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Abstract
A quasi-permutation polynomial is a polynomial which is a bijection

from one subset of a finite field onto another subset of the same cardi-
nality. This is a natural generalization of the familiar permutation poly-
nomials. General discussions are made on the existence and the number
of such polynomials together with examples.

1 Introduction

Let Fq denote the finite field of q elements. A permutation function over Fq is
a function from Fq into itself which is a permutation of Fq . Let S and T be
two nonempty subsets of Fq with the same number of elements s = |S| = |T |.
An (S,T)-permutation is a bijection from S onto T ; this is an obvious gener-
alization of a permutation function over Fq . In an attempt to generalize the
concept of permutation function to that of (S,T)-permutation, one immedi-
ately encounters several difficulties, one of which is illustrated in the following
example.
Example. Let S = {1, 3, 5} and T = {2, 4, 6} be subsets of F7 := {0, 1, 2, 3, 4, 5, 6}.
Consider the two relations f and g defined on F7 by

f = {(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}
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and
g = {(0, 0), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}.

Clearly, f and g are (S,T)-permutations. Yet, f is not a function from F7 into
itself, but g is. Notice also that f �= g over F7, but if the domain is restricted
to S, then f = g, i.e., f and g are the same (S,T)-permutation.

This example indicates that should one wish to study permutations over
subsets of Fq, referred to as quasi-permutations, it is more natural not to con-
sider any general functions. An obvious candidate to consider is the polynomial
function. This is also affirmatively assured by the following fact about function
representation. As is well-known, see e.g. the remark after Lemma 7.1 in [4],
each function from Fq into itself is uniquely representable as a polynomial in
Fq [x] of degree ≤ q − 1. This is also the case for functions from S into T .

Proposition 1.1. If f : S → T is a function, where S and T are subsets of
Fq with the same number of elements |S| = |T | = s ≤ q, then there exists a
unique polynomial Pf ∈ Fq [x] with deg Pf ≤ s − 1 representing f in the sense
that Pf(c) = f(c) for all c ∈ S.

Proof Let S = {a1, a2, . . . , as} and let

Pf(x) = cs−1x
s−1 + cs−2x

s−2 + · · ·+ c1x + c0 ∈ Fq [x].

The system of linear equations

c0 + c1ai + c2a
2
i + · · ·+ cs−1a

s−1
i = f(ai) (i = 1, . . . , s),

uniquely determines the coefficients ci because its coefficient matrix
(
aj

i

)
has a

vandermonde determinant. This guarantees the existence of such a polynomial
Pf . To prove uniqueness, assume that there is another polynomial h ∈ Fq [x]
with deg h ≤ s − 1 such that h(c) = f(c) for all c ∈ S. Then Pf − h ∈ Fq [x]
would be a polynomial of degree ≤ s− 1 which vanishes at s distinct points in
a finite field, forcing h ≡ Pf . � Proposition 1.1 tells us that
each function from S to T is uniquely representable as a polynomial in Fq[x] of
degree ≤ s− 1. There are altogether qs polynomials of degree ≤ s− 1 over Fq,
while the number of functions from S into T is merely ss (≤ qs). In general,
without imposing any structure on the sets S and T , it is not easy to find
out which polynomial does not represent such a function. The next example
confirms that not all polynomials of degree ≤ s− 1 represent functions from S
to T .
Example. Let S = {1, 2, 4}, T = {2, 3, 4} be subsets of F5 := {0, 1, 2, 3, 4}.
Consider the polynomial

P (x) = x + 4 ∈ F5[x]
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of degree 1(≤ 3− 1 = 2). We see that P is a function from F5 into F5 but it is
not a function from S into T as P (1) = 0 /∈ T .

Our next proposition provides a necessary and sufficient condition on the
polynomials of degree ≤ s−1 to represent functions from S to T . Before doing
so, we recall some elementary facts. Since Fq*:= Fq \ {0} is a cyclic group of
order q− 1, we may write Fq*= 〈α〉, where α ∈ Fq* is a fixed generator of Fq*.
Each element β ∈ F

∗
q , can thus be written as β = αi for some i ∈ Z. If S is a

subset of Fq with |S| = s, then we write

S = {αi1, αi2, . . . , αis} (1)

for some distinct i1, i2, . . . , is ∈ N
∞
0 := N∪{0,−∞} satisfying ij �≡ ik(mod q−1)

for j �= k, where we adopt the convention that α−∞ = 0.

