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Abstract

A ring R is called strictly generalized right p-quasi-Baer if for any
nonzero element x ∈ R, there exists a positive integer n such that xn �= 0
and the right annihilator of xnR is generated by an idempotent. The
class of strictly right generalized right p-quasi-Baer rings is a new class of
generalized right p-quasi-Baer rings and contains right principally quasi-
Baer rings. In this paper, many properties of these rings and relations to
another kinds of rings are studied, the closeness of this class of rings and
some relative classes under direct products or direct sums is investigated.

1 Introduction

Throughout this paper, R is an associative ring with identity 1 �= 0 and all
modules are unitary modules. We write MR (resp. RM) to indicate that M
is a right (resp. left) R-module. The notation A ≤ M (A < M) means A is a
(proper) submodule of M . The right (resp. left) annihilator of a subset S of a
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ring R are denoted by r(S) (resp. l(S)). If S = {x}, we usually abbreviate it
to r(x) (resp. l(x)). Zr , Zl will stand for the right singular ideal and the left
singular ideal of R, respectively.

A ring R is called a Baer ring (resp. quasi-Baer ring) if the right anni-
hilator of every non-empty subset (resp. right ideal) in R is generated by an
idempotent. It is well-known that, Baer rings and quasi-Baer rings are left-
right symmetry. In 2001, Birkenmeier, Kim and Park (in [2]) defined a ring
R to be a right principally quasi-Baer ring, or simply right p-quasi-Baer ring,
if the right annihilator of every principal right ideal in R is generated by an
idempotent. Similarly, left p-quasi-Baer rings can be defined. It is proved in
([2], Proposition 1.7) that, if the right annihilator of every finitely generated
(right) ideal of R is generated (as a right ideal) by an idempotent then R is
also a right p-quasi-Baer ring. The concept of Gp-quasi-Baer rings is a gen-
eralization of p-quasi-Baer rings and was defined by Kwak [13]. A ring R is
called a generalized right p-quasi-Baer ring, briefly right Gp-quasi-Baer, if for
any x ∈ R there exists a positive integer n (depending on x) such that the right
annihilator xnR is generated by an idempotent.

If for every element a of a ring R, there exists an element b ∈ R such
that a = aba then R is called a von Neumann regular (=VNR) ring. A ring
R is a (semi−) hereditary ring if every (finitely generated) right ideal of R is
projective. A ring R is a VNR ring if and only if every (finitely generated) right
or left ideal is generated by an idempotent ([12], Theorem 1.1). So, a VNR ring
is left and right semi-hereditary. A ring R is called a right (resp. left) PP ring
if all principal right (resp. left) ideals are projective. The ring is both left and
right PP is called PP (see [16], [4], [14]). It is well-known that a ring R is
a right PP ring if and only if for each element a ∈ R, the homomorphism
ϕ : R → aR defined by ϕ(r) = ar splits (i.e., Kerϕ is a direct summand of
R), if and only if the right annihilator of each element of R is generated by an
idempotent (see Wisbauer [16]). The class of generalized right PP rings was
defined by Hirano [9], and Dung and Thuyet in [6] defined the class of strictly
generalized right PP rings. A ring R is called (resp. strictly) generalized right
PP, briefly right (resp. strictly) GPP , if for any (resp. nonzero) x ∈ R there
exists a positive integer n (depending on x) such that (resp. xn �= 0 and)
the right ideal xnR is projective, or equivalently, if for any (resp. nonzero)
x ∈ R the right annihilator of (resp. non-zero) element xn is generated by
an idempotent for some positive integer n, depending on x. Clearly, the class
of (one-sided) PP rings is a generalization of Baer rings and (one-sided) semi-
hereditary rings (also VNR rings and hereditary rings). Right PP rings are
obviously right (strictly) GPP. For basic concepts and results that are not
defined here we refer to the texts of Anderson and Fuller [1], Dung, Huynh,
Smith and Wisbauer [5], Faith [8], Lam [14], Wisbauer [16].
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2 Strictly Gp-quasi-Baer rings

Note that for a ring R to be right Gp-quasi-Baer, we only need to find a positive
integer n such that the right annihilator of xnR is generated by an idempotent
for each non-nilpotent element x ∈ R. We now consider the following class of
rings.

