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Abstract

The definitions of a u-weak Hopf algebra and the quantum dimension
detuM of a representation M by u are given. It is shown that a u-weak
Hopf algebra H is semisimple if and only if there is a finite-dimensional
projective H-module P such that detuP is invertible. Let X be an asso-
ciative algebra and A is a weak Hopf algebra. We investigate the global
dimension and the weak dimension of the smash product H ��R A and
show that lD(H) ≤ rD(A) + lD(X) and wD(H) ≤ wD(A) + wD(X).

1 Introduction

Weak Hopf algebras have been proposed([3], [9], [14]) as a new generalization
of ordinary Hopf algebras that replaces Ocneanu’s paragroup ([11]), in the
depth 2 case, with a concrete ”Hopf algebra” object. A weak Hopf algebra is
a vector space that has both algebra and coalgebra structures related to each
other in a certain self-dual way and that possesses an antipode. The main
difference between ordinary and weak Hopf algebras comes from the fact that
the comultiplication of the latter is no longer required to preserve the unit
and results in the existence of two canonical subalgebras playing the role of
”non-commutative basis” in a ”quantum groupoid”.

So far weak Hopf algebras have been considered only under the additional
assumption of finite dimensionality. Although a good deal of the results can
be generalized to the infinite-dimensional case, finite dimension is particularly
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192 Weak Hopf Algebras and Smash Products

attractive because it implies self-duality. Just like finite Abelian groups or
finite-dimensional Hopf algebras, the finite-dimensional weak Hopf algebras are
self-dual in the following sense. If A is a weak Hopf algebra then its dual space
A∗ is canonically equipped with a weak Hopf algebra structure. Furthermore
this duality is reflexive, (A∗)∗ ∼= A. This is a feature which makes weak Hopf
algebras more natural objects of study than either finite (non-Abelian) groups
or finite-dimensional (weak) quasi-Hopf algebras.

A weak Hopf algebra satisfying S2(h) = uhu−1 for some invertible element
u ∈ H and all h ∈ H is called a u-weak Hopf algebra. For example, quasi-
triangular weak Hopf algebras are u-weak Hopf algebras. In this paper, we will
characterize the semisimplicity of u-weak Hopf algebras by using the quantum
dimension.

In [6] and [4], the global dimensions and the weak dimensions of the crossprod-
uct and R-smash product of an associative algebra with a Hopf algebra have
been invested. In this paper, we will prove a similar result. Let H = X ��R A
be an R-smash product of an associative algebra X and a weak Hopf algebra
A. We get lD(H) ≤ lD(X) + rD(A) and wD(H) ≤ wD(X) +wD(A).

2 Preliminaries

Throughout this paper k denotes a field and all vector spaces are defined
over k. We use Sweedler’s notation for a comultiplication:Δ(c) =

∑
c(1) ⊗ c(2).

Definition of a weak Hopf algebra. Below we collect the definition and
basic properties of weak Hopf algebras.

Definition 2.1. ( [1], [3] ) A weak bialgebra is a vector space H with the struc-
tures of an associative algebra (H,m, 1) with a multiplicationm : H⊗kH −→ H
and unit 1 ∈ H and a coassociative coalgebra (H,Δ, ε) with a comultiplication
Δ : H −→ H ⊗k H and counit ε : H −→ k such that:

(i) The comultiplication Δ is a (not necessarily unit-preserving) homomor-
phism of algebras:

Δ(gh) = Δ(g)Δ(h), h, g ∈ H.

(ii) The unit and counit satisfy the following identities:

(Δ ⊗ id)Δ(1) = (Δ(1) ⊗ 1)(1 ⊗ Δ(1)) = (1 ⊗ Δ(1))(Δ(1) ⊗ 1), (1)

ε(fgh) =
∑

ε(fg(1))ε(g(2)h) =
∑

ε(fg(2))ε(g(1)h), (2)
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for all f, g, h ∈ H.

A weak bialgebra is called a weak Hopf algebra if there is a linear map
S : H −→ H, called an antipode, such that

(iii)

m(id ⊗ S)Δ(h) = (ε⊗ id)(Δ(1)(h⊗ 1)), (3)

m(S ⊗ id)Δ(h) = (id⊗ ε)(1 ⊗ h)Δ(1), (4)

S(h) =
∑

S(h(1))h(2)S(h(3)), (5)

for all h ∈ H.

Remark 1. A weak Hopf algebra is a Hopf algebra if and only if the comulti-
plication is unit-preserving and if and only if ε is a homomorphism of algebras.

Counital maps and subalgebras. The linear maps defined in (3) and
(4) are called target and source counital maps and are denoted εt and εs re-
spectively:

εt(h) =
∑

ε(1(1)h)1(2), εs(h) =
∑

1(1)ε(h1(2)), (6)

for all h ∈ H. In the next proposition we collect several useful properties of the
counital maps.

