SOME ASPECTS OF τ -FULL MODULES

Jaime Castro Pérez, Marcela González Peláez^{*} and José Ríos Montes

Departamento de Matemáticas Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Tlalpan 14380, México e-mail:jcastrop@itesm.mx

* Departamento de Matemáticas Instituto Tecnológico Autónomo de México, Río Hondo 1, Col. Progreso Tizapán 01080, México e-mail:gonzap@itam.mx

> Instituto de Matemáticas, UNAM Área de la Investigación Científica Circuito Exterior, C. U. 04510, México e-mail:jrios@matem.unam.mx

Abstract

Let τ be a hereditary torsion theory on Mod-*R*. For a right τ -full *R*-module *M*, we establish that $[\tau, \tau \lor \xi(M)]$ is a boolean lattice; we find necessary and sufficient conditions for the interval $[\tau, \tau \lor \xi(M)]$ be atomic, and we give conditions for the atoms be of some specific type in terms of the internal structure of *M*.

We also prove that there are lattice isomorphisms between the lattice $[\tau, \tau \lor \xi(M)]$ and the lattice of τ -pure fully invariant submodules of M, under the additional assumption that M is absolutely τ -pure.

With the aid of these results, we get a decomposition of a τ -full and absolutely τ -pure *R*-module *M* as a direct sum of τ -pure fully invariant submodules *N* and *N'* with different atomic characteristics on the intervals $[\tau, \tau \lor \xi(N)]$ and $[\tau, \tau \lor \xi(N')]$, respectively.

^{*} This author appreciates the support from Asociación Mexicana de Cultura, A.C. in Mexico City

Key words: hereditary torsion theory, τ -full *R*-module, atomic characteristics.

²⁰⁰⁰ AMS Mathematics Subject Classification: Primary: 16S90; secondary: 16D50; 16P50; 16P70.

1 Introduction

Let R be an associative ring with unit. Mod-R denotes the category of unitary right R-modules and R-tors denotes the frame of all hereditary torsion theories on Mod-R.

For a hereditary torsion theory $\tau \in R$ -tors, William George Lau studied the τ -full modules, that is, τ -torsion-free modules which have the property that every essential submodule is τ -dense. The latest condition was named the τ -large condition by Lau, [12]. Earlier on, this notion was studied by Ann K. Boyle [4] in connection with her work on modules having Krull dimension and also, Robert Wisbauer worked with them in [16]. Later, some properties about these modules were pointed out in [8]. Zelmanowitz defined polyform modules in [18] which were proved to be full modules by Wisbauer in [17]. Other works concerned with these modules can be found in [14] and [15].

In this paper, for a τ -full module $M \in \text{Mod-}R$, we investigate the behavior of the fully invariant submodules N such that M/N is τ -torsion-free. We establish a lattice isomorphism between the set of these submodules and a sublattice of R-tors determined by τ and M, considering that M be also relatively injective. Therefore, we can get some results about the structure of this modules. In order to do this, we have divided the paper in three sections: in Section 2 we give the concepts, characterizations and some results related to τ -full modules. In Section 3, we establish the lattice isomorphism between the lattice $[\tau, \tau \lor \xi(M)]$ and the lattice of τ -pure fully invariant submodules of M, assuming, in addition, that M is absolutely τ -pure. Under these conditions, it was proved, in [8, Proposition 15.6], that every τ -pure submodule of M is a direct summand of M; in this section we prove that if N is a τ -pure fully invariant submodule of M. there is another τ -pure fully invariant submodule of M which is complement of N to get M. Also, we get a decomposition of M in terms of some τ -pure fully invariant submodules N of M with different atomic structure on their intervals $[\tau, \tau \lor \xi(N)]$. In Section 4, we prove some equivalent statements so that interval $[\tau, \tau \lor \xi(M)]$ be atomic, for a τ -full module M, and give conditions on the internal structure of M in order that atoms be of some specific type. Among these conditions we get some decompositions of $\chi(M)$.

For $M, N \in \text{Mod-}R$, the notation $N \leq M$ (N < M) means that N is a (proper) submodule of M. If N is an essential submodule of M, we write $N \leq M$. Also we use this symbols $\leq (<)$ for the partial order in the lattice *R*-tors. For $\tau, \sigma \in R$ -tors with $\tau \leq \sigma$, $[\tau, \sigma] = \{\gamma \in R$ -tors| $\tau \leq \gamma \leq \sigma\}$. When we mean that X is a (proper) subset or a (proper) subclass of Y, we write $X \subseteq Y$ $(X \subset Y)$. For a family of right *R*-modules $\{M_a\}$, let χ ($\{M_a\}$) be the torsion theory cogenerated by the family $\{M_a\}$, i.e. the maximal element of *R*-tors for which all the M_{α} are torsion free; and let ξ ($\{M_a\}$) be the torsion theory generated by the family $\{M_a\}$, i.e. the minimal element of *R*-tors for which all the M_{α} are torsion. In particular, we write $\chi(M)$ and $\xi(M)$ instead of $\chi(\{M\})$ and $\xi(\{M\})$, respectively. The greatest element of *R*-tors is denoted by χ and the least by ξ . For $\tau \in R$ -tors, \mathbb{T}_{τ} , \mathbb{F}_{τ} and t_{τ} denotes the torsion class, the torsion free class and the torsion functor associated to τ , respectively.

We give some concepts and results that we will refer to throughout this paper.

Let $(L, \land, \lor, 0, 1)$ be a complete lattice. A non-zero element $a \in L$ is an *atom* if x < a implies x = 0, for each $x \in L$. The lattice L is said to be *atomic* if for every $0 \neq y \in L$, there is an atom $a \in L$ such that $a \leq y$. L is said to be *locally atomic* if every non-zero element in L is a join of atoms. If L is a complete Boolean lattice, then L is atomic if and only if L is locally atomic if and only if the element 1 is a join of atoms of L. We also observe that if L is Boolean and if $a, b \in L$ are such that a < b, then [a, b] is Boolean. For other concepts and terminology about lattice theory, the reader is referred to [5, 10].

Let $\tau \in R$ -tors and $M \in Mod-R$, a submodule N of M is said to be τ -dense in M if $M/N \in \mathbb{T}_{\tau}$. N is τ -pure in M if $M/N \in \mathbb{F}_{\tau}$. M is called τ -cocritical if $M \in \mathbb{F}_{\tau}$ and every $0 \neq N \leq M$ is τ -dense in M. M is cocritical if there is $\tau \in R$ -tors such that M is τ -cocritical. We say that M is a τ - \mathcal{A} -module if $M \in \mathbb{F}_{\tau}$ and $\tau \lor \xi(M)$ is an atom in $[\tau, \chi]$. We write E(M) for the injective hull of M, and for a $\tau \in R$ -tors, we denote $E_{\tau}(M)$ the τ -injective hull of Mwhich can be described as $E_{\tau}(M)/M = t_{\tau}(E(M)/M)$.

 $\tau \in R$ -tors is said to be *irreducible* if for $\tau', \tau'' \in R$ -tors with $\tau' \wedge \tau'' = \tau$, we have that $\tau' = \tau$ or $\tau'' = \tau$. The element τ is *strongly irreducible* if $\wedge U \leq \tau$ implies that there exists $\sigma \in U$ such that $\sigma \leq \tau$, for each $\phi \neq U \subseteq R$ -tors. We say that τ is *prime* if it is of the form $\chi(M)$ for some cocritical right *R*-module.

For all other concepts and terminology concerning torsion theories, the reader is referred to [8, 13].

2 τ -full modules

Definition 1. Let $\tau \in R$ -tors. A nonzero right R-module M is said to be a τ -full module if $M \in \mathbb{F}_{\tau}$ and for every $0 \neq N \leq M$, we have that $M/N \in \mathbb{T}_{\tau}$.¹

Examples 2. 1. If M is τ -cocritical, then M is a τ -full module.

- 2. If M is a semisimple τ -torsion free module, then M is a τ -full module.
- 3. Let τ_g denote the Goldie torsion theory and $M \in \text{Mod-}R$. Then M is τ_g -torsion free if and only if M is a τ_g -full module.
- 4. Let $\tau \in R$ -tors be a hereditary torsion theory. τ is said to be spectral if the class of τ -injective and τ -torsion free right R-modules is a spectral

¹The concept of τ -full module can also be defined for modules that are not necessarily τ -torsion free, as it is in [1].

category, i.e. a Grothendieck category where every short exact sequence splits. If τ is a spectral torsion theory and $M \in \mathbb{F}_{\tau}$, then M is a τ -full module. For further details see [2, Proposition 1.1], [3], and [13].

- 5. Let $M \in Mod$ -R. M is a ξ -full module if and only if M is a semisimple module.
- 6. Let τ_{sp} be the hereditary torsion theory whose torsion class consists of all semisimple and projective modules. For each $M \in \text{Mod-}R$, $t_{\tau_{sp}}(M) = \sum \{S \leq M \mid S \text{ is simple and projective}\}$. Then $M \in \text{Mod-}R$ is a τ_{sp} -full module if and only if M is semisimple and singular.
- 7. Let $\tau \in R$ -tors. If R is τ -full, then $\tau = \tau_q$.

In order to make this work self-contained we include the following results from [8, Chapter 15].

