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Abstract

We study the efficient outcome set YE of a bicriteria linear program-
ming problem (BP ) and present a quite simple algorithm for generating
all extreme points of YE . As a direct consequence, we obtain the entire ef-
ficient outcome set YE . An application to optimize a scalar function h(x)
over the efficient set of (BP ) in case of h which is convex and dependent
on the criteria is considered.

1 Introduction

This paper is concerned with the bicriteria linear programming problem

MAX{Cx , x ∈ X}, (BP)

where C is a 2×n matrix with rows c1, c2 and X ⊂ R
n is a nonempty compact

polyhedron. It is well known that while the efficient solution set XE for Problem
(BP ) is also always a connected set, generally, it is a complicated nonconvex
subset of the boundary of X [8]. Therefore, the computational demands of
generating all or representative portions of XE grow rapidly with problem size
(see, for example, [1] and [7]). In respond to this, some methods in recent
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years(see, for example, [1], [3] - [5] and references therein) have been developed
for generating all or portion of the efficient outcome set YE := {Cx|x ∈ XE}
rather than XE . This approach helps to reduce considerably the size of the
problem when the number of the criteria is much smaller than the number of
the decision variables.

In this paper we study the efficient outcome set YE for Problem (BP ) and
propose a quite simple algorithm (Algorithm 1) for generating the set of all
extreme points of YE . Then, by the simple structure of YE ⊂ R2 we are
able to determine the entire efficient outcome set YE . As a direct application,
we consider the problem of maximizing a scalar function which is convex and
dependent on the criteria over the efficient set XE .

2 Efficient outcome set

Throughout the paper, we will assume that in Problem (BP), the polyhedron
X is given by

X = {x ∈ Rn|Ax ≤ b, x ≥ 0}, (1)

where A is an m×n matrix and b ∈ R
m. Denote Y := {Cx|x ∈ X} the outcome

set of Problem (BP). Note that Y is a nonempty, compact polyhedron in the
outcome space R

2 [10]. By definitions, the efficient outcome set is essentially
the set of efficient points of Y ,

YE = {y0 ∈ Y | � ∃y ∈ Y such that y > y0}

and
XE = {x0 ∈ X|Cx0 = y0 ∈ YE}.

Let Yex denote the set of all extreme points of Y . Suppose that YE ∩ Yex =
{y1 , · · · , yk}. Since Y is compact, we may assume that k ≥ 1 [8]. A point
yI = (yI

1 , · · · , yI
n) ∈ Y is said to be the ideal efficient point of Y if

yI
i = max{yi , y ∈ Y }.

It is clear that if there is an ideal efficient point yI of Y , then YE = {yI} and
YE ∩ Yex = {yI}. This is a special case of the problem (BP ).

Let Fi = argmax{yi | y ∈ Y }, i = 1, 2. Denote by ystart and yend the
optimal solution to the linear problem max{y1 | y ∈ F2} and the optimal
solution to the linear problem max{y2 | y ∈ F1}, respectively.

Proposition 2.1 ystart and yend are efficient extreme point of Y .

Proof We will prove only that ystart ∈ YE∩Yex. The fact that yend ∈ YE ∩Yex

can be proved by an analogous way. Assume on the contrary that ystart �∈ YE .
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By definition, there is y = (y1 , y2) ∈ Y such that y > ystart. It means that
either

(A) y1 > ystart
1 and y2 ≥ ystart

2

or

(B) y1 ≥ ystart
1 and y2 > ystart

2 .

Since ystart ∈ F2, the case (B) cannot occur. In the case (A), one can see
that y ∈ F2. Then, as ystart is the optimal solution to the linear problem
max{y1 | y ∈ F2}, we have y1 ≤ ystart

1 that is impossible. Hence, both of
these cases cannot be happened and we get ystart ∈ YE . Further, from linear
programming theory, this implies that ystart ∈ Yex. The proof is complete. �

Corollary 2.1 i) If ȳ1 is the unique optimal solution to problem max{y2 | y ∈
Y } then ystart = ȳ1 belongs to YE ∩ Yex.

ii) If ȳ2 is the unique optimal solution to problem max{y1 | y ∈ Y } then
yend = ȳ2 belongs to YE ∩ Yex.