Proposition 2.2. ([1], [10]) For all h, g ∈ H we have

(i) Counital maps are idempotents in Endk(H) :

εt(εt(h)) = εt(h), εs(εs(h)) = εs(h). (7)

(ii) The relations between εt, εs, and comultiplication are as follows

(id ⊗ εt)Δ(h) =
∑

1(1)h⊗ 1(2), (εs ⊗ id)Δ(h) =
∑

1(1) ⊗ h1(2), (8)

∑
εs(1(1)h) ⊗ 1(2) =

∑
εs(h(1)) ⊗ εt(h(2)) =

∑
1(1) ⊗ εt(h1(2)). (9)

(iii) The images of counital maps are characterized by

h = εt(h) ⇔ Δ(h) =
∑

1(1)h⊗ 1(2), (10)

h = εs(h) ⇔ Δ(h) =
∑

1(1) ⊗ h1(2). (11)
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(iv) εt(H) and εs(H) commute.
(v) One also has identities dual to (8)

hεt(g) =
∑

ε(h(1)g)h(2), εs(h)g =
∑

h(1)ε(gh(2)), (12)

(vi) Eqs.(8) imply the relations
∑

1(1)1(1′) ⊗ 1(2) ⊗ 1(2′) =
∑

1(1) ⊗ εt(1(2)) ⊗ 1(3), (13)

∑
1(1) ⊗ 1(1′) ⊗ 1(2)1(2′) =

∑
1(1) ⊗ εs(1(2)) ⊗ 1(3). (14)

(vii) The antipode S satisfies the following relations
∑

h(1) ⊗ S(h(2))h(3) =
∑

h1(1) ⊗ S(1(2)), (15)

∑
h(1)S(h(2)) ⊗ h(3) =

∑
S(1(1)) ⊗ 1(2)h. (16)

The images of the counital maps

Ht = εt(H) = {h ∈ H |Δ(h) =
∑

1(1)h⊗ 1(2)}, (17)

Hs = εs(H) = {h ∈ H |Δ(h) =
∑

1(1) ⊗ h1(2)}, (18)

play the role of basis of H. The next proposition summarizes their properties.

Proposition 2.3. ([1], [10]) Ht(resp.Hs) is a left (resp. right) coideal subal-
gebra of H. These subalgebras commute with each other, moreover

Ht = {(φ⊗ id)Δ(1)|φ ∈ Ĥ}, Hs = {(id⊗ φ)Δ(1)|φ ∈ Ĥ},
i.e., Ht(resp.Hs) is generated by the right (resp. left) tensorands of Δ(1).

We call Ht(resp.Hs) a target (resp. source) counital subalgebra.
The properties of the antipode of a weak Hopf algebra are similar to those

of a finite-dimensional Hopf algebra.

Proposition 2.4. ([10]) (i) The antipode S is unique and bijective. Also, it is
both algebra and coalgebra anti-homomorphism.

(ii) We have S ◦ εs = εt ◦S and εs ◦S = S ◦ εt. The restriction of S defines
an algebra anti-isomorphism between counital subalgebras Ht and Hs.
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Remark 2. (1) The set of axioms of Definition 2.1 is selfdual. This allows
to define a natural weak Hopf algebra structure on the dual vector space Ĥ =
Homk(H, k) by revering the arrows:

< φψ, h >=< φ⊗ ψ,Δ(h) >,

< Δ̂(φ), h⊗ g >=< φ, hg >,

< Ŝ(φ), h >=< φ, S(h) >,

for all φ, ψ ∈ Ĥ, h, g ∈ H. The unit 1̂ of Ĥ is ε and counit ε̂ is φ −→< φ, 1 > .
(2) The opposite algebra Hop is also a weak Hopf algebra with the same coal-

gebra structure and the antipode S−1. Similarly, the co-opposite coalgebra Hcop

(with the same algebra structure as H and the antipode S−1) and (Hop/cop, S)
are weak Hopf algebras.

Definition of Rep(H) For a weak Hopf algebra H, let Rep(H) be the
category of representations of H, whose objects are H-modules of finite rank
and whose morphism are H-linear homomorphism.

For objects V,W of Rep(H) set

V 	W = {x ∈ V ⊗k W |x = Δ(1)x}
with the obvious action of H via the comultiplication Δ (here ⊗k denotes the
usual tensor product of vector spaces).

Since Δ(1) is an idempotent, V 	W = Δ(1)(V ⊗kW ). The tensor product of
morphisms is the restriction of usual tensor product of homomorphisms. The
standard associativity isomorphisms ΦU,V,W : (U 	V ) 	W −→ U 	 (V 	W ) are
functorial and satisfy the pentagon condition, since Δ is coassociative. We will
suppress these isomorphisms and write simply U 	 V 	W.

The target counital subalgebra Ht ⊂ H has an H-module structure given
by h · z = εt(hz), where h ∈ H, z ∈ Ht.

Lemma 2.5. ([10]) Ht is the unit object of Rep(H).

Using the antipode S of H, we can provide Rep(H) with a duality . For
any object V of Rep(H), we define the action of H on V ∗ = Homk(V, k)
by (h.φ)(v) = φ(S(h).v), where h ∈ H, v ∈ V, φ ∈ V ∗. For any morphism
f : V →W, let f∗ : W ∗ → V ∗ be the morphism dual to f.

For any V in Rep(H), we define the duality homomorphisms

dV : V ∗ 	 V −→ Ht, bV : Ht −→ V 	 V ∗,

as follows. For
∑

j φ
j ⊗ vj ∈ V ∗ ⊗ V, set

dV (Δ(1) ·
∑

j

φj ⊗ vj) =
∑

j

(
∑

(1)

φj(1(1) · vj)1(2)).