Proposition 3. Let M be a τ -full module. Then the following conditions hold.

- 1. If $0 \neq N \leq M$, then N is also τ -full.
- 2. If N is a τ -pure submodule of M, then M/N is τ -full.

The next proposition shows that the property of being τ -full of the module M_R , extends to any generalization σ of τ , when M is σ -torsion free.

Proposition 4. Let $\tau, \sigma \in R$ -tors such that $\tau \leq \sigma$. If $M \in Mod-R$ is τ -full and $M \in \mathbb{F}_{\sigma}$, then M is σ -full.

Proof Let $0 \neq N \leq M$, then $M/N \in \mathbb{T}_{\tau}$. Therefore, $M/N \in \mathbb{T}_{\sigma}$ and M is σ -full.

Corollary 5. If $M \in Mod$ -R is τ -full for $\tau \in R$ -tors, then M is a $\chi(M)$ -full module.

Remark 6. As a consequence of Proposition 4 it can be proved that $M \in Mod-R$ is τ -full if and only if the restriction of the torsion theory τ to the category $\sigma[M]$ is a spectral torsion theory.

Proposition 7. Let $M \in Mod$ -R and $\tau, \sigma \in R$ -tors. If M is τ -full and $M \in \mathbb{T}_{\sigma}$, then M is $(\tau \wedge \sigma)$ -full.

Proof As $(\tau \wedge \sigma) \leq \tau$ and $M \in \mathbb{F}_{\tau}$ we see that $M \in \mathbb{F}_{\tau \wedge \sigma}$. If $N \leq M$, then $M/N \in \mathbb{T}_{\tau} \cap \mathbb{T}_{\sigma}$. Hence M is $(\tau \wedge \sigma)$ -full.

Definition 8. A module M is called full if there exists $\tau \in R$ -tors such that M is τ -full.

Remark 9. By Corollary 5 we see that a module M is full if and only if M is $\chi(M)$ -full.

Now, for each *R*-module *M* we write $\xi_M = \xi(\{M/N | N \leq M\})$. Note that if M is a full module, then $M/N \in \mathbb{T}_{\chi(M)}$, for each $N \stackrel{ess}{\leq} M$; thus $\xi_M \leq \chi(M)$.

In the next result we assume that M is a full module. In Example 13 we shall see that this is a necessary condition.

Proposition 10. Let M be a full R-module and $\tau \in R$ -tors. Then M is τ -full if and only if $\tau \in [\xi_M, \chi(M)]$.

Proof \Rightarrow] Let $\tau \in R$ -tors such that M is τ -full, then $\tau \leq \chi(M)$, and if $N \leq M$, we have that $M/N \in \mathbb{T}_{\tau}$; therefore $\xi_M \leq \tau$. \Leftarrow] Now, let $\pi \in [\xi_M, \chi(M)]$. Since $\xi_M \leq \pi$, $M/N \in \mathbb{T}_{\pi}$, for every $N \leq esc$

M. On the other hand, $\pi \leq \chi(M)$ tells us that $M \in \mathbb{F}_{\pi}$. Thus, M is π -full.

Corollary 11. Let $\{\tau_{\alpha}\}_{\alpha \in I} \subseteq R$ -tors and $M \in Mod$ -R. If M is τ_{α} -full for every $\alpha \in I$, then M is $\underset{\alpha \in I}{\wedge} \tau_{\alpha}$ -full and $\underset{\alpha \in I}{\vee} \tau_{\alpha}$ -full.

Proof If M is τ_{α} -full, then $\tau_{\alpha} \in [\xi_M, \chi(M)]$ for every $\alpha \in I$. So $\bigwedge_{\alpha \in I} \tau_{\alpha}$ and $\bigvee_{\alpha \in I} \tau_{\alpha}$ are in the interval $[\xi_M, \chi(M)]$. The result follows straightforwardly from the above proposition. \square

The next proposition is an immediate result from the definitions.

Proposition 12. Let $\tau \in R$ -tors and $M \in Mod-R$. M is τ -cocritical if and only if M is τ -full and uniform.

The following example shows that the injective hull of a full module is not always a full module.

Example 13. Let $R = \mathbb{Z}, p \in R$ be a prime number and $M = \mathbb{Z}_p$. M is simple and $\chi(\mathbb{Z}_p)$ -torsion free module, so it is a $\chi(\mathbb{Z}_p)$ -full module. However, $E(\mathbb{Z}_p) = \mathbb{Z}_{p^{\infty}}$ is not full since for every essential submodule \mathbb{Z}_{p^k} we have that $\mathbb{Z}_{p^{\infty}}/\mathbb{Z}_{p^{k}} \simeq \mathbb{Z}_{p^{\infty}} \notin \mathbb{T}_{\chi(\mathbb{Z}_{p^{\infty}})}$. Notice that in this case $\xi_{\mathbb{Z}_{p^{\infty}}} \nleq \chi(\mathbb{Z}_{p^{\infty}})$, since $\xi_{\mathbb{Z}_{p^{\infty}}} = \xi\left(\mathbb{Z}_{p^{\infty}}\right).$

Remark 14. In the following proposition, which was proved in [17], condition 2. is Zelmanowitz' definition of polyform module. So, this proposition says that a module $M \in Mod-R$ is full if and only if M is polyform.

Proposition 15. Let $M \in Mod$ -R. The following conditions are equivalent.

1. M is full.

2. For every submodule N of M and every morphism $f: N \to M$ such that ker $(f) \leq N$, we have that f = 0.

Proposition 16. Let $\tau \in R$ -tors and $M \in Mod-R$ a τ -full module. If $N \in Mod-R$ is such that $\chi(N) = \chi(M)$, then N contains a τ -full submodule.

Proof Since M is τ -full, $\tau \in [\xi_M, \chi(M)]$ by Proposition 10, and thus $\tau \leq \chi(N)$. As $M \in \mathbb{F}_{\chi(N)}$, then $Hom_R(M, E(N)) \neq 0$. Let $0 \neq f : M \to E(N)$, then there is a non-zero submodule $M' \leq M$ such that $0 \neq f(M') \leq N$. Therefore $f(M') \in \mathbb{F}_{\chi(N)} \subseteq \mathbb{F}_{\tau}$. By Proposition 3, we can conclude that f(M') is τ -full.

Proposition 17. Let $\tau \in R$ -tors and M a τ -full R-module. Then the following conditions hold.

- 1. $E_{\tau}(M)$ is a τ -full *R*-module.
- 2. $E_{\tau}(M)$ is the greatest τ -full submodule of E(M).

Proof 1. It is a consequence of [8, Proposition 15.4].

2. Let K be a τ -full submodule of E(M), then $K \neq 0$ and thus $K \cap M \neq 0$. Moreover $K \cap M \leq K$. Note that $K/K \cap M \in \mathbb{T}_{\tau}$ since K is a τ -full R-module. As $E(M)/E_{\tau}(M) \in \mathbb{F}_{\tau}$, then the morphism $f: K/K \cap M \to E(M)/E_{\tau}(M)$ defined by $f((x + K \cap M)) = x + E_{\tau}(M)$ must be zero. Hence $K \subseteq E_{\tau}(M)$.

Let $\tau \in R$ -tors. A right *R*-module *M* is said to be *absolutely* τ -*pure* if it is τ -torsion free and τ -injective.

Remark 18. Let $M \in \text{Mod-}R$ and $\sigma = \chi(M) \land \chi(E(M)/M)$. As $\sigma \leq \chi(M)$, then $M \in \mathbb{F}_{\sigma}$; on the other hand $\sigma \leq \chi(E(M)/M)$ implies that $E(M)/M \in \mathbb{F}_{\sigma}$, i.e. $E_{\sigma}(M)/M = t_{\sigma}(E(M)/M) = 0$, which means that M is σ -injective. Therefore, M is absolutely σ -pure. So, if $\tau \in R$ -tors, then M is absolutely τ -pure if and only if $\tau \in [\xi, \chi(M) \land \chi(E(M)/M)]$. (See [8, Chapter 10] for further details about absolutely τ -pure modules.)

From Proposition 10, we can conclude that for a full module M, if $\tau \in R$ -tors is such that M is absolutely τ -pure and τ -full, then $\tau \in [\xi_M, \chi(M) \land \chi(E(M)/M)]$. However, it is not enough that M be a full module to have that $\xi_M \leq \chi(M) \land \chi(E(M)/M)$, as we can see in the following example. Thus the converse is not true in general.

Example 19. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}$, then $E(M) = \mathbb{Q}$, M is τ_g -full, $\chi(M) = \chi(\mathbb{Z}) = \tau_g$, $\chi(E(M)/M) = \chi(\mathbb{Q}/\mathbb{Z}) = \xi$ and $\xi_M = \xi_{\mathbb{Z}} = \tau_g$. Thus $\xi_M \nleq \chi(M) \land \chi(E(M)/M)$.

3 Structure of $Sub_{P_{\tau}FI}(M)$ and $[\tau, \tau \lor \xi(M)]$

Let $\tau \in R$ -tors and $M \in \text{Mod-}R$. In this section we are going to study some properties of the set $\{N \leq M | N \text{ is } \tau\text{-pure and fully invariant in } M\}$, henceforth we shall denote it as $Sub_{P_{\tau}FI}(M)$.