Proposition 1.2. Let S and T be subsets of Fq with the same number of
elements |S| = |T | = s ≤ q with S written as in (1). If

Pf(x) = a0 + a1x + a2x
2 + · · ·+ as−1x

s−1 ∈ Fq[x]

is a polynomial of degree ≤ s − 1 representing a function f : S → T , then

a0 =
det(C1(W ))

det(W )
, a1 =

det(C2(W ))
det(W )

, . . . , as−1 =
det(Cs(W ))

det(W )
,

where

W =

⎛
⎜⎜⎜⎜⎜⎝

1 αi1 (αi1)2 (αi1)3 · · · (αi1)s−1

1 αi2 (αi2)2 (αi2)3 · · · (αi2)s−1

1 αi3 (αi3)2 (αi3)3 · · · (αi3)s−1

...
...

...
...

...
1 αis (αis)2 (αis)3 · · · (αis)s−1

⎞
⎟⎟⎟⎟⎟⎠

and for j = 1, . . . , s

Cj(W ) =

⎛
⎜⎜⎜⎜⎜⎝

1 αi1 (αi1)2 · · · (αi1)j−2 f(αi1) (αi1)j · · · (αi1)s−1

1 αi2 (αi2)2 · · · (αi2)j−2 f(αi2) (αi2)j · · · (αi2)s−1

1 αi3 (αi3)2 · · · (αi3)j−2 f(αi3) (αi3)j · · · (αi3)s−1

...
...

...
...

...
...

...
1 αis (αis)2 · · · (αis)j−2 f(αis) (αis)j · · · (αis)s−1

⎞
⎟⎟⎟⎟⎟⎠ .

Moreover, the number of such polynomials Pf(x) is equal to the number of
functions from S to T which is ss.
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Proof Let

U :=
(
f(αi1 ) f(αi2) f(αi3 ) · · · f(αis )

)t

=
(
Pf(αi1) Pf(αi2) Pf(αi3) · · · Pf(αis)

)t ∈ T s,

where t denotes the transpose of a matrix. Then WX = U where X =(
a0 a1 a2 · · · as−1

)t. Since the matrix W has a vandermonde determi-
nant, the first part follows at once from Cramer’s rule. Note that each function
f gives rise to one vector U , each vector U in turn gives rise to one particular
set of coefficients a0, . . . , as−1, and vice vera, the second part is immediate. �

The following example illustrates the remarks pertaining to Propositions
1.1 and 1.2.
Example. In

F32 ∼= Z3[x]/(x2 + 1) = {0, 1, 2, α, α+ 1, α + 2, 2α, 2α + 1, 2α + 2} ,

where α2 + 1 = 0, let

S = {1, α + 1, 2α + 1}, T = {2, α + 2, 2α + 2}
be subsets of F32 . Consider the function f : S → T defined by

f(x) =

{
2 if x = 1 or α + 1,

α + 2 if x = 2α + 1.

To find the unique polynomial

Pf(x) = a0 + a1x + a2x
2 ∈ F32 [x]

of degree ≤ 2 representing f , we need to solve the system

2 = Pf(1) = a0 + a1 + a2 ,

2 = Pf(α + 1) = a0 + a1(α + 1) + a2(α + 1)2 = a0 + (α + 1)a1 + 2αa2 ,

α + 2 = Pf(2α + 1) = a0 + a1(2α + 1) + a2(2α + 1)2 = a0 + (2α + 1)a1 + αa2,

which is equivalent to WX = V , where

W =

⎛
⎝1 1 1

1 α + 1 2α
1 2α + 1 α

⎞
⎠ , X =

⎛
⎝a0

a1

a2

⎞
⎠ and V =

⎛
⎝ 2

2
α + 2

⎞
⎠ .

