ON FUNCTORIAL PROPERTIES OF BCK AND BCI-STRUCTURES

S.M.A. Zaidi, Shabbir Khan and Gulam Muhiuddin

 $\begin{array}{c} Department\ of\ Mathematics\\ Aligarh\ Muslim\ University\\ Aligarh\ -\ 202002,\ India.\\ zaidimath@math.com,\ skhanmu@rediffmail.com,\ gmchishty@math.com \end{array}$

Abstract

In this paper, we study functors by retractions and co-retractions on BCI-algebras. Further, some functors by filters, prime ideals and self maps on BCK-algebras are discussed.

1. Introduction

The notion of BCK-algebra was originated by Imai and Iseki [6]. Later on, Iseki [7] introduced the notion of a BCI-algebra as a generalization of a BCK-algebra. A series of interesting notions concerning BCI-algebras were introduced.

Several

papers have been written on various aspects of these algebras and their relations to other algebraic structures have been studied (see [9,10,11,12]).

Iseki and Thaheem [14] proved that if X is an associative BCI-algebra, then End(X); the set of all BCI-homomorphisms on X, is also a BCI-algebra. They also proved that for any $\theta_1, \theta_2 \in End(X), \theta_1 \star \theta_2 \in End(X)$ together with the mapping $\theta_1 \star \theta_2 : X \to X$ defined by $(\theta_1 \star \theta_2)(x) = \theta_1(x) \star \theta_2(x)$ for all $x \in X$.

In developing an algebraic theory of BCK-algebras, the notion of ideals has played an important role. The theory of ideals has been developed by Iseki [8] and extensively studied by several authors. Deeba [4] introduced the notion of filters as a dual to the concept of ideals of BCK-algebras and proved that if P_1 , P_2 and P_3 are prime ideals of a bounded commutative BCK-algebra X, then

Key words and phrases: BCK-homomorphism, bounded commutative BCK-algebra and $B_{CK(i_+)}$; category of positive implicative BCK-algebras 2000 AMS Mathematics Subject Classification: 18A20, 18D05, 06F35

 $X-P_1$, $X-P_2$ and $X-P_3$ will be the corresponding filters of X. Thus there is a one to one correspondence between the ideals and filters of a bounded commutative BCK-algebra. Moreover, if P is a prime ideal of X and $x \in P$, then $Nx \in (X-P)$, the corresponding filter of the ideal P.

Kondo [15] defined a left map l_x on a positive implicative BCK-algebra X and proved that if X is a positive implicative BCK-algebra, then the set of all left maps L(X) is also a positive implicative BCK-algebra.

Motivated from [4, 14, 15], we study functorial properties of BCK and BCI-structures in view of the fact that a structure has a functorial property if a functor can be defined by it. In particular, we construct some functors using the functorial properties of BCK and BCI-structures such as retractions, corretractions, filters, prime ideals and self maps.

2. Preliminaries

In this section, we recall the following aspects of the theory of BCK and BCI-algebras that are necessary for the development of this paper from [9, 13, 14, 16]. For background information on categories and functors we refer the reader to [1].

Let X be a set with binary operation ' \star ' and a constant 0, then X is called BCI-algebra if the following axioms are satisfied for all $x, y, z \in X$:

- (i) (x * y) * (x * z) < z * y,
- $(ii) \ x * (x * y) \le y,$
- (iii) $x \leq x$,
- (iv) $x < 0 \implies x = 0$,
- (v) $x \le y$ and $y \le x \Longrightarrow x = y$,
- (vi) $x \le y \iff x \star y = 0$.

If we replace $\operatorname{axiom}(iv)$ by $0 \le x, X$ is called BCK-algebra.

A BCK-algebra X is said to be commutative if $x \wedge y = y \wedge x$, where $x \wedge y = y \star (y \star x)$.

A BCK-algebra X is said to be bounded if there is an element 1 in X such that $x \leq 1$ for all $x \in X$. In a bounded BCK-algebra, we denote $1 \star x$ by N_x .

A BCK-algebra X is said to be positive implicative if $(x \star z) \star (y \star z) = (x \star y) \star z$ for all $x, y, z \in X$.

Let X be a positive implicative BCK-algebra. A self map $l_x: X \to X$ defined by $l_x(t) = x \star t$ for all $t \in X$, is called a left map of X. The composition of left maps is defined by $l_x o l_y = l_{x \star y}$ for all $x, y \in X$.

A non-empty subset I of BCK-algebra X is said to be an ideal of X if

- (i) $0 \in I$,
- (ii) $x \in I$ and $y \star x \in I$ imply that $y \in I$.

An ideal I of a commutative BCK-algebra X is said to be prime if $x \land y \in I$ implies $x \in I$ or $y \in I$.