We begin with a characterization of the $\tau\text{-}\mathrm{pure}$ submodules of a $\tau\text{-}\mathrm{full}\ R\text{-}$ module.

Proposition 20. Let $\tau \in R$ -tors and M a τ -full R module. Then $N \leq M$ is τ -pure in M if and only if N is essentially closed in M.

Proof \Rightarrow] Let N be a τ -pure submodule of M If $N \leq N' < M$, then $N'/N \in \mathbb{T}_{\tau}$ since N' is τ -full; on the other hand $M/N \in \mathbb{F}_{\tau}$ implies that $N'/N \in \mathbb{F}_{\tau}$, hence, N' = N.

 \Leftarrow] Let $N \leq M$ essentially closed in M and let $N' \leq M$ be a pseudocomplement of N in M. Then N must be also a pseudocomplement of N' in M. Therefore we have an essential monomorphism $N' \simeq N \oplus N'/N \stackrel{ess}{\hookrightarrow} M/N$. So, we can deduce that $M/N \in \mathbb{F}_{\tau}$, since $N' \in \mathbb{F}_{\tau}$.

Remark 21. We see, by Proposition 20, that the set $Sub_{P_{\tau}FI}$ does not depend on τ when M is a τ -full module, i.e. $Sub_{P_{\tau}FI}(M) = \{N \leq M | N \text{ is fully} invariant and essentially closed in <math>M\}$.

Theorem 22. Let $\tau \in R$ -tors, $M \in Mod$ -R and $\varphi : [\tau, \tau \lor \xi(M)] \to Sub_{P_{\tau}FI}(M)$ defined by $\varphi(\sigma) = t_{\sigma}(M)$. Then the following conditions hold.

- 1. If M is a τ -full module, then φ is injective.
- 2. If M is a τ -full and absolutely τ -pure module, then φ is bijective.

Proof 1. We first claim that for every $\sigma \in [\tau, \tau \lor \xi(M)]$, $\sigma = \tau \lor \xi(t_{\sigma}(M))$. Let $N = t_{\sigma}(M)$, then $\tau \leq \tau \lor \xi(N) \leq \sigma \leq \tau \lor \xi(M)$. Assume that $\tau \lor \xi(N) < \sigma$; then there exists $0 \neq K \in Mod$ -R such that $K \in \mathbb{T}_{\sigma}$ and $K \in \mathbb{F}_{\tau \lor \xi(N)}$. Therefore, $K \in \mathbb{F}_{\tau}$ and $K \in \mathbb{F}_{\xi(N)}$; so $Hom_R(N, E(K)) = 0$. On the other hand, $K \in \mathbb{T}_{\sigma} \subseteq \mathbb{T}_{\tau \lor \xi(M)}$ implies that $Hom_R(M, E(K)) \neq 0$. Let $0 \neq \underline{f} \in Hom_R(M, E(K))$, then $N \leq \ker(f)$, and so there is a morphism $0 \neq \overline{f} : M/N \to E(K)$. It follows that there exists submodules $H/N < L/N \leq M/N$ and a monomorphism $L/H \hookrightarrow K \in \mathbb{T}_{\sigma}$, then $L/H \in \mathbb{T}_{\sigma}$. Since $L/N \leq M/N = M/t_{\sigma}(M) \in \mathbb{F}_{\sigma}$, it follows that $H/N \leq L/N$ by [8, Proposition 5.7], thus $H \leq L/H \leq L/H \hookrightarrow K \in \mathbb{F}_{\tau}$. Hence, $\sigma = \tau \lor \xi(t_{\sigma}(M))$.

Now, let $\sigma, \sigma' \in [\tau, \tau \lor \xi(M)]$ such that $\varphi(\sigma) = \varphi(\sigma')$, then $t_{\sigma}(M) = t_{\sigma'}(M)$. Using the above equality, we have that $\sigma = \tau \lor \xi(t_{\sigma}(M)) = \tau \lor \xi(t_{\sigma'}(M)) = \sigma'$. Therefore, φ is injective.

2. By 1. we already know that φ is injective. Now, let $N \in Sub_{P_{\tau}FI}(M)$ and $\sigma = \tau \lor \xi(N)$. We claim that $t_{\sigma}(M) = N$.

As $t_{\sigma}(M)$ is τ -pure in M, there exists $L \leq M$ such that $M = t_{\sigma}(M) \oplus L$ by [8, Proposition 15.6]. Thus, $t_{\sigma}(M)$ is absolutely τ -pure and τ -full. Notice that $N \leq t_{\sigma}(M)$, even more, N is τ -pure in $t_{\sigma}(M)$. Then N is a direct summand of $t_{\sigma}(M)$; so there exists $K \leq t_{\sigma}(M)$ such that $t_{\sigma}(M) = N \oplus K$. Inasmuch as $K \simeq t_{\sigma}(M)/N \in \mathbb{T}_{\sigma} \cap \mathbb{F}_{\tau}$, we have that $K \notin \mathbb{F}_{\xi(N)}$; therefore $Hom_R(N, E(K)) \neq 0.$ Let $0 \neq g: N \rightarrow E(K)$ and let $N_0 = g^{-1}(K)$, then there is a morphism $f: N/N_0 \to E(K)/K$ defined by $f(x+N_0) = g(x)+K$. We can see that f is a monomorphism. On the other hand, as K is a direct summand of $t_{\sigma}(M)$, K is τ -injective from where we get that $E(K)/K \in \mathbb{F}_{\tau}$; hence, $N/N_0 \in \mathbb{F}_{\tau}$. Since N is a τ -full and absolutely τ -pure module, there exists $N_1 \leq N$ such that $N = N_0 \oplus N_1$. In this way we have that $M = t_{\sigma}(M) \oplus M_1$ $L = N \oplus K \oplus L = N_0 \oplus N_1 \oplus K \oplus L$. Consequently, unless K = 0, it can be defined an endomorphism $0 \neq h: M \rightarrow M$ in such a way that $0 \neq h(N) \subseteq K$, which is a contradiction since N is fully invariant. Thus $N = t_{\sigma}(M)$, that is, φ is surjective.

Now, considering Remarks 18 and 21 we have the following corollary.

Corollary 23. Let $\tau \in R$ -tors. If M is a τ -full and absolutely τ -pure R-module , then $[\sigma, \sigma \lor \xi(M)] \simeq Sub_{P_{\tau}FI}(M) \forall \sigma \in [\xi_M, \chi(M) \land \chi(E(M)/M)]$, where $\xi_M = \xi(\{M/N \mid N \leq M\}).$

Corollary 24. If M is a τ -full and absolutely τ -pure module, then φ is an isomorphism of complete lattices.

Proof It follows from the fact that φ preserves order and arbitrary meets. \Box

The following examples show that the hypothesis of M be τ -full in Theorem 22,1 is not superfluous, neither the hypothesis of M be absolutely τ -pure in Theorem 22,2.

Example 25. Let $R = \mathbb{Z}$, $\tau = \xi$ and $M = \mathbb{Z}$, then $[\xi, \xi(\mathbb{Z})] = \mathbb{Z}$ -tors. In this case M is not ξ -full, nor $\varphi : \mathbb{Z}$ -tors $\rightarrow Sub_{P_{\tau}FI}(\mathbb{Z})$ such that $\varphi(\sigma) = t_{\sigma}(\mathbb{Z})$ is an injective function, since $t_{\sigma}(\mathbb{Z}) = 0 \forall \sigma \in \mathbb{Z}$ -tors with $\sigma < \chi$.

Example 26. Let F be a field, $A = F^{(\aleph_0)}$ and P the subalgebra of F^{\aleph_0} generated by $\overline{1}$ and A, where $\overline{1}$ denotes the unitary element in the ring F^{\aleph_0} . Note that A is a maximal ideal of P, and that $A \in \operatorname{Mod}-P$ is faithful and semisimple. We can see F as a unital subring of P if we consider $F_0 = \{(a) = (a, a, a, ...) | a \in F\}$. Now, let $Q = \mathcal{M}_{2 \times 2}(P)$, the ring of all 2×2 matrices over P and R the subring $\begin{pmatrix} P & A \\ 0 & F_0 \end{pmatrix}$ of Q. The minimal right ideals of R are of the form $\begin{pmatrix} 0 & S \\ 0 & 0 \end{pmatrix}$ where $S \leq A$ is a minimal ideal of P, and

J. C. Pérez, M. G. Peláez and J. R. Montes

 $\begin{pmatrix} 0 & 0 \\ 0 & F_0 \end{pmatrix}$. So, the right socle of R is $soc_r(R) = \begin{pmatrix} 0 & A \\ 0 & F_0 \end{pmatrix}$; it is an essential right ideal of R since for every $0 \neq r \in R$ there is an element $s \in R$ such that $0 \neq rs \in soc_r(R)$. Moreover, if $x \in R$ is such that $x(soc_r(R)) = 0$, then x = 0; thus, R is a right non-singular R-module. Hence $R \in \mathbb{F}_{\tau_g}$, which means that R is τ_g -full. On the other hand, R is not absolutely τ_g -pure since $M = \begin{pmatrix} F^{\aleph_0} & A \\ 0 & F_0 \end{pmatrix} \in Mod\text{-}R$ and $R \leq M$.