Since the matrix W has a vandermonde determinant, there is exactly one so-
lution of this system, which is (a0, a1, a2) = (α + 1, α + 1, α), i.e.,

Pf(x) = (α + 1) + (α + 1)x + αx2
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is the unique polynomial of degree ≤ 2 representing the function f .
On the other hand, observe that the polynomial P (x) = x2 + 1 ∈ F32 [x], of

degree ≤ 2, is a function from F32 into F32 but it is not a function from S into
T since P (α + 1) = (α + 1)2 + 1 = α2 + 2α + 2 = 2α + 1 /∈ T .

Another immediate consequence of Proposition 1.2 is the following result
which enables us to write down explicitly those polynomials representing func-
tions from S to T .

Corollary 1.3. Let S and T be subsets of Fq with the same number of elements
|S| = |T | = s ≤ q with S written as in (1). Let

W =

⎛
⎜⎜⎜⎜⎜⎝

1 αi1 (αi1)2 (αi1)3 · · · (αi1)s−1

1 αi2 (αi2)2 (αi2)3 · · · (αi2)s−1

1 αi3 (αi3)2 (αi3)3 · · · (αi3)s−1

...
...

...
...

...
1 αis (αis)2 (αis)3 · · · (αis)s−1

⎞
⎟⎟⎟⎟⎟⎠

be the vandermonde matrix of the elements of S, V = det W and

Δ(j)
k = (−1)k+j det(Mk,j)

where Mk,j denotes the (k, j)-minor of W . Then

P (x) = a0 + a1x + a2x
2 + · · ·+ as−1x

s−1 ∈ Fq[x]

is a polynomial of degree ≤ s−1 representing a function sending S into T if and

only if each of its coefficients is a T -linear combination of Δ
(j)
1
V ,

Δ
(j)
2
V , . . . ,

Δ(j)
s

V ,
i.e.,

aj = t1
Δ(j)

1

V
+ t2

Δ(j)
2

V
+ · · ·+ ts

Δ(j)
s

V
(j = 0, 1, . . . , s− 1)

for some t1, . . . , ts ∈ T .

We next give an example.
Example. In

F32 ∼= Z3[x]/(x2 + 1) = {0, 1, 2, α, α+ 1, α + 2, 2α, 2α + 1, 2α + 2} ,

where α2 + 1 = 0, let

S = {1, α + 2, 2α + 1}, T = {2, α + 1, 2α + 2}
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be subsets of F32 . Here,

Δ(1)
1 = (−1)1+1

∣∣∣∣ α + 2 α
2α + 1 α

∣∣∣∣ = α + 1, Δ(1)
2 = (−1)2+1

∣∣∣∣ 1 1
2α + 1 α

∣∣∣∣ = α + 1,

Δ(1)
3 = (−1)3+1

∣∣∣∣ 1 1
α + 2 α

∣∣∣∣ = 1, Δ(2)
1 = (−1)1+2

∣∣∣∣1 α
1 α

∣∣∣∣ = 0,

Δ(2)
2 = (−1)2+2

∣∣∣∣1 1
1 α

∣∣∣∣ = α + 2, Δ(2)
3 = (−1)3+2

∣∣∣∣1 1
1 α

∣∣∣∣ = 2α + 1,

Δ(3)
1 = (−1)1+3

∣∣∣∣1 α + 2
1 2α + 1

∣∣∣∣ = α + 2, Δ(3)
2 = (−1)2+3

∣∣∣∣1 1
1 2α + 1

∣∣∣∣ = α,

Δ(3)
3 = (−1)3+3

∣∣∣∣1 1
1 α + 2

∣∣∣∣ = α + 1, V =

∣∣∣∣∣∣
1 1 1
1 α + 2 α
1 2α + 1 α

∣∣∣∣∣∣ = 2α,

Δ(1)
1

V
= α + 2,

Δ(1)
2

V
= α + 2,

Δ(1)
3

V
= α,

Δ(2)
1

V
= 0,

Δ(2)
2

V
= 2α + 2,

Δ(2)
3

V
= α + 1,

Δ(3)
1

V
= 2α + 2,

Δ(3)
2

V
= 2,

Δ(3)
3

V
= α + 2.

