = ϕ (z)ϕ (y) x,

on the other hand

x � (y � z) = x � (ϕ (y) z) = ϕ (ϕ (y) z) x = ϕ (y) ϕ (z)x,

from the two last equations it now follows that x � (y � z) = x � (y � z). Next,
we would like to prove that (x � y) � z = x � (y � z)

(x � y) � z = (ϕ (x) y) � z = ϕ (z)ϕ (x)y

and

x � (y � z) = x � (ϕ (z) y) = ϕ (x)ϕ (z) y

then, as was claimed, the equality holds. Finally we have

(x � y) � z = (ϕ (y) x) � z = ϕ (ϕ (y) x) z = ϕ (y) ϕ (x) z,

also we have

(x � y) � z = (ϕ (x) y) � z = ϕ (ϕ (x) y) z = ϕ (x)ϕ (y) z,

so (x � y) � z = (x � y) � z. Let Vϕ denote any vector space V equipped with
these products.

3) Let V be a finite dimensional vector space and Π : V → V a linear
operator such that Π2 = Π and

x � y = Πx + y, w � z = w + Πz

where x, y, z and w are elements in V . Then, it will be shown that x �
(y � z) = x � (y � z). In fact
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x � (y � z) = x � (y + Πz)
= x + Π(y + Πz)
= x + Πy + Π2z = x + Πy + Πz,

now

x � (y � z) = x � (Πy + z)
= x + Π(Πy + z)
= x + Π2y + Πz = x + Πy + Πz,

this proves the equality required. On the other hand we have that (x � y) �
z = Πx + y + Πz and x � (y � z) = Πx + y + Πz, that is (x � y) � z = x �
(y � z). Finally, the last property of these products that we would like to show
is (x � y) � z = (x � y) � z. Let us prove it

(x � y) � z = (x + Πy) � z

= Π(x + Πy) + z

= Πx + Π2y + z

= Πx + Πy + z,

and

(x � y) � z = (Πx + y) � z

= Π(Πx + y) + z

= Π2x + Πy + z

= Πx + Πy + z,

the last two equalities show that (x � y) � z = (x � y) � z as required. Here-
after we adopt the notation V (Π) for any vector space V with these products.

Historically the groups have been one of concepts more studied and it is
one of the most fundamental concepts of contemporary mathematics, however
after almost two century of development this theory has not been extended to
sets with two special operators. An analysis of the sets Xl, Vϕ and V (Π) lead
us to extend the group theory to sets with two particular products.

Definition 2. A digroup is a pair (G, e) where G is a nonempty set and e ∈ G,
such that, the set G is equipped with two associative maps called respectively
right product and left product:
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�: G × G → G,
�: G × G → G,

satisfying the following requirements:
a)

x � (y � z) = x � (y � z) ,
(x � y) � z = x � (y � z) ,
(x � y) � z = (x � y) � z.

b) For any g ∈ G it holds that

e � g = g = g � e,

the vector e is called the bar-unit of G.
c) For all g ∈ G there exists an unique element g−1 ∈ G such that with

respect to e we have

g � g−1 = e = g−1 � g,

we say g−1 is the inverse of g.

It must be noted that from this definition it does not follow that e is the
unique identity in G; in fact in general the digroup can have many identities
(that is several vectors ẽ such that ẽ � g = g = g � ẽ for all g ∈ G). The
notation (G, e) only suggests that between all the identities we have chosen e
as the bar-unit of (G, e) with respect to which have means the point c) of the
definition 2.

Remark 3. After this paper was written the Prof. J.L.Loday has pointed to
the author that when he discovered the Leibniz algebras in 1988 he was immedi-
ately led to the search of an analogue at the group level, because his motivation
was algebraic K-theory. Later on he mentioned in several papers what kind of
properties he expected for such a new algebraic structure which he called “coque-
cigrue” (which means roughly hypothetical bird in french). On the other hand
we shall say that the notion of digroup discussed here has been also introduced
independently by M.Kinyon and K.Liu, see [2], [6] and [8] for more detail.

Remark 4. It is clear that in the Definition 2 the important point is to decide
about the analogue of the inverse: should one ask for one type of inverse or two
types of inverse (one for each product)?, in this paper we have chosen the first
option. We would like to thank the referee for telling me that in his book [10]
Liu has considered a wider definition of digroup.

Below we establish the basic properties of a digroup.

Example 5. Let X be a set and x0 an element in X. Then (Xl , x0) is a
digroup. In fact x0 � z = z = z � x0 for all z ∈ Xl, moreover z � x0 = x0 =
x0 � z for any z ∈ Xl.
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Example 6. The set V (Π) is a digroup. Here e = θ and g−1 = −Πg for all
g ∈ G.

Example 7. Let V be a finite dimensional vector space and let ϕ be a nonzero
element of V ∗ then the set V̂ϕ = {x ∈ V | ϕ (x) �= 0} ⊂ Vϕ is a digroup with
bar-unit e = x0

ϕ(x0)
for some x0 ∈ V̂ϕ. If z ∈ V̂ϕ then z−1 = 1

ϕ(z)e. These
digroups will be called ϕ-digroups.

Remark 8. Let (G, e) be a digroup and f ∈ G some unit of G then f−1 = e.

Remark 9. It is easy to show that if (G, e) is a digroup and g = e � g for any
g ∈ G then �=� and G is a group, thus all groups are digroups.

Remark 10. M.Kinyon has seen in [6] that every digroup is a product of a
group and a “trivial digroup”, that is, a set which is both a left zero and right
zero semigroup. For instance, example 5 of this paper is a “trivial digrou”; in
example 7 the group in question is just a copy of the field and the trivial digroup
is the kernel of the linear functional; in the example 6, the group is the range
of Π and trivial digroup is the kernel of Π.

3 Some elementary results of the digroups

A digroup (G, e) is called abelian if x � y = y � x for all x, y ∈ G. A nonempty
subset H ⊂ G is said to be a subdigroup of (G, e), provided that (H, e) is a
digroup for the same products that (G, e).