196 Weak Hopf Algebras and Smash Products

Let {gi}i and {γi}i be basis of V and V ∗ respectively, dual to each other.
The element

∑
i gi ⊗ γi does not depend on choice of these basis; moreover, for

all v ∈ V, φ ∈ V ∗, one has φ =
∑

i φ(gi)γi and v =
∑

i giγ
i(v). Set

bV (z) = Δ(1) ·
∑

i

z · gi ⊗ γi.

Proposition 2.6. ([2]) The category Rep(H) is a monoidal category with
duality.

Quasitriangular weak Hopf algebra. A quasitriangular weak Hopf al-
gebra is a pair (H,R) where H is a weak Hopf algebra and R ∈ Δop(1)(H ⊗k

H)Δ(1) satisfying the following conditions:

Δop(h)R = RΔ(h),

for all h ∈ H, where Δop denotes the comultiplication opposite to Δ,

(id ⊗ Δ)R = R13R12,

(Δ ⊗ id)R = R13R23,

where R12 = R ⊗ 1, R23 = 1 ⊗ R, etc., as usual, and such that there exists
R̄ ∈ Δ(1)(H ⊗k H)Δop(1) with

RR̄ = Δop(1), R̄R = Δ(1).

Proposition 2.7. ([10]) Let (H,R) be a quasitriangular weak Hopf algebra.
Then

S2(h) = uhu−1

for all h ∈ H, where u =
∑
S(R(2))R(1) is an invertible element of H such that

u−1 =
∑

R(2)S2(R(1)), Δ(u) = R̄R̄21(u⊗ u),

likewise, v = S(u) =
∑
R(1)S(R(2)) obeys S−2(h) = vhv−1 and

v−1 =
∑

S2(R(1))R(2), Δ(v) = R̄R̄21(v ⊗ v),

where R =
∑
R(1) ⊗ R(2). The element u is called the Drinfeld element of H.

Quantum Dimension. For a u-weak Hopf algebra H and M ∈ Rep(H),
we define a quantum dimension of M . Write

Δ(1) =
n∑

i=1

xi ⊗ yi
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with {xi}n
i=1 and {yi}n

i=1 linearly independent. For M ∈ Rep(H), we define
a k-map uij : M −→ M given by uij(m) = S(xi)uyj ·m for all m ∈ M. Set
A = (tr(uij))n×n and we call detuM = det(A) the quantum dimension of M
by u. In this paper, we will show that a u-weak Hopf algebra H is semisimple
if and only if there is a finite-dimensional projective H-module P such that
detuP is invertible in k.

R-smash Product. Let k be a field. For two vector spaces V and W
and a k-linear map R : V ⊗W −→W ⊗ V, we write

R(v ⊗w) =
∑

wR ⊗ vR

for all v ∈ V, w ∈W.
Let A and B be associative k-algebras with units, and consider a k-linear

map R : B ⊗ A −→ A ⊗ B. By definition A ��R B is equal to A ⊗ B as a
k-vector space with multiplication given by the formula

mA��RB = (mA ⊗mB)(IA ⊗ R⊗ IB)

or
(a ��R b)(c ��R d) =

∑
acR ��R bRd

for all a, c ∈ A, b, d ∈ B.

Definition 2.8. Let A and B be k-algebras with units, and R : B⊗A −→ A⊗B
a k-linear map. If A ��R B is an associative k-algebra with unit 1A �� 1B, we
call A ��R B an R-smash product.

Lemma 2.9. ( [4]) Let A,B be two algebras and let R : B⊗A −→ A⊗B be a
k-linear map. Then A ��R B is an R-smash product if and only if

(AR1) R(b⊗ 1A) = 1A ⊗ b

(AR2) R(1B ⊗ a) = a⊗ 1B

(AR3) R(bd⊗ a) =
∑

aRr ⊗ brdR

(AR4) R(b⊗ ac) =
∑

aRcr ⊗ bRr

for all a, c ∈ A, b, d ∈ B.

Proposition 2.10. ( [4]) Let X ��R A be an R-smash product, then iX : X −→
X ��R A, x −→ x �� 1A and iA : A −→ X ��R A, a −→ 1X �� a are injective
algebra morphisms and

mX��RA(iA ⊗ iX) = mX��RA(iX ⊗ iA)R

or
iA(a)iX(x) =

∑
xR ⊗ aR

for all x ∈ X and a ∈ A.
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For simplicity, we write a for iA(a) (resp. x for iX(x)). Then X ��R A is
generated by elements xa for x ∈ X, a ∈ A, and ax =

∑
xR ⊗ aR.

3 Semisimplicity of u-weak Hopf Algebra

Many results for Hopf algebras can be generalized directly to weak Hopf alge-
bras. Suppose M and N are H-modules. Then M 	N = Δ(1)(M ⊗k N) is an
H-module given by

h · (Δ(1)(m⊗ n)) =
∑

Δ(1)(h(1) ·m⊗ h(2) · n) (19)

for all h ∈ H,m ∈ M and n ∈ N. Similarly, Hom(M,N) = 1 · Homk(M,N)
(with the obvious action of H via the comultiplication Δ and antipode S) is
an H-module given by

(h · f)(m) =
∑

h(1) · f(S(h(2)) ·m) (20)

for all h ∈ H,m ∈M and f ∈ Homk(M,N).
The following lemma for weak Hopf algebras corresponds to the relevant

case for Hopf algebras, whose proofs are omitted.