By Corollary 1.3, each polynomial of degree ≤ 3−1 = 2 representing a function
from S to T is of the form

P (x) = a0 + a1x + a2x
2,

where a0 = (α + 2)t1 + (α + 2)t2 + αt3, a1 = (2α + 2)t2 + (α + 1)t3, a2 =
(2α + 2)t1 + 2t2 + (α + 2)t3, and conversely.

As a final remark of this section, it is worth mentioning that should we
impose too strong a condition on the sets S and T such as being rings, then
both become fields. This is because a ∈ S \{0} ⊂ Fq \{0} implies 1 = aq−1 ∈ S
and so a−1 = aq−2 ∈ S. Such functions sending fields into fields are not of
interest here.

2 Quasi-permutation polynomials

Recall that a permutation polynomial (over Fq), abbreviated as PP, is a poly-
nomial which is a bijection of Fq onto itself. The problem of determining PP’s
has been of much interest in recent years, see e.g. [2], [3] and Chapter 7 of [4].
An obvious generalization of PP is that of quasi-permutation polynomial, ab-
breviated as QPP. Let S and T be two fixed non-empty subsets of Fq with the
same number of elements. A polynomial P (x) ∈ Fq [x] is called an (S,T)-quasi-
permutation polynomial, abbreviated as (S, T )-QPP or simply QPP if both S
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and T are left understood, if {P (c); c ∈ S} = T . If S = T = Fq , then P (x) is
the usual PP.

Dealing with QPP’s, there are cautions to be noted. First, we must deal
with the difficulty that there are polynomials which are both QPP’s and PP’s,
there are polynomials which are QPP’s but not PP’s, and there are polynomials
which are PP’s but not QPP’s, as evidenced in the next two examples.
Example. Let S = {1, 2, 4} and T = {2, 3, 4} be subsets of F5. Consider

f(x) = 3x + 1, g(x) = x2 + x + 2, h(x) = 3x + 2 ∈ F5[x].

By Theorem 7.8(i) of [4], f(x) and h(x) are PP’s over F5 and, as easily shown,
f(x) is also an (S,T)-QPP, but h(x) is not an (S,T)-QPP for h(1) = 0 /∈ T . As
for the polynomial g, from g(1) = 4, g(2) = 3, g(4) = 2 and g(0) = 2 = g(4),
we see that g(x) is an (S,T)-QPP but not a PP.

A more complex example for finite fields with prime power number of ele-
ments is:
Example. In

F23 ∼= Z2[x]/(x3 + x + 1) =
{
0, 1, α, α + 1, α2, α2 + 1, α2 + α, α2 + α + 1

}
,

where α3 + α + 1 = 0, let

S = {α, α + 1, α2 + 1}, T = {α, α + 1, α2}

be subsets of F23 . The polynomials P (x) = x + 1 and Q(x) = x ∈ F23 [x] are,
by Theorem 7.8 of [4], PP’s over F23 and by direct computation P (x) is also
an (S,T)-QPP, but Q(x) is not an (S,T)-QPP for Q(α2 +1) = α2 +1 /∈ T . The
polynomial

R(x) = (α2 + α + 1)x2 + (α2 + α)x + α2 ∈ F23 [x]

is an (S,T)-QPP but not a PP, because R(α) = α, R(α+1) = α+1, R(α2+1) =
α2 and R(0) = α2 = R(α2 + 1).

The second caution needed mentioning deals with the problem of counting
the number of QPP’s. For ordinary PP’s over Fq , it is trivial that there are
altogether q! PP’s from a total of qq polynomials representing all functions from
Fq to itself. The problem of counting the number of PP’s of fixed degree has
also been of recent interest, see e.g. [1]. The situation is not as trivial for QPP’s
because there are ambiguities such as that arising from distinct polynomials
over Fq being identical as (S,T)-polynomials, i.e., polynomials representing
functions from S to T. In order to overcome some of the ambiguities, we make
precise the sets of polynomials to be considered.
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Definition 2.1. Denote the set of all polynomials of degree ≤ q − 1 in Fq [x]
by

Pq := {f ∈ Fq [x]; deg f ≤ q − 1} ,

the set of those polynomials in Pq which represent functions from S to T by

Pq(S, T ) := {f ∈ Pq ; f : S → T} ,

the set of all polynomials of degree ≤ s − 1 in Fq [x] by

Ps := {f ∈ Fq [x]; deg f ≤ s − 1} ,

and the set of those polynomials in Ps which uniquely represent functions from
S to T by

Ps(S, T ) := {f ∈ Ps; f : S → T} .