The proofs of all the results of this section were given in a different way in
[2], when the author did not know the simultaneous works by Kinyon and Liu
about digroups, however in the present paper we try to simplify these using
the results in the references.

Lemma 11. Let (G, e) be a digroup then for all g ∈ G we have
(
g−1

)−1 = g �
e = e � g.

Proof. The proof follows from Lemma 4.3 (2) and Lemma 4.5 (1) in [6].

Theorem 12. In order that (H, e) can be a subdigroup of a digroup (G, e) it
is necessary and sufficient that for all f, g, l, m, n ∈ H the elements f � e,
g−1 � l and m � n−1 belong to H.

Proof. The conditions are clearly necessary. Let x ∈ H then
(
x−1 � x

) � e =(
x−1 � x

) � e = e ∈ H . Since now we know that e is an element of H , x−1 �
e = x−1 � (x � x−1

)
=
(
x−1 � x

) � x−1 = e � x−1 = x−1 ∈ H , thus for all
x ∈ H also x−1 ∈ H . It follows from the Lemma 11 that f � g = (f � e) � g =
(f � e) � g =

(
f−1

)−1 � g ∈ H for all f , g ∈ H . Finally, also using the referred
Lemma 11 we have m � l = m � (e � l) = m � (e � l) = m � (l−1

)−1 ∈ H for
any m, l ∈ H . Hence H is closed under the products � and �. Consequently
the theorem is proved.
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Observe that buried in the proof of this theorem is the result x−1 � e = x−1

for all x ∈ G which leads to the fact obtained by Kinyon in [6] that the set
of inverses in a digroup is a group (the group mentioned in the remark 10) in
which �=�.

The intersection of two subdigroups (H, e) and (K, e) of a digroup (G, e)
is not an empty set, since all subdigroups contain the element e. It is really a
subdigroup of G. On the other hand, it is interesting to note that if (H1, e),
(H2, e), · · · , (Hn, e),· · · are subdigroups of a digroup (G, e) which form an
ascending sequence, that is, Hn ⊂ Hn+1, n = 1, 2, · · · , then (∪Hn, e) is a
subdigroup of (G, e).

From now on all operators in any digroup will be denoted by � and �, this
should cause no confusion.

Definition 13. A mapping γ of a digroup (G, e) into a digroup (G′, e′) is
called a digroup-homomorphism (or homomorphism) if γ (a � b) = γ (a) � γ (b)
and also γ (c � d) = γ (c) � γ (d) for all a, b, c, d ∈ G. A homomorphism
one-to-one correspondence is called a digroup-isomorphism (or isomorphism).

Let γ be a homomorphism of (G, e) into (G′, e′), if γ (G) = G′, then γ (e)
is a unit of G′. Observe that γ (e) �= e′ can happen. We now assume that
γ (e) = e′, we shall show that (γ (x))−1 = γ

(
x−1

)
for all x ∈ G, in fact

e′ = γ (e) = γ
(
x � x−1

)
= γ (x) � γ

(
x−1

)
, on the other hand we have e′ =

γ (e) = γ
(
x−1 � x

)
= γ

(
x−1

) � γ (x). Hence, (γ (x))−1 = γ
(
x−1

)
.

Example 14. If (G, e) and (G′, e′) are digroups, the direct product of G with
G′, denoted G × G′ is the set of all ordered pairs (g, g′) , where g ∈ G and
g′ ∈ G, with the two operators (g, g′) � (f, f ′) = (g � f, g′ � f ′) and (g, g′) �
(f, f ′) = (g � f, g′ � f ′). It is easy to check that (G× G′, (e, e′)) is a digroup
containing homomorphic copies of G and G′ namely, G × {e′} and {e} × G′.

Now we have

Theorem 15. Let γ be a homomorphism of (G, e) into (G′, e′) such that γ (e) =
e′. Then, if we define N = {g ∈ G | γ (g) = e′}, (N, e) is a subdigroup of (G, e)
and is called the kernel of γ.

Proof. Note that e ∈ N . Let us assume that x ∈ N then e′ = γ
(
x−1 � x

)
=

γ
(
x−1

) � e′ = γ
(
x−1

)
. Thus, x−1 ∈ N . It is now obvious that if a, b, c, d and

f are arbitrary elements of N then a � e, b−1 � c and d � f−1 belong to N .
The Theorem is proved.

Theorem 16. Let γ be a homomorphism of (G, e) into (G′, e′) such that γ (e) =
e′. We define I′ = {γ (g) | g ∈ G} ⊂ G′, then (I′, e′) is a subdigroup of (G′, e′).

Proof. First let us note that e′ ∈ I′. Suppose that h′ ∈ I′ then h′ = γ (h) for
some h ∈ G. Hence, we have (h′)−1 = (γ (h))−1 = γ

(
h−1

)
. It is then clear
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that (h′)−1 ∈ I′. Finally, it is a simple matter to verify that if a′, b′, c′, d′ and
f ′ are arbitrary elements of I′ then a′ � e′, (b′)−1 � c′ and d′ � (f ′)−1 are also
elements of I′.

A subdigroup (H, e) of the digroup (G, e) is called invariant or normal if
a−1 � x � a ∈ H for all a ∈ G and any x ∈ H . Then we have

Proposition 17. Under the conditions of the Theorem 15, (N, e) is an invari-
ant or normal subdigroup.

Proof. Let z =
(
a−1 � x

) � a where x ∈ N and a ∈ G then from Lemma 11
it follows that γ(z) = γ

(
a−1 � x

) � γ (a) = (γ (a))−1 � e′ � γ (a) = e′, this
establishes that z ∈ N . Hence N is a normal subdigroup.

Lemma 18. Let (G, e) be a digroup and let (H, e) be a normal subdigroup of
it. Then a−1 � H � a = H for any a ∈ G.