Lemma 3.1. Let H be a weak Hopf algebra and M a finite-dimensional H-
module. If {mi}n

i=1 is a k-basis for M and {m∗
i }n

i=1 is the dual basis; then the
morphism ρ = bM : Ht −→M 	M∗ given by ρ(z) = Δ(1)(

∑
i(z ·mi ⊗m∗

i )) is
an H-module homomorphism.

Lemma 3.2. Let M,N and K be H-modules. Then the morphism

φ : HomH(M 	N,K) −→ HomH(M,Hom(N,K))

given by φ(f)(m)(n) = f(Δ(1)(m ⊗ n)) for all f ∈ HomH(M 	N,K), m ∈M
and n ∈ N, is an isomorphism of H-modules, which is functorial in M and K.

Proof (i) For all f ∈ HomH(M 	N,K) and m ∈M, φ(f)(m) ∈ Hom(N,K).
In fact, for all n ∈ N, we have

[1.(φ(f)(m))](n) =
∑

1(1)(φ(f)(m))(S(1(2)).n)
=

∑
1(1)f(Δ(1)(m⊗ S(1(2)).n))

=
∑
f(Δ(1(1))Δ(1)(m⊗ S(1(2)).n))

=
∑
f(Δ(1)(1(1).m⊗ 1(2)S(1(3)).n))

=
∑
f(Δ(1)(1(1).m⊗ εt(1(2)).n))

=
∑
f(Δ(1)(1(1).m⊗ 1(2).n))

= f(Δ(1).(m⊗ n))
= φ(f)(m)(n).
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Hence φ(f)(m) = 1.φ(f)(m) ∈ Hom(N,K).
(ii) For all f ∈ HomH(M 	N,K), φ(f) ∈ HomH(M,Hom(N,K)). For all

m ∈ M,n ∈ N, and h ∈ H, we have

φ(f)(h.m)(n) = f(Δ(1)(h.m⊗ n))

and
(h.φ(f)(m))(n) =

∑
h(1)φ(f)(m)(S(h(2) ).n)

=
∑
h(1)f(Δ(1)(m ⊗ S(h(2)).n))

=
∑
f(Δ(h(1))(m⊗ S(h(2)).n))

=
∑
f(h(1).m⊗ h(2)S(h(3)).n)

=
∑
f(h(1).m⊗ εt(h(2)).n)

=
∑
f(1(1)h.m⊗ 1(2).n)

= f(Δ(1)(h.m⊗ n)).

Hence φ(f)(h.m) = h.φ(f)(m).
(iii) φ is an H-module map.
For all f ∈ HomH(M 	N,K), m ∈M,n ∈ N, and h ∈ H, we have

φ(h.f)(m)(n) = (h.f)(Δ(1)(m⊗ n))
=

∑
h(1)f(Δ(S(h(2)))(m⊗ n))

=
∑
f(Δ(h(1)S(h(2)))(m⊗ n))

= f(Δ(εt(h))(m⊗ n))

and
(h.φ(f))(m)(n) =

∑
[h(1)φ(f)(S(h(2)).m)](n)

=
∑
h(1)φ(f)(S(h(3)).m)(S(h(2)).n)

=
∑
h(1)f(Δ(1)(S(h(3)).m⊗ S(h(2)).n))

=
∑
f(h(1)S(h(4)).m⊗ h(2)S(h(3)).n)

=
∑
f(h(1)S(h(3)).m⊗ εt(h(2)).n)

=
∑
f(1(1)h(1)S(h(2)).m⊗ 1(2).n)

=
∑
f(1(1)εt(h).m⊗ 1(2).n)

= f(Δ(εt(h))(m⊗ n).

Hence φ(h.f) = h.φ(f).
(iv) φ is an invertible map.
We define ψ : HomH(M,Hom(N,K)) −→ HomH(M 	N,K) by

ψ(g)(Δ(1)(m ⊗ n)) = g(m)(n).

First, for all g ∈ HomH(M,Hom(N,K)), ψ(g) is well defined, i.e., ψ(g) is a
k−map. In fact, for all m ∈M,n ∈ N, the map ψ(g) : M ×N −→ K given by
ψ(g)(m, n) = g(m)(n) is bilinear, since maps g and g(m) are homomorphisms.
Hence ψ(g) induces a k-map ψ(g) : M ⊗N −→ K, and it also induces a map
ψ(g) : M 	N = Δ(1)(M ⊗N) −→ K.
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Second, for all g ∈ HomH(M,Hom(N,K)), ψ(g) ∈ HomH(M 	 N,K). In
fact, for all m ∈M,n ∈ N and h ∈ H, we have

ψ(g)(h.(Δ(1)(m⊗ n))) =
∑
ψ(g)(Δ(1).(h(1).m⊗ h(2).n))

=
∑
g(h(1).m)(h(2).n)

=
∑

(h(1).g(m))(h(2).n)
=

∑
h(1)g(m)(S(h(2))h(3).n)

=
∑
h1(1)g(m)(S(1(2)).n)

=
∑
h[1(1)g(m)(S(1(2)).n)]

= h[(1.g(m))(n)]
= h[g(m)(n)]
= hψ(g)(Δ(1)(m ⊗ n)).

Hence ψ(g) is an H-module map.
It is clear that ψφ = id and φψ = id. Therefor φ is an invertible map, φ is

an isomorphism.