Now, set $H = \begin{pmatrix} P & A \\ 0 & 0 \end{pmatrix}$. *H* is a two-sided ideal of *R*, so it is a τ_g torsion-free fully invariant submodule of *R*; furthermore, *H* is τ_g -pure in *R* since $R = H \oplus \begin{pmatrix} 0 & 0 \\ 0 & F_0 \end{pmatrix}$ as a right *R*-module. Let $x = \begin{pmatrix} 0 & e_1 \\ 0 & 0 \end{pmatrix} \in H$ with $e_1 = (1, 0, 0, ...)$, and $y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in R - H$. We can verify that (0:x) = $\{r \in R | xr = 0\} = H = \{r \in R | yr \in H\} = (H:y)$; hence, $H \neq t_\sigma(R) \forall \sigma \in$ *R*-tors by [11, Corollary of Proposition 2.1], specially, $H \neq t_\sigma(R)$ for every $\sigma \in [\tau_g, \tau_g \lor \xi(R)] = [\tau_g, \chi]$.

Now for $\tau, \sigma \in R$ -tors, we shall write $\tau \ll \sigma$ if $\tau \leq \sigma$ and for every $\alpha \in R$ -tors such that $\sigma \land \alpha \leq \tau$, we have that $\alpha \leq \tau$.

Using this, we are going to prove that when we have a τ -full *R*-module, the interval $[\tau, \tau \lor \xi(M)]$ is a Boolean lattice.

Definition 27. The Cantor-Bendixson derivative on *R*-tors is the function d_{cb} from *R*-tors to itself given by $d_{cb}(\tau) = \wedge \{\sigma \mid \tau \ll \sigma\}$.

The following result has been already stated in [9, Proposition 1.10]; here we give a different proof.

Proposition 28. If $\tau \in R$ -tors and M is τ -full, then $\tau \lor \xi(M) \le d_{cb}(\tau)$.

Proof Let M be a τ -full module. We are going to prove that $\tau \lor \xi(M) \le \rho$, for every $\rho \in R$ -tors such that $\tau \ll \rho$.

Assume that there is a $\rho \in \mathbb{R}$ -tors such that $\tau \ll \rho$ and $\tau \lor \xi(M) \nleq \rho$. Since $\tau \leq \rho$, then $M \notin \mathbb{T}_{\rho}$. Let $\overline{M} = M / t_{\rho}(M)$, then $\overline{M} \neq 0$ and $\overline{M} \in \mathbb{F}_{\rho} \subseteq \mathbb{F}_{\tau}$; so \overline{M} is τ -full and ρ -full, because M is τ -full. As $\overline{M} \in \mathbb{F}_{\rho}$, then $\tau \lor \xi(\overline{M}) \nleq \rho$.

Now, we claim that $\rho \wedge \xi(\overline{M}) \leq \tau$. Let $L \in \mathbb{T}_{\rho \wedge \xi(\overline{M})}$, then $L \in \mathbb{T}_{\rho}$ and $L \in \mathbb{T}_{\rho}$

 $\mathbb{T}_{\xi(\overline{M})}$; so $Hom_R(\overline{M}, E(L)) \neq 0$. Then there exists submodules $H \subset T \subseteq \overline{M}$ and a monomorphism $T/H \hookrightarrow L \in \mathbb{T}_{\rho}$, which means that $T/H \in \mathbb{T}_{\rho}$. As $T \in \mathbb{F}_{\rho}$, we have that $H \leq T$. Since \overline{M} is τ -full, T is τ -full, and then $T/H \in \mathbb{T}_{\tau}$. Hence $t_{\tau}(L) \neq 0$. So we have proved that any $(\rho \land \xi(\overline{M}))$ -torsion module has non-zero τ -torsion. So, if $L \neq t_{\tau}(L)$, $0 \neq L' = L/t_{\tau}(L) \in \mathbb{T}_{\rho \land \xi(\overline{M})}$, then L'must have non-zero τ -torsion, which is impossible. Therefore $L \in \mathbb{T}_{\tau}$. It proves that $\rho \wedge \xi(\overline{M}) \leq \tau$, then $\xi(\overline{M}) \leq \tau$ because $\tau \ll \rho$; but this is a contradiction since $\tau \leq \rho$ and $\tau \lor \xi(\overline{M}) \not\leq \rho$.

Corollary 29. Let $\tau \in R$ -tors and M a τ -full R-module. Then $[\tau, \tau \lor \xi(M)]$ is a Boolean lattice.

Proof It follows from the fact that the interval $[\tau, d_{cb}(\tau)]$ is Boolean [9, Proposition 1.2] and from the above result.

Corollary 30. Let $\tau \in R$ -tors and $M \in Mod-R$. If M is τ -full and absolutely τ -pure, then $Sub_{P_{\tau}FI}(M)$ is a Boolean lattice.

Now, using the fact that $[\tau, \tau \lor \xi(M)]$ is a Boolean lattice and the bijective correspondence between $[\tau, \tau \lor \xi(M)]$ and $Sub_{P_{\tau}FI}(M)$ when M is a τ -full and an absolutely τ -pure module, we shall establish some equivalent conditions among the lattice $[\tau, \tau \lor \xi(M)]$, the module M and the hereditary torsion theory $\chi(M)$. Also, considering that $E_{\tau}(M)$ is τ -full and absolutely τ -pure module, when M is a τ -full, we shall give some properties of $Sub_{P_{\tau}FI}(E_{\tau}(M))$.

Proposition 31. Let $\tau \in R$ -tors, and let $M \in Mod$ -R an absolutely τ -pure and τ -full module. If K_1, K_2, \ldots, K_n are τ -pure submodules of M, then $\sum_{i=1}^n K_i$ is absolutely τ -pure.

Proof It is enough to prove for n = 2. Let K_1 and K_2 be τ -pure submodules of M, then there exists H_1 and H_2 submodules of M such that $M = K_1 \oplus H_1$ and $M = K_2 \oplus H_2$, by [8, Proposition 15.6]. Therefore K_1 and K_2 are absolutely τ -pure and τ -full modules and $K_1 \cap K_2$ is a τ -pure submodule of K_1 and K_2 . So, there exists $L_1 \leq K_1$ and $L_2 \leq K_2$ such that $K_1 = (K_1 \cap K_2) \oplus L_1$ and $K_2 = (K_1 \cap K_2) \oplus L_2$. Then $K_1 + K_2 = (K_1 \cap K_2) \oplus L_1 \oplus L_2$. As $K_1 \cap K_2$, L_1 and L_2 are τ -injective modules, $K_1 + K_2$ is an absolutely τ -pure module.

Corollary 32. Let $\tau \in R$ -tors, and let $M \in Mod$ -R an absolutely τ -pure and τ -full module. If K_1, K_2, \ldots, K_n are τ -pure submodules of M, then $\sum_{i=1}^n K_i$ is a τ -pure submodule of M.

Proof Since $K_1 + K_2$ is absolutely τ -pure, by the above proposition, and $M \in \mathbb{F}_{\tau}$, then $K_1 + K_2$ is a τ -pure submodule of M, by [8, Proposition 10.1]. \Box

Proposition 33. Let $\tau \in R$ -tors, and let $M \in Mod-R$ be an absolutely τ -pure and τ -full module. If $N \in Sub_{P_{\tau}FI}(M)$, then there exists $N' \in Sub_{P_{\tau}FI}(M)$ such that $N \oplus N' = M$.

Proof Let $N \in Sub_{P_{\tau}FI}(M)$ and $\sigma = \tau \lor \xi(N) \in [\tau, \tau \lor \xi(M)]$. Since $[\tau, \tau \lor \xi(M)]$ is Boolean, there exists $\sigma^c \in [\tau, \tau \lor \xi(M)]$, the complement of σ in this lattice. By Theorem 22, there is a τ -pure fully invariant submodule N' of M such that $\sigma^c = \tau \lor \xi(N')$. Then $\tau \lor \xi(M) = \sigma \lor \sigma^c = (\tau \lor \xi(N)) \lor (\tau \lor \xi(N')) = \tau \lor \xi(N \oplus N')$.

Now, we claim that $N \oplus N' = M$. As N is a τ -pure submodule of M, there exists $K \leq M$ such that $M = N \oplus K$, by [8, Proposition 15.6]. This implies that $N' = t_{\sigma^c}(M) = t_{\sigma^c}(N) \oplus t_{\sigma^c}(K) = t_{\sigma^c}(K) \leq K$. Similarly, as K is a τ -full and absolutely τ -pure R-module, and N' is τ -pure in K, then N' is a direct summand of K, that is, $K = N' \oplus K'$ where $K' \leq M$. Therefore $M = N \oplus N' \oplus K'$ and thus $N \oplus N' \in Sub_{P_{\tau}FI}(M)$. Since $\tau \lor \xi(N \oplus N') = \tau \lor \xi(M)$, it must happen that K' = 0; so $N \oplus N' = M$.

Remark 34. As we can see in the Example 26, the only complement of H in R is $\begin{pmatrix} 0 & 0 \\ 0 & F_0 \end{pmatrix} \notin Sub_{P_{\tau_g}FI}(R)$, so, we cannot avoid the hypothesis that M be absolutely τ -pure in Proposition 33.