Clearly, Ps(S, T ) ⊆ Pq(S, T ) and Ps ⊆ Pq. The following example shows that
these inclusions can be strict.

Example. In F3 = {0, 1, 2}, let S = {1, 2}, T = {0, 1}. Direct computa-
tion shows that there are altogether 12 polynomials in P3(S, T ), viz.,

f1(x) = 0, f2(x) = 1, f3(x) = x + 2, f4(x) = 2x + 2, f5(x) = x2,

f6(x) = x2 + 2, f7(x) = x2 + x + 1, f8(x) = x2 + 2x + 1,

f9(x) = 2x2 + 1, f10(x) = 2x2 + 2, f11(x) = 2x2 + x, and

f12(x) = 2x2 + 2x.

and there are altogether 4 polynomials in P2(S, T ), viz.,

f1(x), f2(x), f3(x), f4(x). (2)

Observe that for all a ∈ S

f1(a) = f6(a) = f9(a), f2(a) = f5(a) = f10(a),

f3(a) = f7(a) = f11(a), f4(a) = f8(a) = f12(a),

implying that as (S,T)-polynomials

f1 ≡ f6 ≡ f9, f2 ≡ f5 ≡ f10, f3 ≡ f7 ≡ f11, f4 ≡ f8 ≡ f12, (3)

i.e., there are essentially four distinct polynomials representing functions from
S to T as displayed in (2), the elements of P2(S, T ).

Among polynomials in P3(S, T ), those (S,T)-QPP’s of degree ≤ 2 are

f3(x), f4(x), f7(x), f8(x), f11(x), f12(x).
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However, from (3), we know that there are essentially two distinct (S,T)-QPP’s
(of degree ≤ 1), namely, f3(x), f4(x), with a total of 2 !=2 polynomials. This
is in agreement with direct counting which yields

|P3| = 33 = 27, |P3(S, T )| = 22 × 3 = 12, |P2 | = 32 = 9, |P2(S, T )| = 22 = 4.

For completeness, let us find all PP’s over F3 of degree ≤ 2. By Theorem 7.8(i)
in [4], each first degree polynomial f(x) = ax+b (a(�= 0), b ∈ F3) is a PP, so the
number of PP’s with degree 1 is 6. Since 2|(3−1), by Corollary 7.5 in [4], there
is no PP of degree 2. Hence, the number of PP’s of F3 with degree ≤ 2 is 6 = 3!.

This last example hints that there are relations among the number of (S,T)-
QPP’s in Pq(S, T ) and the number of (S,T)-QPP’s in Ps(S, T ). To do so, let
us fix some more notation.

Nq(S, T ) := |{f ∈ Pq(S, T ); f is an (S,T)-QPP}| ,
Ns(S, T ) := |{f ∈ Ps(S, T ); f is an (S,T)-QPP}| .

Proposition 2.2. (i) We have |Ps(S, T )| = ss, Ns(S, T ) = s!.

(ii) To each f ∈ Ps(S, T ), there correspond exactly qq−s polynomials in Pq(S, T )
whose restriction to S is identical with f and so |Pq(S, T )| = ss · qq−s.

(iii) To each f ∈ Ps(S, T ) which is an (S,T)-QPP, there correspond exactly
qq−s (S,T)-QPP’s in Pq(S, T ) whose restriction to S is identical with f
and so Nq(S, T ) = s! · qq−s.