Definition 2.1. A ring R is called strictly generalized right p-quasi-Baer,
briefly right strictly Gp-quasi-Baer, if for any nonzero x ∈ R there exists a
positive integer n (depending on x) such that xn �= 0 and the right annihilator
of xnR is generated by an idempotent. Strictly generalized left p-quasi-Baer
rings are defined similarly. A ring which is both left and right strictly Gp-
quasi-Baer is called a strictly Gp-quasi-Baer ring.

Clearly, (right) p-quasi-Baer rings are (right) strictly Gp-quasi-Baer and
(right) strictly Gp-quasi-Baer rings are (right) Gp-quasi-Baer. We have the
following implications:

We have now some properties of this class of rings but we need first some
notions. Recall that a ring R is called reduced if it has no nonzero nilpotent
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element, and abelian (or normal) if all idempotents are in its center. A ring
R is called semicommutative if for every a ∈ R, r(a) is an ideal of R. Clearly,
reduced rings are semicommutative and semicommutative rings are abelian.
An idempotent e ∈ R is called left (resp., right) semicentral if xe = exe (resp.,
ex = exe) for all x ∈ R. If all idempotents of a ring R is left (resp. right)
semicentral then R is also called left (resp., right) semicentral. The set of left
(resp., right) semicentral idempotents of R is denoted by Sl(R) (resp., Sr(R)).
Note that Sl(R) ∩ Sr(R) = B(R) is the set of all central idempotents of R.

For a reduced ring R, we have l(x) = r(x) = l(xn) = r(xn) = l(Rx) =
r(xR) = l(Rxn) = r(xnR), for every x ∈ R and every positive integer n.
Therefore, the following result is immediate:

Proposition 2.2. For a reduced ring R, the following conditions are equiva-
lent:

(1) R is (right) PP;

(2) R is strictly generalized (right) PP;

(3) R is generalized (right) PP;

(4) R is (right) p-quasi-Baer;

(5) R is strictly generalized (right) p-quasi-Baer;

(6) R is generalized (right) p-quasi-Baer; �
Lemma 2.3. If R is a semicommutative ring then, r(an) = r(anR) for any
a ∈ R and positive integer n.

Proof By a direct calculation. �
Proposition 2.4. Let R be a ring, a ∈ R and n a positive integer. If r(an) =
eR for some left semicentral idempotent e ∈ R then r(anR) = r(an+1R) = eR.

Proof First, we prove that in this case, r(anR) = r(an). The fact that
r(anR) ≤ r(an) is obvious. Let x ∈ r(an). Since x ∈ eR, we have x = ex.
It implies that anRx = anRex = aneRex = 0 from the fact that e is left
semicentral, i.e. x ∈ r(anR). Now, applying [15, Lemma 3], eR = r(xnR) =
r(xn) = r(xn+1) = r(xn+1R), it completes the proof. �
Corollary 2.5. Let R be a semicommutative ring, a ∈ R and n a positive
integer. If r(anR) = eR for some idempotent e ∈ R then r(anR) = r(an+1R).
�
Corollary 2.6. Let R be a left semicentral ring. If R is a right PP (resp.
GPP, strictly GPP) then R is right p-quasi-Baer (resp. generalized right p-
quasi-Baer, strictly generalized right p-quasi-Baer). �
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If R is a semicommutative ring, then R is a generalized right PP-ring if
and only if R is a generalized right p-quasi-Baer ring [13, Proposition 3.3].
Moreover, we have

Proposition 2.7. If R be a semicommutative ring, then the following condi-
tions are equivalent:

(1) R is (right) PP;

(2) R is (right) p-quasi-Baer;

(3) R is strictly generalized (right) PP;

(4) R is strictly generalized (right) p-quasi-Baer;

Proof It follows immediately from Lemma 2.3, [7, Proposition 2], [6, Propo-
sition 2.7] and [2, Proposition 1.14]. �

Example 2.8. (1) The notions right PP and right p-quasi-Baer are distinct by
[2, Examples 1.3 and 1.5]. Especially, there is a regular ring (hence PP) that is
neither right nor left p-quasi-Baer ([2, Example 1.6]), and there is a quasi-Baer
(hence right p-quasi-Baer) ring that is not right PP [2, Examples 1.3].