Remark 35. Let $\tau \in R$ -tors and $M \in Mod-R$ such that M is a τ -full and absolutely τ -pure module. Then the following conditions hold.

- 1. If $K, N \in Sub_{P_{\tau}FI}(M)$, then $K \cap N \in Sub_{P_{\tau}FI}(N)$.
- 2. If $N \in Sub_{P_{\tau}FI}(M)$, then $Sub_{P_{\tau}FI}(N) \subseteq Sub_{P_{\tau}FI}(M)$.

- If $K \in Sub_{P_{\tau}FI}(N)$, then there is $K' \in Sub_{P_{\tau}FI}(N)$ such that $K \oplus K' = N$, by Proposition 33, since N is also a τ -full and absolutely τ -pure module. By the same Proposition we know that there is $N' \in Sub_{P_{\tau}FI}(M)$ such that $N \oplus N' = M$; thus $K \oplus K' \oplus N' = M$. Therefore, K is τ -pure in M. On the other hand, for any morphism $f : M \to M$, $f(N) \subseteq N$, then if we take the restriction to N, we have that $f(K) \subseteq K$. Hence $Sub_{P_{\tau}FI}(N) \subseteq Sub_{P_{\tau}FI}(M)$.

Considering this, from Theorem 22 we get a decomposition of a τ -full and absolutely τ -pure module M as a direct sum of absolutely τ -pure fully invariant submodules.

Proposition 36. Let $\tau \in R$ -tors and let $M \in Mod-R$ be τ -full and absolutely τ -pure. If $N, K, K' \in Sub_{P_{\tau}FI}(M)$ are such that $N \oplus K = N \oplus K' = M$, then K = K'.

Proof Let $\sigma = \tau \lor \xi(N)$. By Theorem 22, $K = t_{\rho}(M)$ and $K' = t_{\rho'}(M)$ where $\rho = \tau \lor \xi(K)$ and $\rho' = \tau \lor \xi(K')$. As $M = N \oplus K = N \oplus K'$, we have that ρ and ρ' are complements of σ in $[\tau, \tau \lor \xi(M)]$. Since this interval is Boolean, $\rho = \rho'$, which means that K = K'.

Corollary 37. Let $\tau \in R$ -tors and let $M \in Mod-R$ be τ -full and absolutely τ -pure. If $N, K, K' \in Sub_{P_{\tau}FI}(M)$ are such that $N \oplus K = N \oplus K'$, then K = K'.

Proof Let $L = N \oplus K$, then $L \in Sub_{P_{\tau}FI}(M)$, by Corollary 32. Since $N \in Sub_{P_{\tau}FI}(M)$, then $N = N \cap L \in Sub_{P_{\tau}FI}(L)$. Analogously, it happens that $K, K' \in Sub_{P_{\tau}FI}(L)$. So, we can conclude that K = K'.

Now, we shall prove some results about the internal structure of a τ -full and absolutely τ -pure module.

Theorem 38. Let N be a τ -full and absolutely τ -pure module such that $[\tau, \tau \lor \xi(N)]$ is atomic. Then there is a unique decomposition of N as $N = K \oplus K'$, where $K, K' \in Sub_{\tau, FI}(N)$ and satisfy the following properties:

- a) K contains an independent family of uniform submodules $\{U_{\alpha}\}_{\alpha \in A}$ such that $\bigoplus_{\alpha \in A} U_{\alpha} \leq K$,
- b) K' does not contain any uniform submodule.

Proof Let $\{\sigma_i\}_{i \in I}$ be the set of atoms in $[\tau, \tau \lor \xi(N)]$, then $\sigma_i = \tau \lor \xi(N_i)$ with $N_i \leq N$. Now, let $J = \{j \in I | \text{ exists } U_j \text{ uniform such that } U_j \leq N_j\}$.

If $J = \phi$, then N does not contain a uniform submodule; so the claim is satisfied. Let us suppose that $J \neq \phi$ and let $\sigma = \bigvee_{j \in J} \sigma_j$, then $N = K \oplus K'$ where $K = t_{\sigma}(N)$, $K' = t_{\sigma^c}(N)$ and $\sigma^c = \bigvee_{i \in I-J} \sigma_i$. Therefore, K' does not contain uniform submodules and we claim that for each $0 \neq H \leq K$ there is a uniform module $U \leq H$. As $H \in \mathbb{T}_{\sigma} = \mathbb{T}_{\bigvee_{j \in J} \sigma_j}$, there is $j_0 \in J$ such that $H \notin \mathbb{F}_{\sigma_{j_0}}$, where $\sigma_{j_0} = \tau \lor \xi(U_{j_0})$ with $U_{j_0} \leq N_{j_0}$ a uniform submodule. But $H \in \mathbb{F}_{\tau}$ implies that $H \notin \mathbb{F}_{\xi(U_{j_0})}$ which means that $Hom_R(U_{j_0}, E(H)) \neq 0$. Since $E(H) \in \mathbb{F}_{\tau}$ and U_{j_0} is τ -cocritical, we have that there is a submodule $0 \neq U'_{j_0} \leq U_{j_0}$ and a monomorphism $U'_{j_0} \hookrightarrow H$. Whence, each non-zero submodule of K contains a uniform submodule.

Now, let $\{U_{\alpha}\}_{\alpha \in A}$ a maximal independent family of uniform submodules of K, then $\bigoplus_{\alpha \in A} U_{\alpha} \leq K$ because, as before, if there were a non-zero pseudocomplement of $\bigoplus_{\alpha \in A} U_{\alpha}$ it should contain a uniform submodule, which is impossible.

To see uniqueness, suppose that $N = L \oplus L'$ with $L, L' \in Sub_{P_{\tau}FI}(N)$ be

such that they satisfy conditions a) and b), respectively. Then we have that $K = t_{\sigma}(N) = t_{\sigma}(L) \oplus t_{\sigma}(L') = t_{\sigma}(L)$, by definition of σ ; thus $K \leq L$.

Let $\{U'_{\beta}\}_{\beta \in B}$ be an independent family of uniform submodules of L, such that $\bigoplus_{\beta \in B} U'_{\beta} \leq L$; again, by definition of σ , we have that $U'_{\beta} \in \mathbb{T}_{\sigma} \ \forall \beta \in B$. As

L is τ -full, we conclude that $L \in \mathbb{T}_{\sigma}$; thus $L \leq K$. Therefore, L = K. Then, we get that L' = K', by Proposition 36. This proves that the decomposition is unique.

Theorem 39. Let $\tau \in R$ -tors and let M be a τ -full and absolutely τ -pure R-module. Then there exist unique submodules $N, N' \in Sub_{P_{\tau}FI}(M)$ such that $M = N \oplus N'$ with $[\tau, \tau \lor \xi(N)]$ atomic and $[\tau, \tau \lor \xi(N')]$ atomies.

J. C. Pérez, M. G. Peláez and J. R. Montes

Proof Let $\{\sigma_i\}_{i \in I}$ be the set of atoms in $[\tau, \tau \lor \xi(M)]$, then $\sigma_i = \tau \lor \xi(N_i)$ where $N_i = t_{\sigma_i}(M)$. Let $\sigma = \bigvee_{i \in I} \sigma_i = \bigvee_{i \in I} (\tau \lor \xi(N_i))$, then $\sigma \in [\tau, \tau \lor \xi(M)]$. Thus $\sigma = \sigma \lor \xi(N)$ with $N = t_{\sigma(N)}$. Then there is $N' \in Subs = \sigma(M)$ such

Thus $\sigma = \tau \lor \xi(N)$ with $N = t_{\sigma}(M)$. Then there is $N' \in Sub_{P_{\tau}FI}(M)$ such that $N \oplus N' = M$, by Proposition 33. Observe that $\{\sigma_i\}_{i \in I} \subseteq [\tau, \tau \lor \xi(N)]$ and that $\bigvee_{i \in I} \sigma_i = \tau \lor \xi(N)$, then $[\tau, \tau \lor \xi(N)]$ is atomic.

Now, we claim that $[\tau, \tau \lor \xi(N')]$ is atomless since any atom in this lattice would be an atom in $[\tau, \tau \lor \xi(M)]$, that is a σ_i for some $i \in I$.

It can be proved uniqueness with a similar argument as the one used in Theorem 38. $\hfill \Box$

As a consequence of theorems 38 and 39 we have the following result.

Corollary 40. Let $\tau \in R$ -tors and let M be a τ -full and absolutely τ -pure R-module. Then there exists $N, N', N'' \in Sub_{P_{\tau}FI}(M)$ unique submodules of M such that $M = N \oplus N' \oplus N''$ where $[\tau, \tau \lor \xi(N'')]$ is atomless, N' contains no uniform submodules and N is an essential extension of a direct sum of uniform submodules.

4 Structure of $[\tau, \tau \lor \xi(M)]$ and decompositions of the torsion theory $\chi(M)$

As we mentioned in the Introduction, a right *R*-module *M* is said to be a τ - \mathcal{A} -module, with $\tau \in R$ -tors, if it is τ -torsion free and $\tau \lor \xi(M)$ is an atom in $[\tau, \chi]$. The next proposition involves this concept.

Proposition 41. Let M be a τ -full R-module. Then the following conditions are equivalent.