Proof. Since (H, e) is an invariant subdigroup we have that

a−1 � H � a ⊂ H (1)

for all a ∈ G. Let b ∈ G arbitrary then taking a = b−1 in (1) we have
(b � e) � H � b−1 ⊂ H , now multiplying this inequality by b to the left and by
b−1 to the right we obtain that

b−1 � ((b � e) � H � b−1
) � b ⊂ b−1 � H � b, (2)

but b−1 � ((b � e) � H � b−1
) � b = H , hence from (2) it follows that

H ⊂ b−1 � H � b (3)

for all b ∈ G. Thus (1) and (3) show that c−1 � H � c = H for any c ∈ G.

Corollary 19. If (H, e) is a normal subdigroup of (G, e), then also we have
b � H � b−1 = H for all b ∈ H.

Proof. By the preceding Lemma a−1 � H � a = H for any a ∈ G. Let b ∈ G

and a = b−1 then we have
(
b−1
)−1 � H � b−1 = H hence (b � e) � H � b−1 =

H , that is, b � (e � H) � b−1 = H .

Let (G, e) be a digroup, a homomorphism f : (G, e) → (G, e) is called
an endomorphism of (G, e); an isomorphism f : (G, e) → (G, e) is called an
automorphism of (G, e).

Proposition 20. Let (G, e) be a digroup and the mapping ua:G → G defined by
the following form uag = a−1 � g � a for a ∈ G. Then ua is an automorphism
of (G, e). It is called an inner automorphism of (G, e).
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Proof. If we define a ◦ b = a � b � a−1 for every a and b of G, then uag =
a−1 ◦ g and we can use the Lemma 5.1 (2), (3) of [6], to see that ua (g � f) =
(uag) � (uaf) and ua (g � f) = (uag) � (uaf). In order to prove that ua is
an automorphism of (G, e), we must show that ua is one-to-one. Assume that
uaf = uag then a−1 � f � a = a−1 � g � a, but it implies that (a−1 � f) =
(a−1 � g) and hence f = g.

Theorem 21. Let γ be an automorphism of the digroup (G, e), such that,
γ (e) = e. Let L (γ) = {g ∈ G | γ (g) = g} then (L (γ) , e) is a subdigroup of
(G, e).

Proof. It follows from Theorem 12.

We would like to call the attention that the results found in the rest of the
paper don’t appear in [2].

4 Regular linear transformations

The representation theory of groups has nearly 110 years old and its importance
have increased prominently ever since, for instance, at the present it has been
an important source of inspiration for the mathematical physics. Next we
describing a first approach for the representation theory of digroups. It is
based on the formalism of regular vector in a dialgebra developed in [3].

In order to state our results we need the following definition introduced by
the author in [3].

Definition 22. An element x in a dialgebra (U ,�,�) is said to be (�)−regular
((�) − regular) with respect to a bar-unit e provided there exists x� ∈ U (x� ∈ U , ),
such that x � x� = (e − x)+(x � e) (x� � x = (e − x) + (e � x)) . The element
x� (x�) is called a (�)-inverse ((�) -inverse) for x with respect to e. An element
which is both (�)−regular and (�)−regular with respect to e, is called regular
if it has a (�)−inverse that is also a (�)−inverse, both with respect to e (that
is x� = x�).

It is interesting to note that if � is equal to � then these definitions coincide
with the usual ones.

Let V a vector space of dimension n on C. We have proved in the previous
mentioned paper [3] that related with a fixed base {a1, · · ·an} of V is defined
a structure of dialgebra on this vector space. We present this result here for
further completeness in the writing of the paper (see [3] for more details).
With the help of the base {a1, · · ·an} is introduced the usual inner product
〈x, y〉 = x1y1 + · · ·+ xnyn where x = x1a1 + . . . xnan and y = y1a1 + . . . ynan.
Then, we choose e0 ∈ V such that ‖e0‖2 = 1 and define two products as
following: x � y = 〈x, e0〉 y, z � w = 〈w, e0〉 z for any x, y, z, w ∈ V . As
was proved in [3] , (V,�,�) is a dialgebra. It is called the principal dialgebra
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generated by V and the vector e0 and from now it will be denoted by V (e0).
It is possible to show that e0 is a bar-unit of V (e0), that is, e0 � x = x � e0

for all x ∈ V (e0).
Let L (V (e0)) be the set of all linear operators of V into itself.

Definition 23. We say that A ∈ L (V (e0)) is a regular linear transformation
with respect to e0 if Ae0 is a regular vector of V (e0).

It is not difficult to prove that Ae0 is a regular vector of V (e0) if and only
if 〈Ae0, e0〉 �= 0. Since Ae0 is a regular vector in V (e0) then by the Definition
23, there exits a vector r (e0) such that

Ae0 � r (e0) = (e0 − Ae0) + (Ae0 � e0) , (4)

and also

r (e0) � Ae0 = (e0 − Ae0) + (e0 � Ae0), (5)

hence r (e0) = (e0−Ae0)
〈Ae0,e0〉 + e0.

It is easy to show that for any x ∈ V (e0) we have (Ae0 � r (e0)) � x = x =
x � (r (e0) � Ae0). In fact, let x be an arbitrary element of V (e0) then we have

(Ae0 � r (e0)) � x = ((e0 − Ae0) + (Ae0 � e0)) � x

= ((e0 − Ae0) � x) + ((Ae0 � e0) � x)
= x − (Ae0 � x) + (Ae0 � (e0 � x))
= x − (Ae0 � x) + (Ae0 � x)
= x,

of the same way it is proved that x � (r (e0) � Ae0) = x. Hence, we can define
an operator A−1 in the following form A−1x = r (e0) � x = 〈r (e0) , e0〉x = x �
r (e0). Clearly the operator A−1 is linear and moreover A � A−1 = I = A−1 �
A.

The collection of all the regular linear transformations with respect to e0 of
L (V (e0)) is denoted by R (V (e0)).

Lemma 24. If A ∈ R (V (e0)), then A−1 ∈ R (V (e0)).