Proof In this case we have F2 = {ȳ1} and F1 = {ȳ2}. The proof is straight-
forward. �

Remark 2.1 In the case ystart = yend = yI , by definition we have YE = {yI}.
In other words, yI is an ideal efficient point of Y .

Recall that the efficient points set YE is connected and it is a subset of
the boundary of Y [8]. In our considered case, Y ⊂ R

2, the boundary of Y is
composed of a finite number segments and YE is a path lying on the boundary
of Y . Hence, we can represent

YE =
k−1⋃
i=1

[yi, yi+1], (2)

where y1 := ystart, yk := yend and [yi, yi+1], i = 1, · · · , k − 1, are the efficient
edges of Y .

Let Gi,j = conv{yi, · · · , yj} be the convex hull of the efficient extreme points
yi, · · · , yj , where 1 ≤ i < j ≤ k. Then

Gi,j = {y ∈ Y |〈�i,j, y〉 ≥ αi,j} (3)

and the set
{y ∈ R2|〈�i,j, y〉 = αi,j}

is the line passing through yi and yj . Upon simple computation, we get

�i,j = (
1

yj
1 − yi

1

,
1

yi
2 − yj

2

),
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and

αi,j =
yi
1

yj
1 − yi

1

+
yi
2

yi
2 − yj

2

.

It is clear that vector �i,j is strictly positive, i.e, �i,j
1 > 0 and �i,j

2 > 0. Combin-
ing (1) and (3) we can obtain the explicit form of the polyhedron Gi,j

Gi,j := {y ∈ R
2 : y = Cx, Ax ≤ b, x ≥ 0, 〈�i,j , y〉 ≥ αi,j}. (4)

The following simple fact will play an important role in developing the
algorithm for finding the set of all efficient outcome extreme points.

Proposition 2.2 Let ŷ be a optimal extreme solution of the linear programming
problem max{〈�i,j , y〉 : y ∈ Gi,j}. If ŷ ∈ {yi, yj} then [yi, yj ] is an efficient
edge of YE , otherwise ŷ ∈ {yi+1, . . . , yj−1}.
Proof This fact follows from the definition of Gi,j and the linear programming
theory. �.

In the special case when yi = y1 = ystart and yj = yk = yend we will denote
G = G1,k, � = �1,k and α = α1,k. Denote by Gex a the set of all extreme points
of G. Then, by definition, we can see Gex = YE ∩ Yex. Furthermore, we have

Proposition 2.3 YE = GE .
Proof We can limit attention to the case of YE ∩ Yex = {y1, · · · , yk}, k ≥ 2.
First, we will show that YE ⊆ GE . Let y∗ ∈ YE . Then, either y∗ ∈ {y1, · · ·yk}
or y∗ ∈ [yi0 , yi0+1], i0 ∈ {1, · · · , k − 1}. Since G = conv{y1, · · · , yk}, we have
y∗ ∈ G. Assume the contrary that y∗ �∈ GE. Then, by the definition, there
must exists y0 ∈ G ⊂ Y such that y0 > y∗. This shows that y∗ �∈ YE that is
impossible. Hence, y∗ ∈ GE .

Now, we prove that YE ⊇ GE . By the definition, the boundary ∂G of G
can be represented in the form

∂G =
k−1⋃
i=1

[yi, yi+1 ] ∪ [y1, yk]. (5)

In the case k = 2, we have G = [y1, y2] ,and hence, YE = GE.
Consider the case k ≥ 3. From (2) and (5), it is sufficient to show that

the open segment (y1 , yk) �⊂ GE . Assume on the contrary that there is y∗ ∈
(y1 , yk) ∩ GE . Then

[y1, yk] := {y ∈ Y |〈�, y〉 = α} ⊂ GE. (6)

(see [6]). Since vector �1,k is strictly positive and k ≥ 3, the optimal solution
y0 ∈ G of the problem

max{〈�, y〉|y ∈ G}
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satisfies 〈�, y0〉 > α, and

y0 ∈
k−1⋃
i=1

[yi, yi+1] \ {y1, yk}.