(2) Let D be a domain and let R be the trivial extension of D by D. Then
R is semicommutative (but not reduced) and R is a generalized right PP ring,
but it is not a right (strictly) PP ring. Thus R is a generalized right p-quasi-
Baer ring by [13, Proposition 3.3], but it is not (strictly) right p-quasi-Baer by
[2, Proposition 1.14].

(3) The semicommutativity of the ring R in Proposition 2.7 can not reduce
to abelian property because, there is an abelian p-quasi-Baer ring (so also an
abelian strictly Gp-quasi-Baer ring) that is neither left nor right PP (see [2,
Example 1.16]). �

Question 2.9. Does the implication (I) or (II) in the diagram above has in-
verse?

Proposition 2.10. If R is a strictly generalized right p-quasi-Baer ring, then
the center C(R) of R is a PP-ring (also a p − quasi − Baer ring).

Proof By the same argument of the proof of [2, Proposition 1.2], we have
that, the center of a strictly generalized right p-quasi-Baer ring is also strictly
generalized right p-quasi-Baer. But the center of a ring is always commutative,
so the center of a strictly generalized right p-quasi-Baer ring must be a PP
ring, also a p-quasi-Baer ring by Proposition 2.7. �

Proposition 2.11. Let R be a ring. The following conditions are equivalent:
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(1) R is (resp. strictly) generalized right p-quasi-Baer;

(2) For any (resp. nonzero) element a ∈ R, there exists a positive integer n,
depending on a, such that the right annihilator of (resp. non−zero) ideal
RanR is generated by an idempotent.

(3) For any (resp. nonzero) element a ∈ R, there exists a positive integer
n, depending on a, and an idempotent e ∈ Sr(R) such that (resp. 0 �=)
RanR ≤ Re and r(RanR) ∩ Re = (1 − e)Re.

Proof We need only prove for the strictly Gp-quasi-Baer case.
(1) ⇔ (2). Follows from r(I) = r(RI), where I is any right ideal of R.
(1) ⇒ (3). Let R is a strictly generalized right p.p.-Baer ring and a a non-

zero element in R. There exists a positive integer n such that anR �= 0 and
r(anR) = r(RanR) = fR with f ∈ Sl(R). So RanR ⊆ lr(RanR) = R(1 − f).
Let e = 1− f , then e ∈ Sr(R) and r(RanR)∩Re = (1− e)R∩Re = (1− e)Re.

(3) ⇒ (1). Assume (3) holds. We show that r(anR)(= r(RanR)) = (1−e)R.
The fact that (1 − e)R ⊆ r(RanR) is obvious. Now, let x ∈ r(RanR), then
xe = exe + (1 − e)xe ∈ r(RanR) ∩ Re = (1 − e)Re. So ex = exe = 0 and
hence, a = (1 − e)a ∈ (1 − e)R. Thus, r(RanR) = (1 − e)R and R is strictly
generalized right p-quasi-Baer. �
Remark. The implications (1) ⇔ (3) in Proposition 2.11 seemed to be stated
by Kwak in [13, Proposition 3.7] (from the thought of [2, Proposition 1.9]), but
it was incorrect. We correct it and extend for the strictly Gp-quasi-Baer case.

For a given positive integer n, a ring R is called n-generalized right p-quasi-
Baer if for every a ∈ R there exist a/an (left semicentral) idempotent e ∈ R
such that r(anR) = eR. Clearly, 1-generalized right p-quasi-Baer rings are
right p-quasi-Baer and, n-generalized right p-quasi-Baer rings are generalized
right p-quasi-Baer rings for every positive integer n. The class of (right princi-
pally) quasi-Baer rings is closed under direct products by [2, Proposition 2.1].
Similarly, we have the following result:

Proposition 2.12. Let R =
∏

i∈I Ri and n a positive integer. Then, R is
n-generalized right p-quasi-Baer if and only if Ri is a n-generalized right p-
quasi-Baer for each i ∈ I. �

The class of (generalized, n-generalized, strictly generalized) right p-quasi-
Baer rings may not be closed under infinitely direct sums. For example, the
infinite direct sum of domains is not a (generalized, strictly generalized) right
p-quasi-Baer ring. However, we have a relative result as follows:

Proposition 2.13. Let R =
∏

i∈I Ri and S = 〈⊕i∈I Ri, 1〉 the subring of R
generated by

⊕
i∈I Ri and 1R. If Ri are (resp. strictly) generalized right p-

quasi-Baer and semicommutative, then S is also a (resp. strictly) generalized
right p-quasi-Baer ring.
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Proof Assume that Ri are strictly Gp-quasi-Baer and semicommutative and
0 �= x = (xi) ∈ S. Consider the following cases:

Case 1: x ∈ ⊕
i∈I Ri. Since x has only finite nonzero xi, we may assume

that xij �= 0 with j = 1, 2, .., k and xi = 0 with i �= ij . Then, for each
ij there exists a positive integer nij and an idempotent eij ∈ Rij such that
x

nij

ij
�= 0 and r(x

nij

ij
R) = eij R. Take n = max{nij}, j = 1, .., k. Since Rij are

semicommutative, applying Proposition 2.4 we have r(xn
ij

R) = eijR, j = 1, .., k.

Put e = (ei) ∈ S such that ei = eij with i = ij and ei = 1Ri with i �= ij . Then,
it easy to see that e2 = e and r(xnS) = eS.

Case 2: x /∈ ⊕
i∈I Ri. In this case, x = (xi) has the form as follows: There

is a positive integer k such that, almost xi are of the form k1Ri = 1Ri + ..+1Ri

(k times) except finite terms, say xij , j = 1, .., t. By the same argument of
Case 1, for each xij ∈ Rij , there corresponds an idempotent eij ∈ Rij (if
xij = 0 then eij = 1Rij

), and we may choose a positive integer n such that
r(xn

ij
R) = eijR, j = 1, .., t.. Put e = (ei) ∈ S such that ei = eij with i = ij

and ei = 0Ri with i �= ij . It can be checked that e2 = e and r(xnS) = eS, as
desired. �
Corollary 2.14. Let R =

∏
i∈I Ri and S = 〈⊕i∈I Ri, 1〉 the subring of R

generated by
⊕

i∈I Ri and 1R. If Ri are (resp. n−generalized) right p-quasi-
Baer, then S is also a (resp. n − generalized) right p-quasi-Baer ring. �
Corollary 2.15. The direct sum of finite left semicentral (resp. strictly) gen-
eralized right p-quasi-Baer rings is also a (resp. strictly) generalized right p-
quasi-Baer rings. �
Proposition 2.16. Let R be a strictly generalized right p-quasi-Baer ring.
(1) R is semiprime if and only if Sl = B(R)
(2) If every essential right ideal is an essential extension of an ideal of R, then
R is right nonsingular.

Proof (1). For e ∈ Sl, then eR(1 − e) is an ideal and (1 − e)Re = 0. We
have eR(1− e)2 = 0. If R is semiprime, then eR(1 − e) = 0. Thus e is central.
Conversely, assume that Sl = B(R). Suppose that I is an nonzero ideal of R
with I2 = 0. Let 0 �= x ∈ I (note that x2 = 0). Since R is strictly generalized
right p-quasi-Baer, there exists an idempotent e ∈ B(R) such that r(xR) = eR.
We have (xR)2 ⊆ I2 = 0 and so xR ≤ r(xR). It implies that x = ex and hence
xR = exR = xRe = 0. This is a contradiction.

(2). Assume that Zr �= 0. Let 0 �= x ∈ Zr . Since R is strictly gen-
eralized right p-quasi-Baer, there exist a positive integer n and e ∈ Sl such
that r(xnR) = eR. On the other hand, r(xn) ≤e RR. By hypothesis, there
exists an ideal I such that I ≤ r(xn) and I ≤e RR. Then xnRI = 0 and so
I ≤ r(xnR) = eR. Since I ≤e RR, e = 1 and so xn = 0. This is a contradiction.
�
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