Proof. We should show that A−1 is regular. In other words it should be
proven that A−1e0 is a regular vector of V (e0). Now A−1e0 = r (e0) � e0 =
〈r (e0) , e0〉 e0 =

(〈
(e0−Ae0)
〈Ae0,e0〉 + e0, e0

〉)
e0 = e0

〈Ae0,e0〉 . Hence, we have〈
A−1e0, e0

〉
=

1
〈Ae0, e0〉 ,

thus
〈
A−1e0, e0

〉 �= 0. The Lemma is proved.
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We also remember that in the work [3] on the space L (V (e0)) a dialgebra
structure was introduced using the following two products: Let us take A, B,
C and D in L (V (e0)) then are defined A � B and C � D in each x of V (e0)
making (A � B) (x) = Ae0 � Bx and (C � D) (x) = Cx � De0. These products
convert to the space L (V (e0)) in a dialgebra. Let us see it in detail, first of
all note that A � B and C � D are linear operators for all A, B, C and D in
L (V (e0)). It follows of the definition of � that for A, B and C in L (V (e0))

(A � (B � C)) (x) = Ax � (B � C) (e0)
= Ax � Be0 � Ce0,

on the other hand

(A � (B � C)) (x) = Ax � (B � C) (e0)
= Ax � Be0 � Ce0,

since V (e0) is a dialgebra then Ax � (Be0 � Ce0) = Ax � (Be0 � Ce0). There-
fore we have A � (B � C) = (A � (B � C)).

In a similar way one can show that (A � B) � C = A � (B � C). In fact

((A � B) � C) (x) = (A � B) (x) � Ce0

= (Ae0 � Bx) � Ce0,

and we check

(A � (B � C)) (x) = Ae0 � (B � C) (x)
= Ae0 � (Bx � Ce0) ,

using now the fact that V (e0) is a dialgebra we have ((A � B) � C) = (A � (B � C)).
The reader easily examines that also (A � B) � C = (A � B) � C.

The following Lemma will be useful.

Lemma 25. Let A be a element of L (V (e0)), regular relative to e0 and let
R ∈ L (V (e0)) such that R � A = I = A � R. Then R = A−1, that is,
Rx = r (e0) � x = 〈r (e0) , e0〉x = x � r (e0) for all x ∈ V (e0).

Proof. Since R � A = I, for any x ∈ V (e0) we have x = (R � A)x = Rx � Ae0.
Then if r (e0) is the inverse of Ae0 in the dialgebra V (e0) we obtain
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x � r (e0) = (Rx � Ae0) � r (e0)
= Rx � (Ae0 � r (e0))
= Rx � (Ae0 � r (e0))
= Rx � ((e0 − Ae0) + (Ae0 � e0))
= (Rx � (e0 − Ae0)) + (Rx � (Ae0 � e0))
= (Rx � (e0 − Ae0)) + (Rx � (Ae0 � e0))
= (Rx � (e0 − Ae0)) + (Rx � Ae0)
= (Rx � e0) − (Rx � Ae0) + (Rx � Ae0)
= Rx,

because r (e0) � x = 〈r (e0) , e0〉x = x � r (e0), also it is easy to see that
the equality I = A � R implies that R = A−1.

5 Principal linear representation of digroups

We have

Theorem 26. (R (V (e0)) , I) is a digroup.

Proof. Note that if A, B ∈ R (V (e0)) then A � B, A � B ∈ R (V (e0)).
Now, suppose that A ∈ R (V (e0)) then from the Lemma 26 we have that
A−1 ∈ R (V (e0)) and according the Lemma 27 it follows that A−1 is unique.
Since L (V (e0)) is a dialgebra, we only need to verify that I ∈ R (V (e0)), and
moreover that I � A = A = A � I for all A ∈ R (V (e0)), but these facts are
evident.

It is the moment for the following definition

Definition 27. Let (D, e) be a digroup and V a finite dimensional vector space
and L (V (e0)) the principal dialgebra generated by V and e0. A principal linear
representation of (D, e) by V is a transformation T : D → R (V (e0)) such that

Te = I,
T (d1 � d2) = Td1 � Td2,
T (d1 � d2) = Td1 � Td2

(6)

It follows of (6 − 2) and (6 − 3) that Tg � Tg−1 = T
(
g � g−1

)
= Te = I

moreover Tg � Tg−1 = T
(
g � g−1

)
= Te = I, Hence Tg−1 = (Tg)−1. The

properties (6 − 2) and (6 − 3) imply that T is a homomorphism.
It clear that if T is a principal linear representation of (D, e) by V and (H, e)

is a subdigroup of (D, e) then T|H is a principal linear representation of (H, e)
by V . The mapping Eg = I for any g ∈ D is a principal linear representation
and it is called the trivial principal linear representation.
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Example 28. ϕ−digroups and a principal linear representation for these.
We recall the following facts (see Example 7): let V be a finite dimensional
vector space and let ϕ be a nonzero element of V ∗, then the set V (ϕ) =
{x ∈ V | ϕ (x) �= 0} can be equipped with the following two products: the first
x � y = ϕ (x) y and the second z � w = ϕ (w) z for any x, y, z and w belong
to V . Let x0 ∈ V (ϕ) and e = x0

ϕ(x0)
(note that e ∈ V (ϕ)) then as it was

shown (V (ϕ) , e) is a digroup relative to these two products which was called
the ϕ−digroup generated by ϕ. We recall also that for x ∈ V (ϕ) its inverse
is the element x−1 = e

ϕ(x) . Next, we can then to construct a basis of V which
contain the vector e. In this basis we have 〈e, e〉 = 1. Thus, it is possible
to introduce the space L (V (e)) itself. Let us define Tx for any x ∈ V (ϕ)
of the following form: Txz = x � z, evidently Tx is a linear transformation
and is regular. To see this later observe that Txe = x � e = ϕ (x) e, thus
〈Txe, e〉 = ϕ (x) �= 0 since x ∈ V (ϕ). These transformations can be used to
construct a principal linear representation of V (ϕ) by V . In fact, Te = I,
that is, Te is the identity operator on V (e). On the other hand for any x,
y ∈ V (ϕ) and all z ∈ V (e) we have T(x�y)z = (x � y) � z = ϕ (x)ϕ (y) z,
moreover (Tx � Ty) z = Txe � Tyz = (ϕ (x) e) � (ϕ (y) z) = ϕ (x)ϕ (e) ϕ (y) z =
ϕ (x)ϕ (y) z. Hence, T(x�y) = Tx � Ty. The equality T(x�y) = Tx � Ty is proved
in similar way.