Let yw be the unique point on the open segment (y1, yk) that lies on the line
segment connecting y0 and the origin point 0. Obviously, y0 ∈ yw + Rp

+.
Therefore, by definition, yw �∈ GE which conflicts to (6). This completes the
proof. �

3 The Algorithm for Generating all Efficient
Outcome Extreme Points

First, let us describe in detail procedure determining two efficient outcome
extreme points ystart and yend.

Procedure 1 (Determine ystart and yend)

Step 1. Find an optimal extreme point solution ȳ1 to the linear program
max{y2 | y ∈ Y }. If ȳ1 is the unique optimal solution to this program, set
ystart = ȳ1. Otherwise, find the remain optimal extreme point solution ¯̄y1 to
this program and set ystart = (y∗1 , ȳ1

2) where y∗1 = max{ȳ1
1 , ¯̄y

1
1}.

Step 2. Find an optimal extreme point solution ȳ2 to the linear program
max{y1 | y ∈ Y }. If ȳ2 is the unique optimal solution to this program, set
yend = ȳ2 . Otherwise, find the remain optimal extreme point solution ¯̄y2 to
this program and set yend = (ȳ2

1 , y∗2) where y∗2 = max{ȳ2
2 , ¯̄y2

2}.

The Algorithm 1 (Determining YE ∩ Yex)
This algorithm will systematically generate all the vertices of YE from yend

until ystart, which are assumed to be given, by solving a finite sequence of
simple linear programming. Since YE consists of a finite number of vertices,
the algorithm will always be finite.

The algorithm can be described in detail as follows:

Step 0. Determine ystart and yend by using Procedure 1.

Step 1. Set n := 2; y1 := ystart; y2 := yend;
k := 1;

Step 2. While n > 1 do
Begin

Find an optimal extreme point solution ŷ for problem

max{〈�n−1,n, y〉 : y ∈ Gn−1,n};
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If ŷ �∈ {yn, yn−1} Then (ŷ is a new efficient extreme)
Let yn+1 := yn ; yn := ŷ and n := n + 1

Else Let gk := yn ; k := k + 1 and n := n − 1
end

Step 3. Let gk = ystart

For i = 1 to k do
yi := gk−i+1;

In result, we obtain the set YE ∩ Yex = {y1, · · · , yk}.

Remark 3.1 According to the representation (2), after determining the set
YE ∩ Yex we also obtain the entire efficient outcome set YE .

Examples
The following numerical examples have been computed on PC Pentium

IV by experimental program written in C++. The computational time is not
considerable.

Example 3.1. We begin with the simple example to illustrate the Algorithm
1. Consider the bicriteria programming problem

MAX
(

2 −1
1 1

) (
x1

x2

)

s.t.

⎛
⎜⎝

−2 1
−1 1
2 1
1 0

⎞
⎟⎠

(
x1

x2

)
≤

⎛
⎜⎝

0
1
7
3

⎞
⎟⎠

x1, x2 ≥ 0.

Determining YE ∩ Yex with Algorithm 1. First, we get ystart = (1, 5) and
yend = (6, 3) by computing in Procedure 1. We now show how Algorithm 1
works.

Step 1. Set k = 1; n = 2;
y1 = ystart = (1, 5); y2 = yend = (6, 3).

Step 2.
Iteration 1. (with n=2) The equation of the line through y1 and y2 can be
written in the form:

0.2y1 + 0.5y2 = 2.7.

Hence G1,2 = {y ∈ Y |〈�1,2, y〉 ≥ α1,2}, where �1,2 = (0.2, 0.5) and α1,2 = 2.7.
Solve the linear programming max{〈�1,2, y〉|y ∈ G1,2〉} we obtain ŷ = (5, 4) �∈
{y1 , y2}. Then

yn+1 = y2+1 = y3 := yn = y2 = (6, 3);
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y2 := ŷ = (5, 4);
n := n + 1 = 2 + 1 = 3.

Iteration 2. (with k = 1, n = 3) The line through y2 = (5, 4) and y3 = (6, 3)
has the equation:

y1 + y2 = 9.

Solve the linear programming max{〈�2,3, y〉|y ∈ G2,3〉} where G2,3 = {y ∈
Y |〈�2,3, y〉 ≥ α2,3}, �2,3 = (1, 1) and α2,3 = 9. We get ŷ = (6, 3) ∈ {y2 , y3}.
Then

gk = g1 := yn = y3 = (6, 3);
k := k + 1 = 1 + 1 = 2;
n := n − 1 = 3 − 1 = 2;

Iteration 3. (with k = 2, n = 2) The equation of the line through y1 = (1, 5)
and y2 = (5, 4) is

0.25y1 + y2 = 5.25.