- 1. $\tau \lor \xi(M)$ is an atom in gen (τ) .
- 2. $E_{\tau}(M)$ is a τ - \mathcal{A} -module.
- 3. $\chi(M)$ is an irreducible element of R-tors.
- 4. The only τ -pure fully invariant submodules of $E_{\tau}(M)$ are 0 and $E_{\tau}(M)$.

Proof 1. \Leftrightarrow 2. It follows from [6, Propositions 2.4, 2.9].

 $1. \Rightarrow 3.$ It follows from [6, Corollary 2.17].

3. \Rightarrow 4. Suppose that $0 \leq N \leq E_{\tau}(M)$ is a τ -pure fully invariant submodule of $E_{\tau}(M)$. Then there is $\sigma \in [\tau, \tau \lor \xi(E_{\tau}(M))]$ such that $t_{\sigma}(E_{\tau}(M)) = N$, by Theorem 22. Now, by Corollary 29, σ has a complement in $[\tau, \tau \lor \xi(E_{\tau}(M))]$

which we denote by σ^c . If $N' = t_{\sigma^c} (E_{\tau}(M))$, then $E_{\tau}(M) = N \oplus N'$, by Proposition 33. It means that $\chi(M) = \chi(E_{\tau}(M)) = \chi(N \oplus N') = \chi(N) \land \chi(N')$. Since $\chi(M)$ is irreducible, $\chi(M) = \chi(N)$ or $\chi(M) = \chi(N')$.

If $\chi(M) = \chi(N)$, then $N' \in \mathbb{F}_{\chi(N)}$; so there exists a submodule $0 \neq N'' \leq N'$ and a non-zero morphism $f : N'' \to N$ such that $0 \neq f(N'') \in \mathbb{T}_{\sigma} \cap \mathbb{T}_{\sigma^c} = \mathbb{T}_{\sigma \wedge \sigma^c} = \mathbb{T}_{\tau}$. Then $f(N'') \in \mathbb{T}_{\tau} \cap \mathbb{F}_{\tau} = 0$, which is a contradiction unless N' = 0, and thus $N = E_{\tau}(M)$. Similarly, if $\chi(M) = \chi(N')$, we prove that N = 0.

4. \Rightarrow 1. Let $\rho \in [\tau, \tau \lor \xi(M)] = [\tau, \tau \lor \xi(E_{\tau}(M))]$. If $N = t_{\rho}(E_{\tau}(M))$, then N is a τ -pure fully invariant submodule of $E_{\tau}(M)$. Therefore, N = 0 or $N = E_{\tau}(M)$. Hence $\rho = \tau$ or $\rho = \tau \lor \xi(M)$, respectively, by Theorem 22. \Box

Theorem 42. Let M be a τ -full R-module. Then the following conditions are equivalent.

- 1. $[\tau, \tau \lor \xi(M)]$ is an atomic lattice.
- 2. There is an independent family $\{M_i\}_{i \in I}$ of submodules of M such that M_i is a τ - \mathcal{A} -module for every $i \in I$, $\tau \lor \xi(M_i) \neq \tau \lor \xi(M_j)$ if $i \neq j$, and $\bigoplus_{i \in I} M_i \leq M$.
- 3. $\chi(M)$ decomposes as the meet of an irredundant family of torsion theories $\{\chi(E_i)\}_{i \in I}$, where $E_i \leq M$ and E_i is a τ - \mathcal{A} -module $\forall i \in I$.
- 4. $\chi(M)$ uniquely decomposes as the meet of an irredundant family of irreducible torsion theories.
- 5. If $0 \neq N \leq M$, then $\chi(N)$ uniquely decomposes as the meet of an irredundant family of irreducible torsion theories.

Proof 1. \Rightarrow 2. Let $\{\sigma_i\}_{i \in I}$ be the set of atoms in $[\tau, \tau \lor \xi(M)]$. If $M_i = t_{\sigma_i}(M)$, then $\sigma_i = \tau \lor \xi(M_i)$ and M_i is a τ - \mathcal{A} -module, since σ_i is an atom. We claim that $\{M_i\}_{i \in I}$ is an independent family in M. Let $j \in I$ and $N = M_j \cap \left(\sum_{i \neq j} M_i\right)$, then $N \in \mathbb{T}_{\sigma_j \land \bigvee_{i \neq j} \sigma_i} = \mathbb{T}_{\bigvee_{i \neq j} (\sigma_j \land \sigma_i)} = \mathbb{T}_{\tau}$, because $\sigma_j \land \sigma_i = \tau$ $\forall i \neq j$. As $N \leq M \in \mathbb{F}_{\tau}$, we have that $N \in \mathbb{T}_{\tau} \cap \mathbb{F}_{\tau} = \{0\}$, so N = 0. Therefore, $\{M_i\}_{i \in I}$ is an independent family of submodules of M which are τ - \mathcal{A} -modules. Also, by construction, $\tau \lor \xi(M_i) \neq \tau \lor \xi(M_j)$ if $i \neq j$. Now, we just need to prove that $\bigoplus_{i \in I} M_i \leq M$.

just need to prove that $\bigoplus_{i \in I} M_i \leq M$. Suppose that $\bigoplus_{i \in I} M_i$ is not an essential submodule of M. Let $0 \neq K \leq M$ a pseudocomplement of $\bigoplus_{i \in I} M_i$, then $\tau \lor \xi(K) \in [\tau, \tau \lor \xi(M)]$. Since $[\tau, \tau \lor \xi(M)]$ is a locally atomic lattice, then $\tau \lor \xi(K) = \bigvee_{j \in J} \sigma_j$ for some $J \subseteq I$. Thus, $K \in \mathbb{T}_{\bigvee_{i \in J} \sigma_{j}}, \text{ which means that there is } j_{0} \in J \text{ such that } K \notin \mathbb{F}_{\sigma_{j_{0}}}. \text{ But}$ $t_{\sigma_{j_{0}}}((\bigoplus_{i \in I} M_{i}) \oplus K) = t_{\sigma_{j_{0}}}(\bigoplus_{i \in I} M_{i}) \oplus t_{\sigma_{j_{0}}}(K) \leq t_{\sigma_{j_{0}}}(M) = M_{j_{0}}, \text{ then } t_{\sigma_{j_{0}}}(K) = 0.$ Hence K = 0, which is a contradiction. Therefore $\bigoplus_{i \in I} M_{i} \leq M.$

2. \Rightarrow 3. Let $\{M_i\}_{i \in I}$ be an independent family of submodules of M such that M_i is a τ -A-module for every $i \in I$, $\tau \lor \xi(M_i) \neq \tau \lor \xi(M_j)$ if $i \neq j$, and $\bigoplus_{i \in I} M_i \leq M$. The last condition implies that $\bigwedge_{i \in I} \chi(M_i) = \chi(\bigoplus_{i \in I} M_i) = \chi(M)$. As $\tau \lor \xi(M_i) \neq \tau \lor \xi(M_j)$ if $i \neq j$, then $\chi(M_i) \neq \chi(M_j)$ if $i \neq j$, by [6, Corollary 2.16]. Now, suppose that there exists $j \in I$ such that $\bigwedge_{i \neq j} \chi(M_i) = \chi(M)$. Then $M_j \in \mathbb{F}_{\chi(M)} = \mathbb{F}_{\bigwedge_{i \neq j} \chi(M_i)}$; so there is $k \in I$ such that $k \neq j$ and $M_j \notin \mathbb{T}_{\chi(M_k)}$. Therefore, $Hom_R(M_j, E(M_k)) \neq 0$, which means that there are submodules $M''_j < M'_j \leq M_j$ and a monomorphism $M'_j/M''_j \hookrightarrow M_k \in \mathbb{F}_{\tau}$. Hence, by [6, Proposition 2.4], $\tau \lor \xi(M_j) = \tau \lor \xi(M'_j) = \tau \lor \xi(M'_j/M''_j) = \tau \lor \xi(M_k)$, that is a contradiction.

3. \Rightarrow 1. Let $\chi(M) = \bigwedge_{i \in I} \chi(E_i)$ be an irredundant meet, with E_i a τ - \mathcal{A} -module and $E_i \leq M$ for every $i \in I$. We are going to prove that $\tau \lor \xi(M)$ is a join of atoms.

Let $\sigma_i = \tau \lor \xi(E_i)$ and $M_i = t_{\sigma_i}(M)$, then $\sigma_i = \tau \lor \xi(M_i)$, by Theorem 22,1; furthermore, if $N = M_j \cap \sum_{i \neq j} M_i$ for some $j \in I$, then $N \in \mathbb{T}_{\sigma_j \land (\bigvee_{i \neq j} \sigma_i)} = \mathbb{T}_{\bigvee_{i \neq j} (\sigma_i \land \sigma_j)} = \mathbb{T}_{\tau}$, i.e. $N \in \mathbb{T}_{\tau} \cap \mathbb{F}_{\tau} = \{0\}$; thus the sum $\sum_{i \in I} M_i$ is direct.