Now, we will indicate as to construct some principal linear representations
for concrete finite digroups.

Formally, a digroup (D, e) is called finite if it have a finite number of ele-
ments. If (D, e) have n elements, we say that (D, e) is of order n. As already
was indicated if D = {x, y} is an arbitrary set of two elements we can introduce
a 2 × 2 (�)−multiplication table and a 2 × 2 (�)−multiplication table in D of
the following form:

� x y
x x y

y x y

� x y
x x x

y y y
,

such that (D, x) is a digroup of order 2. This digroup will be denoted by
D (x, y) .

A principal linear representation of D (x, y) is constructed as follows. Let V
be a vector space of dimension 2 in which we have fixed a basis {v1, v2}. Let e0

be the following vector of V : e0 = 1√
2

(v1 + v2), is clear that ‖e0‖2 = 1. This
linear principal representation must be defined by two linear transformations of
L (V (e0)). We put Tx = I, where I is the identity transformation of L (V (e0))
and define Ty as the linear transformation of L (V (e0)) which sends v1 to v2

and sends v2 to v1. We wish to prove that T : x → Tx, y → Ty is a principal
linear representation of D (x, y) by V . In fact, first of all we observe that
Tye0 = 1√

2
(Tyv1 + Tyv2) = 1√

2
(v2 + v1) = e0. It follows that 〈Tye0, e0〉 =
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1 �= 0. Hence, Ty is a regular linear transformations with respect to e0. It
is obvious that Tx�y = Ty, on the other hand for all z ∈ V (e0) we have
(Tx � Ty) z = (I � Ty) z = e0 � Tyz = Tyz. It shows that Tx�y = Tx � Ty. We
must also verify that Ty�x = Ty � Tx. Note that Ty�x = Tx = I and moreover
for any z ∈ V (e0) we have (Ty � Tx) z = Tye0 � Txz = e0 � z = z = Iz.
Consequently it implies that Ty � Tx = I, thus Ty�x = Ty � Tx. Finally, it
is easy to see that Tx�y = Tx = I, Ty�x = Ty, Tx � Ty = I � Ty = I and
Ty � Tx = Ty � I = Ty. Hence Tx�y = Tx � Ty and Ty�x = Ty � Tx. Now
we shall see what happen in this construction for products x � x, x � x, y � y
and y � y. Note that x � x = x = x � x and y � y = y = y � y then we
have Tx�x = Tx�x = Tx = I, on the other hand Tx � Tx = Tx � Tx = I.
By a simple calculation we also have Ty�y = Ty�y = Ty and since Tye0 = e0,
Ty � Ty = Ty = Ty � Ty. Thus, we have constructed a principal linear
representation of D (x, y) by this V .

This construction can be extended to certain class of finite digroups (see
Example 5 when X is a finite set). A “plucked” digroup is a digroup (D, e)
in which the products � and � are defined in the following form: x � y = y
for all x, y ∈ D and z � w = z for any z, w ∈ D. If a “plucked” digroup
is of finite order and its order is n we denote it by D (x1, · · · , xn) where D =
{x1, · · · , xn} is the set of its elements and x1 is the bar-unit of the digroup. Now
we discuss here a principal linear representation of D (x1, · · · , xn); as before we
take a vector space V of equal dimension that the order of the digroup, that
is, dimV = n. We can also choose a basis {vxi}xi∈D indexed by the elements
xi of D (x1, · · · , xn). Put e0 = 1√

n
(
∑n

i=1 vxi) then as before ‖e0‖2 = 1. We
define Tx1 = I and for each xi, i �= 1 we define Txi as the linear transformation
of L (V (e0)) which sends vxi to vx1 and vx1 to vxi moreover it sends vxk to vxk

for any k different of 1 and i. We use the following simple Lemma

Lemma 29. For any xi ∈ D, the map Txi is regular, in other words Txi ∈
R (V (e0)).

Proof. In fact, we have seen above that Tx1 = I is regular. For any xi ∈ D
with i �= 1 we have

Txie0 =
1√
n

(
n∑

i=1

Tvxi

)

=
1√
n

⎛⎝⎛⎝ ∑
j 
=1, j 
=i

Tvxj

⎞⎠+ Tvx1 + Tvxi

⎞⎠
=

1√
n

⎛⎝⎛⎝ ∑
j 
=1, j 
=i

vxj

⎞⎠+ vxj + vx1

⎞⎠
= e0,
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it follows that 〈Txie0, e0〉 = 1 �= 0. Hence Txi is regular also for i �= 1.

Let us now apply this Lemma to present principal linear representations of
the digroup D (x1, · · · , xn). They are constructed in similar way that in the
case D (x, y).

Theorem 30. Let D (x1, · · · , xn) be the “plucked” digroup defined by the set
D = {x1, · · · , xn}. A principal representation of D (x1, · · · , xn) by V is given
for the map T : xi → Txi . Here V is a vector space of dimension n and Txi

are the linear transformations constructed as before in the space L (V (e0)).

Proof. ¿From Lemma 31 the linear transformations Txk are regulars for all k.
The prove of Tx1�xi = Tx1 � Txi , Txi�x1 = Txi � Tx1 , Tx1�xi = Tx1 � Txi and
Txi�x1 = Txi � Tx1 for i �= 1 is similar to the case n = 2. Let i �= 1 and j �= 1
then clearly Txi�xj = Txj . Now, we observe that for all z ∈ V (e0) from the
proof of the Lemma 31 it is holds that

(
Txi � Txj

)
z = Txie0 � Txj z = e0 �

Txj z = Txjz, that is Txi � Txj = Txj . It follows that Txi�xj = Txi � Txj .
In similar way is proved that Txi�xj = Txi � Txj for all i and j such that
i �= 1 and j �= 1. Finally it is evident that Tx1�x1 = Tx1 � Tx1 = I and
Tx1�x1 = Tx1 � Tx1 = I.