Suppose H is a weak Hopf algebra and u is an invertible element in H. Let
M be an H-module. Then M∗∗ is an H-module by (20). Let ψu : M −→M∗∗

be given by
ψu(m)(f) = f(u.m)

for all m ∈M and f ∈ M∗. In general, ψu is not an H-module homomorphism.

Proposition 3.3. ψu is an H-module homomorphism for all H-modules M if
and only if H is a u-weak Hopf algebra.

Proof For all h ∈ H, if S2(h) = uhu−1, then

(h.ψu(m))(f) = ψu(m)(S(h).f)
= (S(h).f)(u.m)
= f(S2(h)u.m)
= f(uh.m)
= ψu(h.m)(f),

for all m ∈M and f ∈ M∗. Hence , ψu is an H-module homomorphism.
Conversely, if ψu is an H-module homomorphism for all H-module M, in

particular, for the regular H-module H, then ψu(h)(f) = f(u.h) for all h ∈ H
and f ∈ H∗. On the other hand,

ψu(h)(f) = (h.ψu(1))(f)
= ψu(1)(S(h).f)
= (S(h).f)(u.1)
= f(S2(h)u).

Thus , uh = S2(h)u. Hence, H is a u-weak Hopf algebra.
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Let μ : M 	M∗ −→ Ht be the k-map given by

μ(Δ(1)(m⊗ α)) =
∑

α(S(1(1))u.m)1(2),

for all m ∈M and α ∈ M∗.

Proposition 3.4. μ is an H-module homomorphism for all H-module M if
and only if H is a u-weak Hopf algebra.

Proof For all h ∈ H, if S2(h) = uhu−1, then

μ(h.Δ(1)(m⊗ α)) =
∑
μ(h(1).m⊗ h(2).α)

=
∑

(h(2).α)(S(1(1))uh(1).m)1(2)

=
∑
α(S(h(2))(1(1))uh(1).m)1(2)

=
∑
α(S(h(2))S(1(1))S2(h(1))u.m)1(2)

=
∑
α(S(S(h(1))1(1)h(2))u.m)1(2)

=
∑
α(S(S(h(1))h(2))u.m)εt(h(3))

=
∑
α(S(εs(h(1))u.m)εt(h(2))

and
h.μ(Δ(1)(m⊗ α)) =

∑
h.α(S(1(1))u.m)1(2)

=
∑
α(S(1(1))u.m)εt(h1(2))

=
∑
α(S(εs(h(1))u.m)εt(h(2)).

Hence μ is an H-module homomorphism for all H-modules.
Conversely, if μ is an H-module homomorphism for all H-module, then

∑
S(h(2))S(1(1))uh(1) ⊗ 1(2) =

∑
S(εs(1(1)h)) ⊗ 1(2).

Hence ∑
S(h(2))uh(1) = S(εs(h))u

and
S2(h)u = S(S(h))u

=
∑
S(εs(h(1))S(h(2)))u

=
∑
S2(h(2))S(εs(h(1)))u

=
∑
S2(h(3))S(h(2))uh(1)

=
∑
S(h(2)S(h(3)))uh(1)

=
∑
S(εt(h(2)))uh(1)

=
∑
S(1(2))u1(1)h

= S(εs(1))uh
= uh.

Applying the quantum dimension of a representation, we can characterize
the semisimplicity of a u-weak Hopf algebra. First, we prove the following
proposition.
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Proposition 3.5. Let H be a u-weak Hopf algebra and P a projective H-
module. Then P 	M is a projective H-module for any H-module M.

Proof Suppose
0 −→ C ′ −→ C −→ C ′′ −→ 0

is an exact sequence of H-modules. Since F (−) = Hom(M,−) is an exact
functor, by lemma 3.2, we have the following commutative diagram:

HomH(P, F (C ′)) −→ HomH(P, F (C)) −→ HomH(P, F (C ′′)) −→ 0
↓∼= ↓∼= ↓∼=

HomH(P 	M,C ′) −→ HomH(P 	M,C) −→ HomH(P 	M,C ′′)

This shows that the sequence

HomH(P 	M,C ′) −→ HomH(P 	M,C) −→ HomH(P 	M,C ′′) −→ 0

is exact. Hence P 	M is projective.

As an immediate consequence of proposition 3.5 and lemma 2.5, we see that
H is semisimple if and only if the trivial module module Ht is projective.

Theorem 3.6. Let H be a u-weak Hopf algebra over a field k. Then H is
semisimple if and only if there is finite-dimensional projective H-module P
such that detuP is invertible in k.

Proof If there exits a finite dimensional projective H-module P such that
detuP is invertible in k, by proposition 3.5, P 	 P ∗ is projective. The map
ρ : Ht −→ P 	 P ∗ given in lemma 3.1 is an H-module homomorphism. Since
S2(h) = uhu−1, the map μ : P 	 P ∗ −→ Ht in proposition 3.4 is also an
H-module homomorphism. Now

μ ◦ ρ(yj) =
∑

m∗
t (S(xi)uyj.mt)yi =

n∑

i=1

tr(μij)yi,

for j = 1, ..., n. Therefore μ is a splitting H-module homomorphism and Ht is
a projective H-module. It follows that H is semisimple by proposition 3.5.