Now we claim that $\tau \lor \xi(\bigoplus_{i \in I} M_i) = \tau \lor \xi(M)$. Let $\sigma = \tau \lor \xi(\bigoplus_{i \in I} M_i)$ and suppose that $\sigma < \tau \lor \xi(M)$. As $\sigma \in [\tau, \tau \lor \xi(M)]$, there exists $\sigma^c \in [\tau, \tau \lor \xi(M)]$, and $\sigma^c = \tau \lor \xi(K)$ where $K = t_{\sigma^c}(M)$, by Theorem 22. However, $K \leq M$ implies that $K \in \mathbb{F}_{\chi(M)} = \mathbb{F}_{\bigwedge_{i \in I} \chi(E_i)} = \mathbb{F}_{\bigwedge_{i \in I} \chi(M_i)}$, by [6, Corollary 2.16]. Then there exists $j \in I$ such that $K \notin \mathbb{T}_{\chi(M_j)}$; so there are submodules $K'' < K' \leq K$ and a monomorphism $K'/K'' \hookrightarrow M_j \in \mathbb{T}_{\sigma}$. But as $K \in \mathbb{T}_{\sigma^c}, K'/K'' \in \mathbb{T}_{\sigma^c} \cap \mathbb{T}_{\sigma} = \mathbb{T}_{\tau}$. Therefore, $K'/K'' \in \mathbb{T}_{\tau} \cap \mathbb{F}_{\tau} = \{0\}$, since $M_j \in \mathbb{F}_{\tau}$; thus K' = K'' which is a contradiction; whence K = 0 and $\sigma = \tau \lor \xi(M)$. Hence, $\tau \lor \xi(M) = \tau \lor \xi(\bigoplus_{i \in I} M_i) = \bigvee_{i \in I} (\tau \lor \xi(M_i))$ is a join of atoms, which is equivalent to $[\tau, \tau \lor \xi(M)]$ be atomic.

 $3. \Rightarrow 4.$ The decomposition of $\chi(M)$ as a meet of an irredundant family of irreducible torsion theories is an immediate consequence of 3, since if $\chi(M) = \bigwedge_{i \in I} \chi(E_i)$, where $E_i \leq M$ and E_i is a τ - \mathcal{A} -module $\forall i \in I$, which means that $\chi(E_i)$ is an irreducible element of R-tors [6, Corollary 2.17].

Now, suppose that there is $\{\alpha_j\}_{j\in J} \subseteq R$ -tors an irredundant family of irreducible torsion theories such that $\chi(M) = \bigwedge_{j\in J} \alpha_j$. For any $i \in I$, $E_i \in \mathbb{F}_{\chi(M)} = \mathbb{F}_{\bigwedge_{j\in J} \alpha_j}$, which means that there is a $j_i \in J$ such that $E_i \notin \mathbb{T}_{\alpha_{j_i}}$. Let $\alpha_{j_i} = \chi(L_{j_i})$ with L_{j_i} an injective R-module. Then $Hom_R(E_i, L_{j_i}) \neq 0$; thus there are submodules $E''_i < E'_i \leq E_i$ and a monomorphism $E'_i / E''_i \hookrightarrow L_{j_i}$. Whence there is a τ -full submodule N_i of L_{j_i} . Let us take $N = \sum_{i \in J} \{N_\gamma \leq L_{j_i} \mid N_\gamma \text{ is } \tau\text{-full}\}$ and $K \leq L_{j_i}$ such that $N \oplus K \leq L_{j_i}$. Then $\chi(N) \land \chi(K) = \chi(L_{j_i}) = \alpha_{j_i}$. Since α_{j_i} is irreducible, $\alpha_{j_i} = \chi(N)$ or $\alpha_{j_i} = \chi(K)$. If $\alpha_{j_i} = \chi(K)$, using a similar argument as above, we can prove that there is a τ -full submodule of K. But this is not possible, by definition of N. Then $\chi(N) = \chi(L_{j_i}) = \alpha_{j_i}$; thus $E_{\tau}(N)$ is a τ - \mathcal{A} -module, by Proposition 41. Since every submodule of a τ - \mathcal{A} -module cogenerates the same, we have that $\chi(E_i) = \alpha_{j_i}$. Therefore, since both meets are irredundant we have that for each $\chi(E_i)$ there is an α_{j_i} such that $\chi(E_i) = \alpha_{j_i}$.

4. \Rightarrow 3. Let $\chi(M) = \bigwedge_{i \in I} \chi(E_i)$ where $\chi(E_i)$ is irreducible for every $i \in I$.

We can assume that each E_i is injective.

We claim that $M \notin \mathbb{T}_{\chi(E_i)}, \forall i \in I$. Suppose that there is $j \in I$ such that $M \in \mathbb{T}_{\chi(E_j)}$. Since $M \in \mathbb{F}_{\chi(M)} = \mathbb{F}_{\bigwedge_{i \in I} \chi(E_i)} = \mathbb{F}_{\chi(E_j) \wedge (\bigwedge_{i \neq j} \chi(E_i))}$, then $M \in \mathbb{F}_{\bigwedge_{i \neq j} \chi(E_i)}$; therefore, $\bigwedge_{i \neq j} \chi(E_i) \leq \chi(M)$. But, as $\bigwedge_{i \in I} \chi(E_i)$ is an irredundant meet, $\chi(M) = \bigwedge_{i \in I} \chi(E_i) < \bigwedge_{i \neq j} \chi(E_i)$ which is a contradiction. Hence, $M \notin \mathbb{T}_{\chi(E_i)}, \forall i \in I$. It means that $Hom_R(M, E_i) \neq 0$; then there are submodules $K_i < N_i < M$ and a monomorphism $N_i / K_i \hookrightarrow E_i$. Since M is τ -full

modules $K_i < N_i \leq M$ and a monomorphism $N_i / K_i \hookrightarrow E_i$. Since M is τ -full and $N_i / K_i \in \mathbb{F}_{\chi(E_i)} \subseteq \mathbb{F}_{\tau}$, N_i / K_i is τ -full; then each E_i contains a τ -full submodule.

Let $M_i = \sum \{L \leq E_i | L \text{ is } \tau\text{-full}\}$, then M_i is the greatest $\tau\text{-full submodule}$ of E_i [14, Proposition 1.7]. We claim that $\chi(M_i) = \chi(E_i) \forall i \in I$. If $M_i \leq \frac{1}{ess}$ E_i , the assertion is satisfied. If M_i is not essential in E_i , then there is $0 \neq K_i \leq E_i$ a pseudocomplement of M_i in E_i ; then $M_i \oplus K_i \leq E_i$. Therefore, $\chi(M_i) \land \chi(K_i) = \chi(M_i \oplus K_i) = \chi(E_i)$. Since $\chi(E_i)$ is irreducible, we have that $\chi(E_i) = \chi(M_i)$ or $\chi(E_i) = \chi(K_i)$.

If $\chi(E_i) = \chi(K_i)$, then $M \notin \mathbb{T}_{\chi(K_i)}$, from what we proved above. Then, with a similar argument than the one used for E_i , K_i contains a τ -full module. But this is impossible, by the definition of M_i . Therefore, $\chi(E_i) = \chi(M_i)$.

Now, since M_i is τ -full and $\chi(E_i)$ is irreducible we have that $E_{\tau}(M_i)$ is a τ - \mathcal{A} -module, by Proposition 41. Hence $\chi(M) = \bigwedge_{i \in I} \chi(E_i) = \bigwedge_{i \in I} \chi(M_i)$ is an irredundant meet of torsion theories cogenerated by τ - \mathcal{A} -modules. Aside, $M_i \in \mathbb{F}_{\chi(M)}$ implies that $Hom_R(M_i, E(M)) \neq 0$, which means that there are submodules $K_i < K'_i \leq M_i$ and a monomorphism $K'_i/K_i \hookrightarrow M$. If $N_i = K'_i/K_i$, then $N_i \leq M$ is a τ - \mathcal{A} -module with $\chi(N_i) = \chi(M_i)$. Therefore, $\chi(M) = \bigwedge_{i \in I} \chi(N_i)$ is an irredundant meet of torsion theories cogenerated by τ - \mathcal{A} -modules that are submodules of M.

1. \Rightarrow 5. Let $N \leq M$, then N is τ -full. Since $[\tau, \tau \lor \xi(N)] \subseteq [\tau, \tau \lor \xi(M)]$, then $[\tau, \tau \lor \xi(N)]$ is also an atomic lattice. Hence, $\chi(N)$ uniquely decomposes as the meet of an irredundant family of irreducible torsion, by $1 \Rightarrow 4$.

 $5. \Rightarrow 4.$ It is immediate considering N = M.

Now, we fit the last theorem in case the decomposition of $\chi(M)$ can be done with strongly irreducible torsion theories. In order to do this, we give some concepts.

- **Definition 43.** 1. A non-zero right *R*-module *M* is decisive if *M* is τ -torsion or τ -torsion free for every $\tau \in R$ -tors.
 - 2. Let $\tau \in R$ -tors and $M \in Mod-R$. M is a τ -D-module if M is a τ -A-module and there exists a decisive module D such that $\chi(M) = \chi(D)$. See [7] for details about these modules.

The following technical result will be used to prove the next theorem.

Lemma 44. If N is a right τ -D-module, then N contains a decisive submodule.