6 Linear representation of digroups by abelian
dialgebras

Let (V,�,�) be a dialgebra and let e0 be a bar-unit of it. The subset of L(V )
be composed of all the linear transformations which are regular with respect
to e0, is denoted by R (V, e0). Explicitly, A ∈ R (V, e0) means that A ∈ L(V )
and Ae0 is regular in V . It is well known that L(V ) is a dialgebra relative to
the same products that were introduced above for the space L(V (e0)). There
V was a finite dimensional vector space but this condition is not essential (see
[3]).We say that (V,�,�) is abelian if y � x = x � y for all x, y ∈ V , clearly it
does not means that �=�.

We start this part of the paper extending some results of the section 5. We
first observe that if A, B ∈ R (V, e0) where V is an abelian dialgebra, then
A � B, A � B ∈ R (V, e0). In fact, assume that A, B ∈ R (V, e0), since Ae0

and Be0 are regulars in V , then

Ae0 � r1 (e0) = (e0 − Ae0) + (Ae0 � e0) ,

and

Be0 � r2 (e0) = (e0 − Be0) + (Be0 � e0) ,

where r1 (e0), r2 (e0) ∈ V .
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Let us denote h (e0) = (e0 − (Ae0 � Be0)) + ((Ae0 � Be0) � e). It is easy
to see that

Ae0 � (Be0 � r2 (e0)) = (Ae0 � Be0) � r2 (e0)
= (Ae0 � e0) − e0 + h (e0) ,

but (Ae0 � e0) − e0 = Ae0 � k (e0), where k (e0) = e0 − (r1 (e0) � e0). Thus

(Ae0 � Be0) � r2 (e0) = (Ae0 � Be0) � (r2 (e0) � k (e0)) + h (e0) ,

hence (Ae0 � Be0) � (r2 (e0) − (r2 (e0) � k (e0))) = h (e0). Now, since V is an
abelian dialgebra

z (e0) � (Ae0 � Be0) = (e0 − (Ae0 � Be0)) + (e0 � (Ae0 � Be0)) ,

where z (e0) = (r2 (e0) − (r2 (e0) � k (e0))). It follows that (A � B) e0 = Ae0 �
Be0 is regular in V . Finally, observe that being V an abelian dialgebra
(A � B) e0 = (Ae0 � Be0) = (Be0 � Ae0) and as it was already seen (Be0 � Ae0)
is regular in V , hence (A � B) e0 is regular in V . Then also A � B ∈ R (V, e0)
if A, B ∈ R (V, e0).

Theorem 31. Let (V,�,�) be an abelian dialgebra. Then (R (V, e0) , IV ) is a
digroup.

Proof. If A ∈ R (V, e0) then by definition Ae0 is vector regular in (V,�,�).
Hence, there is a vector r (e0) ∈ V which is (�)-inverse and also (�)-inverse of
Ae0. It allows to construct a element of L(V ) of the following form A−1x =
r (e0) � x for all x ∈ V . Since (V,�,�) is abelian, in his turn one have that
A−1x = x � r (e0). Now, we know that for any x ∈ V

(Ae0 � r (e0)) � x = x = x � (r (e0) � Ae0) ,
it follows that A � A−1 = IV = A−1 � A. Let us to show that A−1 is

regular relative to e0. In fact, we must find a vector y such that A−1e0 � y =(
e0 − A−1e0

)
+
(
A−1e0 � e0

)
and y � A−1e0 =

(
e0 − A−1e0

)
+
(
e0 � A−1e0

)
.

We assume that such vector exists. Then, since A−1e0 = r (e0) � e0 we have
that r (e0) � y = e0, thus Ae0 � (r (e0) � y) = Ae0 � e0. Hence, y = Ae0 � e0

because � is associative. Next, we prove that y = Ae0 � e0 is in fact (�)-inverse
of A−1e0. First of all, note that y = e0 � Ae0

(e0 � Ae0) � A−1e0 = e0 � (Ae0 � A−1e0

)
= e0 � (Ae0 � A−1e0

)
= e0 � ((e0 − Ae0) + (Ae0 � e0))
= e0 − (e0 � Ae0) + (e0 � (Ae0 � e0))
= e0,
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and

(
e0 − A−1e0

)
+
(
e0 � A−1e0

)
= (e0 − (e0 � r (e0))) + (e0 � (e0 � r (e0)))
= (e0 − (e0 � r (e0))) + (e0 � r (e0))
= e0,

thus, we have proved that y � A−1e0 =
(
e0 − A−1e0

)
+
(
e0 � A−1e0

)
. On

the other it is possible to show that if R ∈ R (V, e0) is such that A � R =
IV = R � A it imply R = A−1. Finally, observe that IV ∈ R (V, e0) and
IV � A = A = A � IV for all A ∈ R (V, e0).

Definition 32. Let (D, e) be a digroup and let (V,�,�) be an abelian dialgebra.
A linear representation of (D, e) by V (note that V is a vector space) is a
transformation T : D → R (V, e0) such that

Te = I,
T (d1 � d2) = Td1 � Td2,
T (d1 � d2) = Td1 � Td2

(7)

From (7) it shows that T is a homomorphism.
Let D1 and D2 be two dialgebras with products denoted the equal form

�, �. Their direct sum D1 ⊕ D2 is defined as the Cartesian product D1 × D2

with the coordinate-wise operations. It is easy to show that the direct sum
D1⊕D2, so is a dialgebra with products defined of the following form: if (d1, d2),
(f1, f2) ∈ D1 ⊕ D2, then one defines (d1, d2) � (f1, f2) = (d1 � f1, d2 � f2) for
� =� and �. Observe that being e1 and e2 bar-unit of D1 and D2 respectively,
then (e1, e2) is a bar-unity of D1 ⊕ D2. Also note that if D1 and D2 are
abelian dialgebras then D1 ⊕ D2 is an abelian dialgebra. In fact, let (d1, d2),
(f1, f2) be vectors of D1 ⊕ D2 then (d1, d2) � (f1, f2) = (d1 � f1, d2 � f2) =
(f1 � d1, f2 � d2) = (f1, f2) � (d1, d2).