Proof (i) By Proposition 1.1, each function from S into T is uniquely rep-
resentable as a polynomial in Fq [x] of degree ≤ s − 1 and since there are ss

such functions, we deduce that |Ps(S, T )| = ss. Since there are altogether s!
(S,T)-permutations, we have Ns(S, T ) = s!.
(ii) Each polynomial in Ps(S, T ) is also a function from S to T and each poly-
nomial in Pq(S, T ) is a function from Fq to Fq whose restriction to S is mapped
into T. Since Ps(S, T ) ⊂ Pq(S, T ), a polynomial in Ps(S, T ) is elevated to be
a polynomial in Pq(S, T ) by assigning any of the q values in Fq to each of the
remaining q − s elements in the domain and the first assertion is immediate.
The second assertion follows using (i).

The proof of (iii) is similar to that of (ii). �

The next two examples provide numerical examples of the last two propo-
sitions.
Example. In F5 = {0, 1, 2, 3, 4}, let S = {1, 2, 4}, T = {2, 3, 4}. By Proposi-
tion 2.2, we have

|P5| = 55 = 3, 125, |P5(S, T )| = 33 · 52 = 675, N5(S, T ) = 3! · 52 = 150,

|P3| = 53 = 125, |P3(S, T )| = 33 = 27, N3(S, T ) = 3! = 6.
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Direct computation shows that the 27 polynomials in P3(S, T ) are as in Table
1.

i fi(x) i fi(x) i fi(x)
1 2 10 x2 + 3x + 4 19 3x2 + x
2 3 11 x2 + 4x + 2 20 3x2 + 2x + 2
3 4 12 2x2 21 3x2 + 2x + 3
4 2x 13 2x2 + 1 22 4x2 + 3
5 3x + 1 14 2x2 + 3x + 3 23 4x2 + x + 4
6 x2 + 3 15 2x2 + 3x + 4 24 4x2 + 2x + 2
7 x2 + x + 2 16 2x2 + 4x + 1 25 4x2 + 3x + 1
8 x2 + 2x 17 3x2 26 4x2 + 3x + 2
9 x2 + 2x + 4 18 3x2 + 1 27 4x2 + 4x + 4

Table 1: 27 polynomials in P3(S, T )

Among them, the six (S,T)-QPP’s of degree ≤ 2 are

f4(x), f5(x), f7(x), f10(x), f24(x), f27(x).

Next, we find all PP’s in F5 of degree ≤ 4. By Theorem 7.8(i) in [4], f(x) =
ax + b; a, b ∈ F5 and a �= 0, is a PP of F5, so the number of PP’s with degree
1 is 20.

Since 2|(5− 1) and 4|(5− 1), by Corollary 7.5 in [4], there is no PP of F5 of
degree 2 and degree 4. It remains to consider only the case of PP’s with degree
3. Direct checking shows that there are 100 PP’s F5[x] of degree 3, namely,

x3 + d, x3 + x2 + 2x + d, x3 + 2x2 + 3x + d, x3 + 3x2 + 3x + d,

x3 + 4x2 + 2x + d, 2x3 + d, 2x3 + x2 + x + d, 2x3 + 2x2 + 4x + d,

2x3 + 3x2 + 4x + d, 2x3 + 4x2 + x + d, 3x3 + d, 3x3 + x2 + 4x + d,

3x3 + 2x2 + x + d, 3x3 + 3x2 + x + d, 3x3 + 4x2 + 4x + d, 4x3 + d,

4x3 + x2 + 3x + d, 4x3 + 2x2 + 2x + d, 4x3 + 3x2 + 2x + d, 4x3 + 4x2 + 3x + d

for all d ∈ F5. Consequently, the number of PP’s of F5 with degree ≤ 4 is
120 = 5!, as expected.

Example. In

F22 ∼= Z2[x]/(x2 + x + 1) = {0, 1, α, α+ 1} ,

where α2 + α + 1 = 0, let

S = {1, α}, T = {1, α + 1}
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be subsets of F22 . By Proposition 2.2, we have

|P4| = 44 = 256, |P4(S, T )| = 22 · 42 = 64, N4(S, T ) = 2! · 42 = 32,

|P2| = 42 = 16, |P2(S, T )| = 22 = 4, N2(S, T ) = 2! = 2.