Solve the linear programming max{〈�1,2, y〉|y ∈ G1,2〉} where G1,2 = {y ∈
Y |〈�1,2, y〉 ≥ α1,2}, �1,2 = (0.25, 1) and α1,2 = 5.25. We get ŷ = (1, 5) ∈
{y1 , y2}. Then

gk = g2 := yn = y2 = (5, 4);
k := k + 1 = 2 + 1 = 3;
n := n − 1 = 2 − 1 = 1. (Step 2 is terminated.)

Step 3. Set
gk = g3 := ystart = (1, 5).

We obtain
y1 := g3−1+1 = g3 = (1.5);
y2 := g3−2+1 = g2 = (5, 4);
y3 := g3−3+1 = g1 = (6, 3).

The Algorithm terminated with YE ∩ Yex = {y1, y2, y3} and YE contains 2
efficient edges are [y1, y2] and [y2, y3].

Example 3.2 Determine the set of all efficient outcome extreme points of the
problem

MAX
(

0 2 3 0 2 0 0 0 3 0
2 0 2 0 0 1 1 3 −1 4

) (
x1

x2

)
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s.t.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 2 0 0 0 0
0 8 6 8 0 0 0 0 0 0
2 0 5 0 1 0 0 0 3 5
0 0 5 7 0 1 3 0 0 0
7 0 5 0 8 0 2 1 0 0
0 7 0 4 3 0 0 0 6 0
0 1 0 0 4 6 0 3 0 7
0 0 8 0 7 0 0 0 0 6
0 8 2 0 0 0 5 8 3 0
5 3 8 0 0 0 6 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

51
56
81
77
81
93
77
76
64
100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We have ystart = (10.612, 76.28); yend = (69.361, 3.714);
YE ∩ Yex contains 7 efficient outcome extreme points:

y1 = (10.612, 76.280); y2 = (16.419, 73.206); y3 = (52.169, 39.741);
y4 = (53.859, 37.750); y5 = (66.403, 19.410); y6 = (66.475, 19.298);
y7 = (69.361, 3.714).

Example 3.3 We find the set YE ∩ Yex for the problem (BP) where C is a
2×20 matrix, A is a 10×20 matrix and b ∈ R

10 determined as follows. Matrix
C is the 2 × 20 matrix with columns

cj = (− 1.01.0) , j = 1, 2, 3, 4; cj = ( 0 .667− 0.333) , j = 5, 6, 7, 8;

c9 = c10 = (− 0.750.25) and cj = ( 0 .00.0) , j = 11, · · · , 20;

Vector b ∈ R
10 is the vector whose entries are each equal to 1.0 and matrix A

is given by

A = (I10

...I10),

where I10 denotes the 10×10 identity matrix. We get We find the set YE ∩Yex

for the problem (BP) where C is a 2 × 20 matrix, A is a 10 × 20 matrix and
b ∈ R

10 determined as follows. Matrix C is the 2 × 20 matrix with columns

cj = (− 1.01.0) , j = 1, 2, 3, 4; cj = ( 0 .667− 0.333) , j = 5, 6, 7, 8;

c9 = c10 = (− 0.750.25) and cj = ( 0 .00.0) , j = 11, · · · , 20;

Vector b ∈ R
10 is the vector whose entries are each equal to 1.0 and matrix A

is given by

A = (I10

...I10),

where I10 denotes the 10 × 10 identity matrix. We get

ystart = (−5.5, 4.5); yend = (2.668,−1.332);

YE ∩ Yex contains 4 efficient outcome extreme points:
y1 = (−5.500, 4.500); y2 = (−4.000, 4.000);
y3 = (−1.331, 2.667); y4 = (2.668, −1.331).
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4 An application to optimization over the effi-

cient set

Consider the problem
max{h(x) | x ∈ XE}, (P )

where h(x) = ϕ(Cx) with ϕ is a convex function and XE the efficient solution
set for problem (BP ). This problem has been considered by some researchers
(see [7] and references therein). Since Y = CX, we have

max{h(x) = ϕ(Cx) | x ∈ XE} = max{ϕ(y) | y ∈ YE}.
Since YE is connected and is the union of some faces of Y [8] and the function
ϕ is convex, the problem

max{ϕ(y) | x ∈ YE} (P 1)

attains its global solution in YE ∩ Yex. So one can solve Problem (P1) by
evaluating ϕ at each extreme point of YE . More precise, we have the following
algorithm.