Let V and W be two finite vectors space. Let {v1, · · · , vn} and {w1, · · · , wm}
be basis of V and W respectively. Consider the vectors ê, ẽ where ê ∈ V and
ẽ ∈ W , for which in these basis ‖ê‖2 = ‖ẽ‖2 = 1. Then, it is clear that we can
define the dialgebras V (ê) and W (ẽ), and so V (ê)⊕W (ẽ) as above. Moreover,
the vector (ê, ẽ) is a bar-unit of V (ê) ⊕ W (ẽ). Since that V (ê) and W (ẽ) are
abelian dialgebras then V (ê) ⊕ W (ẽ) is also an abelian dialgebra.

Let A ∈ L (V (ê)) and B ∈ L (W (ẽ)). Let A ⊕ B be the element of
L (V (ê) ⊕ W (ẽ)) defined of the following form: (A ⊕ B) (x, y) = (Ax, By) for
any (x, y) ∈ V (ê) ⊕ W (ẽ). Observe that IV (ê) ⊕ IW(ẽ) = IV (ê)⊕W(ẽ). We say
that A ⊕ B is feasible if A and B are regulars in ê and ẽ respectively.

Proposition 33. Let A ⊕ B be feasible. Then A ⊕ B ∈ R (V (ê) ⊕ W (ẽ)).
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Proof. We shall prove that A ⊕ B is regular relative to (ê, ẽ), that is, that
(A ⊕B) (ê, ẽ) is regular in V (ê)⊕W (ẽ). Since that A and B are regulars in ê
and ẽ respectively, there is (r (ê) , r (ẽ)) ∈ V (ê) ⊕ W (ẽ) such that

Aê � r (ê) = (ê − Aê)+(Aê � ê) , Bẽ � r (ẽ) = (ẽ − Bẽ)+(Bẽ � ẽ) , (8)

and

r (ê) � Aê = (ê − Aê) + (ê � Aê), r (ẽ) � Bẽ = (ẽ − Bẽ) + (ẽ � Bẽ). (9)

Hence, we have from (8)

(A ⊕ B) (ê, ẽ) � (r (ê) , r (ẽ)) = (Aê, Bẽ) � (r (ê) , r (ẽ))
= (Aê � r (ê) , Bẽ � r (ẽ))
= ((ê − Aê) + (Aê � ê) , (ẽ − Bẽ) + (Bẽ � ẽ))
= ((ê, ẽ) − (Aê, Bẽ)) + ((Aê, Bẽ) � (ê, ẽ))
= ((ê, ẽ) − (A ⊕ B) (ê, ẽ)) + ((A ⊕ B) (ê, ẽ) � (ê, ẽ)) ,

it follows that (A ⊕B) (ê, ẽ) is (�)-regular in V (ê)⊕ W (ẽ). In similar way
from (9), one can see that

(r (ê) , r (ẽ)) � (A⊕B) (ê, ẽ) = ((ê, ẽ) − (A ⊕ B) (ê, ẽ))+((ê, ẽ) � (A ⊕ B) (ê, ẽ)) .

Thus, also (A⊕B) (ê, ẽ) is (�)-regular and moreover note that (r (ê) , r (ẽ))
is both (�)-inverse and (�)-inverse for the vector (A ⊕ B) (ê, ẽ). Hence (A ⊕
B) (ê, ẽ) is regular in V (ê) ⊕ W (ẽ). It is shows that (A ⊕ B) is regular with
respect to (ê, ẽ). Thus A ⊕ B ∈ R (V (ê) ⊕ W (ẽ)). The Lemma is proved.

We are now in condition of to prove the following result

Theorem 34. Let (D, e) be a digroup. Let T̂ and T̃ be two principal linear
representations of (D, e) by two finite dimensional vector spaces V and W

respectively, where T̂ : D → R (V (ê)) and T̃ → R (W (ẽ)). Let us define the
map T̂ ⊕T̃ as follows

(
T̂ ⊕ T̃

)
d = T̂ d⊕T̃ d for all d ∈ D. Under the condition:

T̂ d⊕ T̃ d is feasible for all d ∈ G, then T̂ ⊕T̃ is a linear representation of (D, e)
by V (ê) ⊕ W (ẽ). It is called the direct sum of T̂ and T̃ .

Proof. It is clear that
(
T̂ ⊕ T̃

)
e = T̂ e ⊕ T̃ e = IV (ê) ⊕ IW(ẽ) = IV (ê)⊕W(ẽ).

We are going to show that
(
T̂ ⊕ T̃

)
(d � g) =

(
T̂ ⊕ T̃

)
d �

(
T̂ ⊕ T̃

)
g for all

d, g ∈ D. In fact, since T̂ and T̃ are principal linear representations of (D, e)
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by V and W respectively we have
(
T̂ ⊕ T̃

)
(d � g) = T̂ (d � g) ⊕ T̃ (d � g) =(

T̂ d � T̂ g
)
⊕
(
T̃ d � T̃ g

)
. Hence for all (x, y) ∈ V (ê) ⊕ W (ẽ), it follows

((
T̂ ⊕ T̃

)
(d � g)

)
(x, y) =

((
T̂ d � T̂ g

)
⊕
(
T̃ d � T̃ g

))
(x, y)

=
((

T̂ d � T̂ g
)

x,
(
T̃ d � T̃ g

)
y
)

=
((

(T̂ d)ê � (T̂ g)x
)

,
(
(T̃ d)ẽ � (T̃ g)y

))
=

(
(T̂ d)ê, (T̃ d)ẽ

)
�
(
(T̂ g)x, (T̃ g)y

)
=

(
(T̂ d) ⊕ (T̃ d)