Conversely, if H is semisimple, then the trivial module Ht is projective and
μ ◦ ρ is an isomorphism. Hence detuHt is invertible in k.

As a consequence, some other interesting results can be deduced.

Corollary 3.7. Let H be a quasi-triangular weak Hopf algebra. Then H is
semisimple if and only if there exits a finite-dimensional projective H-module
such that its quantum dimension is invertible in k.

Proof Suppose (H,R) is a quasi-triangular weak Hopf algebra. Then H
is a u-weak Hopf algebra by proposition 2.7, hence corollary 3.7 is obvious by
theorem 3.6.
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4 Spectral Sequence and Homological Dimen-

sion of Smash Product X ��R A

Let X be an associative algebra and A a weak Hopf algebra with invertible
antipode S, and let R : A⊗X −→ X⊗A be a k-linear map such thatH = X ��R

A is an R-smash product. In this section, we assume that As is semisimple and

Δ(1) =
∑

1(1) ⊗ 1(2) =
∑

1(2) ⊗ 1(1). (21)

We also assume that the map R satisfies the following condition:
∑

xS(a(1)) ⊗ a(2) =
∑

S(a(1))xR ⊗ (a(2))R, (22)

in (X ��R A) ⊗k (X ��R A), for all x ∈ X and a ∈ A.

Proposition 4.1. The assumption (21) implies As = At and As is a commu-
tative subalgebra of A.

Proof It is clear by the assumption (21) and proposition 2.3.

Remark 3. By (17), (18) and proposition 4.1, for any a ∈ A, we have

Δ(εs(a)) =
∑

1(1) ⊗ εs(a)1(2) =
∑

1(1)εs(a) ⊗ 1(2). (23)

Let V,W be left H-modules. For each φ ∈ HomX(V,W ) and a ∈ A, define
φ.a : V −→W by

(φ.a)(v) =
∑

S(a(1))φ(a(2)v) (24)

for all v ∈ V. Then φ.a ∈ HomX(V,W ). In fact, for any x ∈ X and v ∈ V, we
have

(φ.a)(xv) =
∑
S(a(1))φ(a(2)xv)

=
∑
S(a(1))φ(xR(a(2))Rv)

=
∑
S(a(1))xRφ((a(2))Rv)

=
∑
xS(a(1))φ(a(2)v)

= x(φ.a)(v).

Let HomX(V,W ) = HomX(V,W ).1A.

Lemma 4.2. (i) The above definition makes HomX(V,W ) a right A-module.
(ii) HomH (V,W ) is a right As-submodule of HomX (V,W ) and there is a

canonical right As-linear isomorphism

HomA(AS ,HomX(V,W )) ∼= HomH(V,W ).
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(iii) W is a right As-module by the action

w.εs(a) = εt(S(a))w, for all w ∈W, a ∈ A,

and

HomX(H,W ) ∼= HomAs(A,W ) (25)

as right A-modules (where A acts on the right hand side by (φ.a)(b) = φ(ab),
for φ ∈ HomAs (A,W ) and a, b ∈ A.)

(iv) If f : V −→ V ′ and g : W −→ W ′ are H-module maps, then g∗f∗ :
HX(V ′,W ) −→ HomX(V,W ′) is an A-module map.

Proof (i) Suppose a, b ∈ A, v ∈ V and φ ∈ HomX (V,W ), we have

(φ.(ab))(v) =
∑
S(a(1)b(1))φ((a(2)b(2))v)

=
∑
S(b(1))S(a(1))φ(a(2)(b(2)v))

=
∑
S(b(1))(φ.a)(b(2)v)

= ((φ.a).b)(v).

Hence φ.(ab) = (φ.a).b and so HomX(V,W ) is a right A-module.
(ii) Note that there is a canonical isomorphism ofHomA(AS ,HomX(V,W ))

with the As-submodule of A-invariants in HomX (V,W ), that is with

HomX (V,W )A = {φ ∈ HomX (V,W )|φ.a = εs(a)φ, for all a ∈ A}.
Thus it suffices to show that HomX(V,W )A = HomH(V,W ).

Let φ ∈ HomX(V,W ), a ∈ A, v ∈ V. Then

(φ.a)(v) = εs(a)φ(v)
⇔ ∑

S(a(1))φ(a(2)v) =
∑
S(a(1))a(2)φ(v)

⇔ ∑
S(1(1))φ(1(2)av) =

∑
a(1)S(a(2))a(3)φ(v)

⇔ φ(av) =
∑
a1(1)S(1(2))φ(v) = aφ(v)

Since H = XA, the last condition is equivalent with φ ∈ HomH(V,W ). This
proves the desired isomorphism and we also get HomH (V,W ) is a right As-
submodule of HomX(V,W ).

(iii) By proposition 2.4, we have

εs(c) = εs(a)εs(b) ⇔ S(εs(c)) = S(εs(b))S(εs(a))
⇔ εt(S(c)) = εt(S(b))εt(S(a)).