A non-empty set F of BCK-algebra X is said to be a filter of X if

- (i) $x \in F$ and $y \ge x$ imply that $y \in F$
- (ii) $x \in F$ and $y \in F$ imply that $glb\{x, y\} \in F$.

Let X and Y be BCI-algebras (BCK-algebras). Then a mapping $f:X\to Y$ is called BCI-homomorphism (BCK-homomorphism) if

$$f(x \star y) = f(x) \star f(y)$$
 for all $x, y \in X$.

The category of BCI-algebras can be constructed by taking the class of all BCI-algebras as the class of objects of the category and the class of all BCI-homomorphisms as the class of morphisms of the category. We shall denote the category of BCI-algebras by B_{CI} .

Similarly, the category of BCK-algebras is constructed and denote it by $B_{CK}.$

3. Functors by Retractions and Co-retractions

Consider the category $B_{(r)}$ in which the objects of the category are associative BCI-algebras and morphisms of the category are those BCI-homomorphisms which are retractions.

Theorem 3.1. Let $f: X \to Y$ be a morphism in the category $B_{(r)}$ and g be any right inverse of f. Then the mapping $T_f: End(X) \to End(Y)$ defined by $T_f(\theta) = fo\theta og$ for all $\theta \in End(X)$, is a BCI-homomorphism.

Proof. If $\theta_1, \theta_2 : X \to X$, then we get $T_f(\theta_1 \star \theta_2) = fo(\theta_1 \star \theta_2)og$ and $T_f(\theta_1) \star T_f(\theta_2) = (fo\theta_1 og) \star (fo\theta_2 og)$. Clearly, $T_f(\theta_1 \star \theta_2) : Y \to Y$ and for any $y \in Y$, one gets

$$T_f(\theta_1 \star \theta_2)(y) = (fo(\theta_1 \star \theta_2)og)(y)$$

$$= (fo(\theta_1 \star \theta_2)o(g(y)))$$

$$= f[(\theta_1 \star \theta_2)(g(y))] \qquad (as g(y) \in X)$$

$$= (fo\theta_1 og)(y) \star (fo\theta_2 og)(y)$$

$$= T_f(\theta_1)(y) \star T_f(\theta_2)(y)$$

which yields $T_f(\theta_1 \star \theta_2) = T_f(\theta_1) \star T_f(\theta_2)$ and henceforth T_f is a BCI-homomorphism.

Proposition 3.1. If $g: X \to Y$ and $h: Y \to Z$ are retractions, then $hog: X \to Z$ is also a retraction.

Proof Since $g: X \to Y$ and $h: Y \to Z$ are retractions, then there exist $g': Y \to X$ and $h': Z \to Y$ such that $gog' = I_Y$ and $hoh' = I_Z$. Now, $(hog)o(g'oh') = ho(gog')oh' = ho(I_Y)oh' = (hoI_Y)oh' = hoh' = I_Z$ which implies $(hog)o(g'oh') = I_Z$ and so $hog: X \to Z$ is a retraction.

Proposition 3.2. If $g: X \to Y$ and $h: Y \to Z$ are morphisms in $B_{(r)}$, then $T_{hog} = T_h o T_g$.

Proof In view of Theorem 3.1 and Proposition 3.1, $T_{hog}: End(X) \to End(Z)$ is a BCI-homomorphism. For any $\theta \in Hom(X)$, we get

$$T_{hog}(\theta) = (hog)o\theta o(g'oh')$$

$$= h(go\theta)o(g'oh')$$

$$= ho(go\theta og')oh'$$

$$= ho(T_g(\theta))oh'$$

$$= T_h(T_g(\theta))$$

$$= (T_hoT_g)(\theta)$$

implying thereby $T_{hog} = T_h o T_g$.

Corollary 3.1. If $I_X: X \to X$ is an identity morphism in $B_{(r)}$, then $T_{I_X}: End(X) \to End(X)$ is an identity morphism in B_{CI} .

In view of Theorem 3.1, Propositions 3.1, 3.2 and Corollary 3.1, we can define a functor $T: B_{(r)} \to B_{CI}$ such that

- (i) T(X) = End(X) for all $X \in B_{(r)}$,
- (ii) for any morphism $f: X \to Y$ in $B_{(r)}$, we have $T(f) = T_f: End(X) \to End(Y)$ in B_{CI} .

Now, consider the category $B_{(cr)}$ in which the objects of the category are associative BCI-algebras and morphisms of the category are those BCI-homomorphisms which are co-retractions.