Algorithm 2 (Solving the Problem (P))

Step 1. Use Algorithm 1 to determine the set of all efficient extreme point
YE ∩ Yex.

Step 2. Find ȳ ∈ agrmax{ϕ(y), y ∈ YE ∩ Yex} : (ȳ is a global optimal solution
to (P 1).)

Step 3. Solve the system

Cx = ȳ, Ax ≤ b, x ≥ 0

to find a solution x̄ : (x̄ is a global optimal solution to (P ).)

Remark 4.1 Step 3 of the algorithm 2 can be executed by applying Phase I
of Simplex Algorithm solving a linear programming.

Specially, when h is a linear combination of the rows of C, i.e., h(x) =
μ1〈c1, x〉+ μ2〈c2, x〉 with μ1, μ2 ∈ R we have the following result

Proposition 4.1 The problem (P 1) is equivalent to the linear programming
problem

max{〈μ, y〉 | y ∈ G}, (P 2)

where μ = (μ1, μ2).
Proof Recall that G = conv{y1, · · · , yk} and G = G1,k having explicit rep-
resentation (4) with y1 = ystart, yk = yend. This Proposition follows from
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Proposition 2.3 and the fact that a global optimal solution of the problem (P 1)
is an extreme efficient point of YE . �

Remark 4.2. By Proposition 4.1, a global optimal solution of the global
optimal programming problem (P 1) can be obtained by solving only the simple
scalar linear programming problem (P 2). Note that in this case we only just
need to determine two points ystart and yend and not need to find the set of
all extreme points YE ∩ Yex.

Below let us present some examples of solving the problem (P 2) in case
of h being a linear combination of the rows of C. By Proposition 4.1, the
optimal solution of (P 2) is also a global optimal solution of (P 1). Then, a
global solution of (P ) can be obtained by using Step 3 of the Algorithm 2.

Example 4.1. We solve the Problem (P ) where XE is the efficient set of the
Problem (BP ) given in Example 3.1 and μ = (1, 0). The equation of the line
through ystart = (1, 5) and yend = (6, 3) is

0.2y1 + 0.5y2 = 2.7.

The polytope G is defined by

G := {y ∈ R2 : y = Cx, Ax ≤ b, x ≥ 0, 〈�, y〉 ≥ α} (7)

where � = (0.2, 0.5) and α = 2.7. Solving the linear programming (P 2) we
obtain the optimal solution ȳ = (6, 3). The global optimal solution of (P ) is
x̄ = (3, 0) and the optimal value is h(x̄) = 6.

Example 4.2. We solve the Problem (P ) where XE is the efficient set of the
Problem (BP ) given in Example 3.2 and μ = (1, 1). The equation of the line
through ystart = (10.612, 76.28) and yend = (69.361, 3.714) is

0.017y1 + 0.016y2 = 1.4.

The polytope G is defined by (7) with � = (0.017, 0.016) and α = 1.4. Solving
the linear programming (P 2) we obtain the optimal solution ȳ = (52.169, 39.741).
The global optimal solution of (P ) is

x̄ = (4.527, 0, 9.333, 0, 0, 11.251, 0, 2.646, 8.056, 0.222)

and the optimal value is h(x̄) = 91.91.

Example 4.3. We solve the Problem (P ) where XE is the efficient set of the
Problem (BP ) given in Example 3.3 and μ = (1, 2). The equation of the line
through ystart = (−5.5, 4.5) and yend = (2.668,−1.332) is

0.122y1 + 0.171y2 = 1.
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The polytope G is defined by (7) with � = (0.122, 0.17) and α = 1. Solving the
linear programming (P 2) we obtain the optimal solution ȳ = (−1.332, 2.668).
The global optimal solution of (P ) is

x̄ = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

and the optimal value is h(x̄) = 4.004.
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