Hence
w.(εs(a)εs(b)) = w.εs(c)

= εt(S(c))w
= (εt(S(b))εt(S(a)))w
= (εt(S(b))(εt(S(a))w))
= (w.(εs(a))).εs(b).
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Thus W is a right As-module.
Now consider the map f : HomX (H,W ) −→ HomAs(A,W ) that is defined

by
f(φ)(a) = (φ.a)(1) =

∑
S(a(1))φ(a(2))

for φ ∈ HomX (H,W ) and a ∈ A. Then f is well defined. In fact, for φ ∈
HomX (H,W ) and a, b ∈ A, set ψ = φ.a and x = εs(b) ∈ At = As. By (23), we
have

(ψ.εs(b))(1) = (ψ.x)(1)
=

∑
S(1(1)x)ψ(1(2))

=
∑
S(x)S(1(1))ψ(1(2))

= S(x)ψ(1)
= S(εs(b))ψ(1)
= εt(S(b))ψ(1).

Hence we have
f(φ)(aεs(b)) = (φ.aεs(b))(1)

= (ψ.εs(b))(1)
= εt(S(b))ψ(1)
= εt(S(b))(φ.a)(1)
= (φ.a)(1).εs(b)
= f(φ)(a).εs(b).

Thus f(φ) ∈ HomAs (A,W ).
The map f is A-linear. In fact, for all φ ∈ HomX(H,W ) and a, b ∈ A, we

have
f(φ.a)(b) = ((φ.a).b)(1) = (φ.ab)(1)

and
(f(φ).a)(b) = f(φ)(ab) = (φ.ab)(1).

Hence f(φ.a) = f(φ).a.
Define a map g : HomAs (A,W ) −→ HomX(H,W ) by

g(ψ)(a) =
∑

a(1)ψ(a(2))

for ψ ∈ HomAs (A,W ) and a ∈ A. Note that g(ψ) is well defined because
H = XA. One readily checks that f and g are inverse to each other, whence
the isomorphism (25) follows.

Finally, the last assertion (iv) is trivial and so the lemma is proved.

Let VH and HW be H-modules. For v ⊗ w ∈ V ⊗X W and a ∈ A, define

a.(v ⊗w) ∈ V ⊗X W, by a.(v ⊗w) =
∑

vS(a(1)) ⊗X a(2)w.
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This definition is well defined, in fact, let x ∈ X, we have

a.(vx⊗ w) =
∑
vxS(a(1)) ⊗ a(2)w

=
∑
vS(a(1))xR ⊗ (a(2))Rw

=
∑
vS(a(1)) ⊗ a(2)xw

= a.(v ⊗ xw).

Let V ⊗̄XW = 1A.(V ⊗W ).

Lemma 4.3. (i) The above definition makes V ⊗̄XW a left A-module.
(ii) V ⊗H W is a left As-module and there is a canonical As-linear isomor-

phism
As ⊗A (V ⊗̄XW ) ∼= V ⊗̄HW.

(iii) V is a left As-module by the action

εs(a).v = vεt(S(a)), for all a ∈ A, v ∈ V,

and
V ⊗̄XH ∼= A ⊗As V

as left A-modules, where the A-action on the right hand side is via the action
on the factor A.

(iv) If f : V −→ V ′ and g : W −→ W ′ are H-module maps, then g ⊗ f :
V ⊗̄XW −→ V ′⊗̄W ′ is an A-module map.

Proof (i) Let a, b ∈ A, we have

(ab).(v ⊗ w) =
∑
vS(a(1)b(1)) ⊗ a(2)b(2)w

=
∑
vS(b(1))S(a(1)) ⊗ a(2)b(2)w

= a.
∑
vS(b(1)) ⊗ b(2)w

= a.(b.(v ⊗ w)).

Hence V ⊗̄XW is a left A-module.
(ii) Note thatAs⊗(V ⊗̄XW ) ∼= V ⊗̄XW/Kerεs(V ⊗̄XW ) and Kerεs(V ⊗̄XW )

is the As-submodule of V ⊗̄XW that is generated by the elements of the form
a.(v ⊗w) − εs(a).(v ⊗w), for a ∈ A, v ∈ V, w ∈ W. But

a.(v ⊗w) − εs(a).(v ⊗w) =
∑
vS(a(1)) ⊗ a(2)w − ∑

vS(1(1)) ⊗ εs(a)1(2)w
=

∑
vS(a(1)) ⊗ a(2)w − ∑

vS(1(1)) ⊗ 1(2)εs(a)w
=

∑
vS(a(1)) ⊗ a(2)w − ∑

v ⊗ εs(a)w
=

∑
vS(a(1)) ⊗ a(2)w − ∑

v ⊗ S(a(1))a(2)w,

and hence Kerεs(V ⊗̄XW ) equals the As-submodule of V ⊗̄XW that is gener-
ated by the elements of the form va⊗w− v ⊗ aw. Since H = XA, this proves
the isomorphism and V ⊗̄HW is a left As-module.
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(iii) The proof that V is a left As-module is similarly as the proof of lemma
4.2 (iii). Now set

g : V ⊗̄XH −→ A ⊗As V, g(v ⊗ a) =
∑

a(2) ⊗ va(1)

and

f : A⊗As V −→ V ⊗̄XH, f(a ⊗ v) = a.(v ⊗ 1) =
∑

vS(a(1)) ⊗ a(2).