Theorem 3.2. Let $f: X \to Y$ be a morphism in the category $B_{(cr)}$ and g be any left inverse of f. Then the mapping $G_f: End(Y) \to End(X)$ defined by $G_f(\beta) = go\beta of$ for all $\beta \in End(Y)$, is a BCI-homomorphism.

Proof If $\beta_1, \beta_2 \in End(Y)$, then $\beta_1 \star \beta_2 \in End(Y)$. For any $x \in X$, we get

$$G_f(\beta_1 \star \beta_2)(x) = (go(\beta_1 \star \beta_2)of)(x)$$

$$= [go(\beta_1 \star \beta_2)]f(x)$$

$$= g[\beta_1(f(x)) \star \beta_2(f(x))]$$

$$= g(\beta_1(f(x))) \star g(\beta_2(f(x)))$$

$$= (go\beta_1 of)(x) \star (go\beta_2 of)(x)$$

$$= G_f(\beta_1)(x) \star G_f(\beta_2)(x)$$

$$= (G_f(\beta_1) \star G_f(\beta_2))(x)$$

which yields $G_f(\beta_1 \star \beta_2) = G_f(\beta_1) \star G_f(\beta_2)$. Therefore, G_f is a BCI-homomorphism.

Proposition 3.3. If $g: X \to Y$ and $h: Y \to Z$ are co-retractions, then $hog: X \to Z$ is a co-retraction.

Proof The proof follows on the similar lines of Proposition 3.1.

Proposition 3.4. If $g: X \to Y$ and $h: Y \to Z$ are morphisms in $B_{(cr)}$, then $G_{hog} = G_g o G_h$.

Proof In view of Theorem 3.2 and Proposition 3.3, $G_{hog} : End(Z) \to End(X)$ is a BCI-homomorphism and for any $\mu \in End(Z)$, one gets

$$G_{hog}(\mu) = (g'oh')o\mu o(hog)$$
 (as g,h are co-retractions)
 $= (g'oh')o(\mu oh)og$
 $= g'o(h'o\mu oh)og$
 $= g'o(G_h(\mu))og$
 $= G_g(G_h(\mu))$
 $= (G_g o G_h)(\mu)$

which implies $G_{hog} = G_g \circ G_h$.

Corollary 3.2. If $I_X: X \to X$ is an identity morphism in $B_{(cr)}$, then $G_{I_X}: End(X) \to End(X)$ is an identity morphism in B_{CI} .

In view of Theorem 3.2, Propositions 3.3, 3.4 and Corollary 3.2, we can define a contravariant functor $G: B_{(cr)} \to B_{CI}$ such that

- (i) G(X) = End(X) for all $X \in B_{(cr)}$,
- (ii) for any morphism $f: X \to Y$ in $B_{(cr)}$, we have $G(f) = G_f: End(Y) \to End(X)$ in B_{CI} .

4. Functors by Filters and Prime Ideals

Let P(X) represents the category of prime ideals of X in which objects of the category are the prime ideals and morphisms of the category are the BCK-homomorphisms between them. Further, let F(X) denotes the category of filters of X in which objects of the category are the filters and the morphisms of the category are the functions between them.

Let P_1 , P_2 be the prime ideals. Then for any morphism $f: P_1 \to P_2$ in P(X), we can define a function $S_f: (X-P_1) \to (X-P_2)$ in F(X) by $S_f(N_x) = N_{f(x)}$ for all $x \in X$.

Proposition 4.1. If $f: P_1 \to P_2$ and $g: P_2 \to P_3$ are BCK-homomorphisms where P_1, P_2 and P_3 are prime ideals of the bounded commutative BCK-algebra X, then $S_{g \circ f} = S_g \circ S_f$.

Proof Let X be a bounded commutative BCK-algebra. Let $f: P_1 \to P_2$ and $g: P_2 \to P_3$ be the morphisms in P(X). Then for the composite morphism $gof: P_1 \to P_3$ in P(X), the mapping $S_{gof}: (X-P_1) \to (X-P_3)$ is a morphism in F(X). For any $N_x \in (X-P_1)$, we get

$$S_{gof}(N_x) = N_{(gof)(x)}$$

$$= N_{g(f(x))}$$

$$= S_g(N_{f(x)})$$

$$= S_g(S_f(N_x))$$

$$= (S_goS_f)(N_x)$$

yielding thereby $S_{gof} = S_g o S_f$.

Corollary 4.1. If $I_P: P \to P$ is an identity homomorphism in P(X), then $S_{I_P}: (X-P) \to (X-P)$ is an identity morphism in F(X).

In view of the above discussion, we can define a covariant functor $S: P(X) \to F(X)$ such that

- (i) S(P) = (X-P), for all $P \in P(X)$,
- (ii) for any morphism $f: P_1 \to P_2$ in P(X), we have $S(f) = S_f: (X-P_1) \to (X-P_2)$ in F(X).