Direct computation shows that the 64 polynomials in P4(S, T ) are as in Table
2.

i gi(x) i gi(x)
1 1 33 αx3 + 1
2 α + 1 34 αx3 + α + 1

3 (α + 1)x 35 αx3 + (α + 1)x
4 (α + 1)x + α 36 αx3 + (α + 1)x + α
5 x2 37 αx3 + x2

6 x2 + α 38 αx3 + x2 + α

7 x2 + (α + 1)x + 1 39 αx3 + x2 + (α + 1)x + 1
8 x2 + (α + 1)x + α + 1 40 αx3 + x2 + (α + 1)x + α + 1
9 αx2 + x 41 αx3 + αx2 + x
10 αx2 + x + α 42 αx3 + αx2 + x + α

11 αx2 + αx + 1 43 αx3 + αx2 + αx + 1
12 αx2 + αx + α + 1 44 αx3 + αx2 + αx + α + 1
13 (α + 1)x2 + x + 1 45 αx3 + (α + 1)x2 + x + 1
14 (α + 1)x2 + x + α + 1 46 αx3 + (α + 1)x2 + x + α + 1

15 (α + 1)x2 + αx 47 αx3 + (α + 1)x2 + αx
16 (α + 1)x2 + αx + α 48 αx3 + (α + 1)x2 + αx + α
17 x3 49 (α + 1)x3

18 x3 + α 50 (α + 1)x3 + α

i gi(x) i gi(x)
19 x3 + (α + 1)x + 1 51 (α + 1)x3 + (α + 1)x + 1
20 x3 + (α + 1)x + α + 1 52 (α + 1)x3 + (α + 1)x + α + 1

21 x3 + x2 + 1 53 (α + 1)x3 + x2 + 1
22 x3 + x2 + α + 1 54 (α + 1)x3 + x2 + α + 1
23 x3 + x2 + (α + 1)x 55 (α + 1)x3 + x2 + (α + 1)x
24 x3 + x2 + (α + 1)x + α 56 (α + 1)x3 + x2 + (α + 1)x + α

25 x3 + αx2 + x + 1 57 (α + 1)x3 + αx2 + x + 1
26 x3 + αx2 + x + α + 1 58 (α + 1)x3 + αx2 + x + α + 1
27 x3 + αx2 + αx 59 (α + 1)x3 + αx2 + αx
28 x3 + αx2 + αx + α 60 (α + 1)x3 + αx2 + αx + α

29 x3 + (α + 1)x2 + x 61 (α + 1)x3 + (α + 1)x2 + x
30 x3 + (α + 1)x2 + x + α 62 (α + 1)x3 + (α + 1)x2 + x + α
31 x3 + (α + 1)x2 + αx + 1 63 (α + 1)x3 + (α + 1)x2 + αx + 1

32 x3 + (α + 1)x2 + αx + α + 1 64 (α + 1)x3 + (α + 1)x2 + αx + α + 1

Table 2: 64 polynomials in P4(S, T )

Among them, the thirty-two (S,T)-QPP’s of degree ≤ 3 are

g3(x), g4(x), g5(x), g6(x), g11(x), g12(x), g13(x), g14(x),
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g19(x), g20(x), g21(x), g22(x), g27(x), g28(x), g29(x), g30(x),

g35(x), g36(x), g37(x), g38(x), g43(x), g44(x), g45(x), g46(x),

g51(x), g52(x), g53(x), g54(x), g59(x), g60(x), g61(x), g62(x)

and there are altogether 4 polynomials in P2(S, T ), viz.,

g1(x), g2(x), g3(x), g4(x).

Moreover, we know that there are essentially two distinct (S,T)-QPP’s (of
degree ≤ 1), namely, g3(x), g4(x).

For completeness, let us find all PP’s in F4 of degree ≤ 3. By Theorem
7.8(i) in [4], f(x) = ax + b (a, b ∈ F5, a �= 0) is a PP of F4, so the number of
PP’s with degree 1 is 12. Since 3|(4 − 1), by Corollary 7.5 in [4], there is no
PP of degree 3. It remains to consider the case of second degree PP’s. Direct
checking shows that there are 12 PP’s F4[x] of degree 2, namely,

x2 + d, αx2 + d, (α + 1)x2 + d

for all d ∈ F4. Consequently, the number of PP’s of F4 with degree ≤ 3 is
24 = 4!, as expected.
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