Then
(a) It is clear that g is well defined. Now let a, b ∈ A and v ∈ V. Note that

εs(b) ∈ As = At, we have

f(aεs(b) ⊗ v) =
∑
vS(εs(b)(1))S(a(1)) ⊗ a(2)εs(b)(2)

=
∑
vS(εs(b))S(1(1))S(a(1)) ⊗ a(2)1(2)

=
∑
vεt(S(b))S(a(1)) ⊗ a(2)

= f(a ⊗ vεt(S(b)))
= f(a ⊗ εs(b).v)

Hence f(aεs(b) ⊗ v) = f(a ⊗ εs(b).v), i.e., f is well defined.
(b) f and g are A-linear. For any a, b ∈ A and v ∈ V, we have

f(b.(a⊗v)) = f(ba⊗v) =
∑

vS(b(1)a(1))⊗b(2)a(2) = b.(
∑

vS(a(1))⊗a(2)) = b.f(a⊗v),
and

g(b.(v ⊗ a)) = g(
∑
vS(b(1)) ⊗ b(2)a)

=
∑
b(3)a(2) ⊗ vS(b(1))b(2)a(1)

=
∑
b(2)a(2) ⊗ vεs(b(1))a(1)

=
∑
b1(2)a(2) ⊗ v1(1)a(1)

=
∑
ba(2) ⊗ va(1)

= b.(
∑
a(2) ⊗ va(1))

= b.g(v ⊗ a).

(c) fg = 1V ⊗̄XH and gf = 1A⊗AsV . In fact, we have

fg(v ⊗ a) =
∑
f(a(2) ⊗ va(1))

=
∑
va(1)S(a(2)) ⊗ a(3)

=
∑
vεt(a(1)) ⊗ a(2)

=
∑
vS(1(1)) ⊗ 1(2)a

= v ⊗ a,

and
gf(a ⊗ v) = g(

∑
vS(a(1)) ⊗ a(2))

=
∑
a(3) ⊗ vS(a(1))a(2)

=
∑
a(2) ⊗ vεs(a(1))

=
∑
a1(2) ⊗ v1(1)

=
∑
a ⊗ v1(1)S(1(2))

= a⊗ v.



208 Weak Hopf Algebras and Smash Products

Thus we get the isomorphism V ⊗̄XH ∼= A⊗As V by (b) and (c).
(iv) The last assertion is again clear and so the lemma is proved.

The above A-actions can extend to A-actions on Ext and Tor. We expand
this for Ext. The case of Tor can be treated analogously. So let V and W be
left H-modules and let

P : · · · −→ Pn −→ Pn−1 −→ · · · −→ P0 −→ 0

be a projective resolution of V. So Hn(P) = 0 for all n �= 0 andH0(P) ∼= V. Since
H is free as left X-module, the restriction of P to X is a projective resolution
of V as a left X-module. So we define

Ext∗X(V,W ) = H∗(HomX(P,W )).

By lemma 4.2, the components of the complex HomX(P,W ) are right A-
modules and the differential (f∗n)n is A-linear. Thus the cohomology
H∗(HomX (P,W )) is a right A-module and hence so is Ext∗X(V,W ).

Proposition 4.4. (i) Let V and W be left H-modules. Then there is a third
quadrant spectral sequence

Ep,q
2 = ExtpA(As,Ext

q
X(V,W )) ⇒p ExtnH(V,W ).

(ii) Let V be a right H-module and W a left H-module. Then there is a first
quadrant spectral sequence

E2
p,q = TorA

p (As,Tor
X
q (V,W )) ⇒p TorH

n (V,W ).

Proof Both spectral sequences can be obtained as applications of the
Grothendieck spectral sequence (c.f. Rotman, 1979, chap. 11). We let HM, MA

and MAs denote the category of left H-modules, the category of right A-
modules and the category of right As-modules respectively.

We construct two functors F and G. The The rest of the proof is analogous
to proposition 3.1 in Lorenz and Lorenz (1995).

(i) Let HW be a given left H-module. Define functors

G : HM −→ MA, G(V ) = HomX (V,W )

and
F : MA −→ MAs, F (N) = HomA(As, N).

By lemma 4.2, FG is equivalent with the functor HomH (−,W ) and so the right
derived functor Rn(FG) are equivalent with ExtnH(−,W ). It is easy to prove
that F and G satisfy the conditions of Theorem 11.8 in Rotman(1979) under



Xiurong Wang 209

the assumption that As is semisimple, hence the required spectral sequence
exists.

(ii) Let VH be a given H-module. Define functors

G :H M −→A M, G(W ) = V ⊗̄XW

and
F :A M −→As M, F (N) = As ⊗N.

By lemma 4.3 FG is equivalent with the functor V ⊗̄H−, and so the left de-
rived functor Ln(FG) are equivalent with TorH

n (V,−). F and G also satisfy
the conditions of Theorem 11.39 in Rotman(1979), thus the required spectral
sequence exists.

Note that

ExtnX(V,W ) = Hn(HomX (P,W )) = Hn(HomX(P,W )) = ExtnX(V,W ), n ≥ 1.

Then the above proposition implies immediately the following estimates for the
projective dimension and the flat dimension of modules.

Corollary 4.5. (i) Let V be a left H-module. Then pd(HV ) ≤ pd(AsA) +
pd(XV ). Consequently, lD(H) ≤ rD(A) + lD(X). In particular, if X and A
are semisimple, then so is H.

(ii) Let V be a right H-module. Then fd(VH) ≤ fd(AsA)+ fd(VX). There-
fore wD(H) ≤ wD(A) + wD(X). In particular, if X and A are both von Neu-
mann regular then so is H.
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