5. Functors by Self Maps

Consider the category $B_{CK(i_+)}$ in which the objects of the category are positive implicative BCK-algebras and morphisms of the category are the BCI-homomorphisms between them.

Proposition 5.1. If $f: X \to Y$ is a BCK-homomorphism, then the map $L_f: L(X) \to L(Y)$ defined by $L_f(l_x) = l_{f(x)}$ for all $x \in X$, is a BCK-homomorphism.

Proof For any $l_{x_1}, l_{x_2} \in L(X)$, we have

$$\begin{split} L_f(l_{x_1}ol_{x_2}) &= L_f(l_{x_1\star x_2}) \\ &= l_{f(x_1\star x_2)} \\ &= l_{f(x_1)\star f(x_2)} \\ &= l_{f(x_1)}ol_{f(x_2)} \text{ [By the definition of composition} \\ &\qquad \qquad \text{of maps in L(X)]} \\ &= L_f(l_{x_1})oL_f(l_{x_2}) \end{split}$$

which shows that $L_f: L(X) \to L(Y)$ is a BCK-homomorphism.

Theorem 5.1. If $f: X \to Y$ and $g: Y \to Z$ are BCK-homomorphisms in $B_{CK(i_+)}$, then $L_{gof} = L_g \circ L_f$.

Proof In view of Proposition 5.1, the maps $L_f: L(X) \to L(Y)$, $L_g: L(Y) \to L(Z)$ and their composition $L_{gof}: L(X) \to L(Z)$ are morphisms in the category $B_{CK(i_+)}$. For any $l_x \in L(X)$, we have

$$L_{gof}(l_x) = l_{gof(x)}$$

$$= l_{g(f(x))}$$

$$= L_g(l_{f(x)})$$

$$= L_g(L_f(l_x))$$

$$= (L_goL_f)(l_x)$$

yielding thereby $L_{qof} = L_q o L_f$.

Corollary 5.1. If $I_X: X \to X$ is an identity homomorphism in $B_{CK(i_+)}$, then $L_{I_X}: L(X) \to L(X)$ is also an identity homomorphism in $B_{CK(i_+)}$.

With the help of Proposition 5.1, Theorem 5.1 and Corollary 5.1, we can define a functor $F: B_{CK(i_+)} \to B_{CK(i_+)}$ such that

- (i) F(X) = L(X) for all $X \in B_{CK(i_+)}$,
- (ii) for any morphism $f: X \to Y$ in $B_{CK(i_+)}$, we have $F(f) = L_f: L(X) \to L(Y)$ in $B_{CK(i_+)}$.

Acknowledgement: The authors are greatly indebted to the referee for several helpful suggestions and healthy comments.

References

- [1] T.S. Blyth, Categories, Longman, New York 1986.
- [2] M.A. Chaudhry and S.A. Bhatti, On the category of BCI-algebras, Punjab Univ. J. Math. 21 (1988), 34-39.
- [3] Z.M. Chen and H.X. Wang, Some universal properties of BCI-algebras, Kobe J. Math. 6 (1989), 43-48.
- [4] E.Y. Deeba, Filter theory of BCK-algebras, Math. Japon. 25 (1980), 631-639.
- [5] C.S. Hoo, *Injectives in the category of BCI-algebras*, Math. Japon. 33 (1988), 237-246.
- [6] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22.
- [7] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- [8] K. Iseki, On ideals in BCI-algebras, Math. Sem. Notes, Kobe Univ. 3 (1975), 1-12.
- [9] K. Iseki, On BCI-algebras, Math. Sem. Notes, Kobe Univ. 8 (1980), 125-130.
- [10] K. Iseki, On the existence of quasi-commutative BCI-algebras, Math. Sem. Notes, Kobe Univ. 8 (1980), 181-186.
- [11] K. Iseki, On variety of BCI-algebras, Math. Sem. Notes, Kobe Univ. 8 (1980), 225-226.
- [12] K. Iseki, A problem on BCI-algebras, Math. Sem. Notes, Kobe Univ. 8 (1980), 235-236.
- [13] K. Iseki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- [14] K. Iseki and A.B. Thaheem, *Note on BCI-algebras*, Math. Japon. 29 (1984), 255-258.
- [15] M. Kondo, Positive implicative BCK-algebra and its dual algebra, Math. Japon. 35 (1990), 289-291.
- [16] S.M.A. Zaidi and S. Khan, A note on the category of BCK-algebras with regular morphisms, Proc. Internat. Conf. Algebra and its Applications, A.M.U. Aligarh (2001), 305-315.