)
(ê, ẽ) �

(
(T̂ g) ⊕ (T̃ g)

)
(x, y)

=
((

T̂ ⊕ T̃
)

d
)

(ê, ẽ) �
((

T̂ ⊕ T̃
)

g
)

(x, y)

=
(((

T̂ ⊕ T̃
)

d
)
�
((

T̂ ⊕ T̃
)

g
))

(x, y) ,

thus
((

T̂ ⊕ T̃
)

(d � g)
)

=
((

T̂ ⊕ T̃
)

d
)

�
((

T̂ ⊕ T̃
)

g
)
. Here we have

used the fact that
(
(T̂ d)ê, (T̃ d)ẽ

)
,
(
(T̂ g)x, (T̃ g)y

)
∈ V (ê)⊕W (ẽ). The proof

that
((

T̂ ⊕ T̃
)

(d � g)
)

=
((

T̂ ⊕ T̃
)

d
)
�
((

T̂ ⊕ T̃
)

g
)

is similar

We recall that two digroups (D1, e1) and (D2, e2) are said to be homomor-
phic if there exists a mapping γ : D1 → D2 such that γ (x � y) = γ(x) � γ(y)
and γ (z � w) = γ(z) � γ(w) for all z, y, z, w ∈ D1. We say that D1 and D2

are isomorphic if it is proved that γ is one to one.

Theorem 35. Let γ be a homomorphic of (D1, e1) into (D2, e2) such that
γ (e1) = e2. Let T be linear representation of (D2, e2) by V , where (V,�,�) is
an abelian dialgebra. Then, T ◦ γ is a linear representation of (D1, e1) by V

Proof. Because (γ(D1), e2) is subdigroup of (D2, e2) the Theorem is evident.

We remark in closing of this section that the next step is to decide if rep-
resentations of digroups are essentially just representations of their groups of
inverses or if there is more to them.

7 The digroup dialgebra

Now we come to the construction of the “digroup dialgebra” of an arbitrary
finite digroup (D, e).

Let (D, e) be a finite digroup. Consider the set of all formal finite sums
a =

∑
d∈D a (d) d where a (d) ∈ C for all d ∈ D, two such expressions being
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regarded as equal if and only if they have the same coefficients. Clearly, this
set is a complex vector space, where αa =

∑
d∈D αa (d) d for any α ∈ C and

a + b =
∑

d∈D(a (d) + b (d))d if b =
∑

d∈D b (d)d, b (d) ∈ C for all d ∈ D. The
zero of this vector space is the formal sum having all the coefficients equal to
zero. This vector space will be denoted by L (D). We would like to give L (D)
two bilinear products. Thus, we define for a, b ∈ L (D)

a � b =

(∑
d∈D

a (d) d

)
�
⎛⎝∑

g∈D

b (g) g

⎞⎠ =
∑
d,g

a (d) b (g) (d � g) , (10)

and

a � b =

(∑
d∈D

a (d) d

)
�
⎛⎝∑

g∈D

b (g) g

⎞⎠ =
∑
d,g

a (d) b (g) (d � g) , (11)

Proposition 36. (L (D) ,�,�) is a dialgebra.

Proof. Since the bilinearity of the products (10) and (11) is evident, the Propo-
sition follows from the properties of digroup products.

Let fd =
∑

g δdgg, where δdg is the function that is equal to 1 if g = d
and 0 for g �= d. Note that formally fd = d for any d ∈ D. Thus, we can
consider that D is contained in L (D) by to identify each d ∈ D with the sum
fd corresponding. Also observe that fe is a bar-unity of L (D), moreover the
dimension of L (D) coincide with the order of (D, e). The dialgebra L (D) is
called the “digroup dialgebra” associate to the digroup (D, e).

Remark 37. Observe that (L (D) ,�,�) is not an abelian dialgebra if the di-
group (D, e) is not abelian. In fact, since for all d1, d2 ∈ D, fd1 � fd2 = d1 �
d2 = fd1�d2 and fd2 � fd1 = d2 � d1 = fd2�d1 , then (L (D) ,�,�) is abelian if
and only if (D, e) is an abelian digroup.

Definition 38. Let (D,�,�) be a complex dialgebra. A mapping x → x∗ of D
onto itself is called a reduced involution provided the following conditions are
satisfied for all x, y ∈ D and α ∈ C:

(i) (x + y)∗ = x∗ + y∗,
(ii) (x � y)∗ = y∗ � x∗,

(iii) . (αx)∗ = αx∗,

note that from (ii) it follows the following equality

(x � y)∗ = y∗ � x∗,

in this case, we say that D is a reduced ∗-dialgebra.
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We have the following result

Theorem 39. Let a =
∑

d∈D a (d)d be an element of L (D). We define
a∗ =

∑
d∈D a (d)d−1. Then L (D) is a reduced ∗-dialgebra under the reduced

involution: a → a∗. In this case,

(a∗)∗ = fe � a = a � fe (12)

Proof. It is easy to see that the equalities (αa)∗ = αa∗ and (a + b)∗ = a∗ + b∗

are always truth for all α ∈ C and all a, b ∈ L (D). Now,

(a � b)∗ =

⎛⎝∑
d,g

a (d) b (g) (d � g)

⎞⎠∗

=

⎛⎝∑
d,g

a (d).b (g) (d � g)−1

⎞⎠
=

⎛⎝∑
g,d

b (g).a (d)
(
g−1 � d−1

)⎞⎠
=

(∑
g

b (g)g−1

)
�
(∑

d

a (d)d−1

)
= b∗ � a∗,

Finally, we must to prove the relation (12):

(a∗)∗ =

(∑
d∈D

a (d)d−1

)∗

=

(∑
d∈D

a (d)
(
d−1

)−1

)

=

(∑
d∈D

a (d) (e � d)

)
= fe � a,

where we have used the fact that
(
d−1

)−1 = (e � d). Since, in a digroup
(D, e) we have (e � d) = (d � e) =

(
d−1

)−1 for any d ∈ D, it follows also that
(a∗)∗ = a � fe as was to be proven.
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