Proof As N is a τ -D-module, there is a decisive module D such that $\chi(N) = \chi(D)$. Then $D \notin \mathbb{T}_{\chi(N)}$, which means that $Hom_R(D, E(N)) \neq 0$; hence, there are submodules $D'' < D' \leq D$ and a monomorphism $D'/D'' \hookrightarrow N$. We claim that D'/D'' is decisive. Let $\alpha \in R$ -tors; since D is decisive, $D \in \mathbb{T}_{\alpha}$ or $D \in \mathbb{F}_{\alpha}$. In the first case, $D' \in \mathbb{T}_{\alpha}$ and thus $D'/D'' \in \mathbb{T}_{\alpha}$. In the second one, $\alpha \leq \chi(D) = \chi(N) = \chi(D'/D'')$ which implies that $D'/D'' \in \mathbb{F}_{\alpha}$.

Theorem 45. Let M be a τ -full R-module. Then the following conditions are equivalent.

- 1. $[\tau, \tau \lor \xi(M)]$ is an atomic lattice, and every atom in this lattice can be written as $\tau \lor \xi(D)$ with D a decisive module.
- 2. There is an independent family $\{M_i\}_{i \in I}$ of submodules of M such that M_i is τ - \mathcal{D} -module for every $i \in I$, $\tau \lor \xi(M_i) \neq \tau \lor \xi(M_j)$ if $i \neq j$, and $\bigoplus_{i \in I} M_i \leq M_i$.
- 3. $\chi(M)$ decomposes as the meet of an irredundant family of torsion theories $\{\chi(D_i)\}_{i \in I}$, where $D_i \leq M$ and D_i is a τ - \mathcal{D} -module $\forall i \in I$.
- 4. $\chi(M)$ uniquely decomposes as the meet of an irredundant family of strongly irreducible torsion theories.

5. If $0 \neq N \leq M$, then $\chi(N)$ uniquely decomposes as the meet of an irredundant family of strongly irreducible torsion theories.

Proof 1. \Rightarrow 2. Let $\{\sigma_i\}_{i \in I}$ be the set of atoms in $[\tau, \tau \lor \xi(M)]$. If $M_i = t_{\sigma_i}(M)$, then $\sigma_i = \tau \lor \xi(M_i)$. By 1, $\sigma_i = \tau \lor \xi(D_i)$ with D_i a decisive module. As D_i is decisive, $D_i \in \mathbb{F}_{\tau}$; thus D_i is a τ - \mathcal{D} -module. Therefore, $\chi(M_i) = \chi(D_i)$, by [6, Corollary 2.16]. So, M_i is a τ - \mathcal{D} -module. Now, statement 2 follows with the same arguments of $1. \Rightarrow 2$. of Theorem 42.

2. \Rightarrow 3. Let $\{M_i\}_{i \in I}$ be an independent family of submodules of M such that M_i is τ - \mathcal{D} -module for every $i \in I$, $\tau \lor \xi(M_i) \neq \tau \lor \xi(M_j)$ if $i \neq j$, and $\bigoplus_{i \in I} M_i \leq M$. Then $\chi(M_i) = \chi(D_i)$ with D_i decisive $\forall i \in I$, and $\chi(M) = \bigwedge_{i \in I} \chi(M_i) = \bigwedge_{i \in I} \chi(D_i)$, where $\chi(D_i) \neq \chi(D_j)$ if $i \neq j$ by [6, Corollary 2.16]. Now, we can use the same argument as 2. \Rightarrow 3. of Theorem 42 to deduce the irredundancy.

3. \Rightarrow 4. Let $\chi(M) = \bigwedge_{i \in I} \chi(D_i)$ be an irredundant meet with $D_i \leq M$ and D_i a τ - \mathcal{D} -module $\forall i \in I$. As $\chi(D_i)$ is strongly irreducible $\forall i \in I$, by [8, Proposition 32.7], this is an irredundant meet of strongly irreducible torsion theories. The uniqueness of the decomposition can be proved with a similar argument as the one used in 3. \Rightarrow 4. of the previous theorem.

4. \Rightarrow 1. By 4, we know that $\chi(M) = \bigwedge_{i \in I} \chi(D_i)$ with D_i a decisive module

 $\forall i \in I. We can use the same argument as in the proof of 4. \Rightarrow 3. of Theorem 42 to prove that <math>M \notin \mathbb{T}_{\chi(D_i)}, \forall i \in I.$ This means that $Hom(M, E(D_i)) \neq 0$ $\forall i \in I$ which implies that there is a submodule N_i of D_i which is τ -full and $\chi(N_i) = \chi(D_i)$ is irreducible. Then $E_{\tau}(N_i)$ is a τ - \mathcal{A} -module, by Proposition 41, in fact, $E_{\tau}(N_i)$ is a τ - \mathcal{D} -module. Analogously, we can argue as at the end of the proof of $4. \Rightarrow 3.$ of Theorem 42 to prove that there is a τ - \mathcal{D} -module, $D'_i \leq M$, $\forall i \in I$ such that $\chi(D'_i) = \chi(N_i)$. Therefore, we have that $\chi(M) = \bigwedge_{i \in I} \chi(D'_i)$ with $D'_i \leq M$ and D'_i a τ - \mathcal{D} -module $\forall i \in I$; hence, the lattice $[\tau, \tau \lor \xi(M)]$ is

atomic, by Theorem 42. New let $\sigma \in [\pi, \pi) \setminus S(M)$ be an atom. If $N = t_{-}(M)$, then $\sigma = \pi \setminus S(M)$

Now, let $\sigma \in [\tau, \tau \lor \xi(M)]$ be an atom. If $N = t_{\sigma}(M)$, then $\sigma = \tau \lor \xi(N)$ and $N \in \mathbb{F}_{\chi(M)} = \mathbb{F}_{\bigwedge_{i \in I} \chi(D'_i)}$. Thus, considering that $N \notin \mathbb{T}_{\chi(D'_j)}$ for some $j \in \mathbb{F}_{\chi(D'_j)}$.

I, one can prove that $\chi(N) = \chi(D'_j)$. Then, N is a τ -D-module. Otherwise, by Lemma 44 there exists a decisive submodule D of N and we conclude that $\sigma = \tau \lor \xi(N) = \tau \lor \xi(D)$.

1. \Rightarrow 5. Let $0 \neq N \leq M$. Then N is τ -full, and $[\tau, \tau \lor \xi(N)] \subseteq [\tau, \tau \lor \xi(M)]$ means that $[\tau, \tau \lor \xi(N)]$ is atomic, by 1. We also have, by 1, that each atom of $[\tau, \tau \lor \xi(N)]$ can be written as $\tau \lor \xi(D)$ with D a decisive module. Thence, $\chi(N)$ uniquely decomposes as the meet of an irredundant family of strongly irreducible torsion theories, by $1. \Rightarrow 4$.

 $5. \Rightarrow 4.$ It immediately holds.

Now we present the case where the atoms in $[\tau, \tau \lor \xi(M)]$ can be written as $\tau \lor \xi(C)$ with C a τ -cocritical module.

Theorem 46. Let M be a τ -full R-module. Then the following conditions are equivalent.

- 1. $[\tau, \tau \lor \xi(M)]$ is an atomic lattice, and every atom in this lattice can be written as $\tau \lor \xi(C)$ with C a τ -cocritical module.
- 2. Every non-zero submodule of M contains a uniform submodule.
- 3. $\chi(M)$ decomposes as the meet of an irredundant family of torsion theories $\{\chi(C_i)\}_{i \in I}$, where $C_i \leq M$ and C_i is τ -cocritical $\forall i \in I$.
- 4. $\chi(M)$ uniquely decomposes as the meet of an irredundant family of prime torsion theories.
- 5. If $0 \neq N \leq M$, then $\chi(N)$ uniquely decomposes as the meet of an irredundant family of prime torsion theories.

Proof 1. \Rightarrow 2. Let $0 \neq N \leq M$. Since $[\tau, \tau \lor \xi(N)] \subseteq [\tau, \tau \lor \xi(M)]$, then $[\tau, \tau \lor \xi(N)]$ satisfies the same conditions of 1. for $[\tau, \tau \lor \xi(M)]$.

Let $\sigma \in [\tau, \tau \lor \xi(N)]$ be an atom, then $\sigma = \tau \lor \xi(t_{\sigma}(N)) = \tau \lor \xi(C)$ with C a τ -cocritical module, by 1. and [6, Proposition 2.4, 2.]. Therefore, $t_{\sigma}(N) \in \mathbb{T}_{\tau \lor \xi(C)}$, which means that $t_{\sigma}(N) \notin \mathbb{F}_{\xi(C)}$. Thus, there is a morphism $0 \neq f : C \to E(t_{\sigma}(N))$. So, as C is τ -cocritical, there exists a submodule C' of C and a monomorphism $C' \hookrightarrow t_{\sigma}(N)$. Hence, N has a τ -cocritical submodule and consequently it has a uniform submodule.

2. \Rightarrow 3. As *M* has a uniform submodule, there must exist a maximal independent family $\{U_{\lambda}\}_{\lambda \in \Lambda}$ of uniform submodules of *M*. We claim that $\bigoplus_{\lambda \in \Lambda} U_{\lambda}$ is essential in *M*, since if it was no essential there should be a pseudocomplement $K \neq 0$ of $\bigoplus_{\lambda \in \Lambda} U_{\lambda}$ in *M*, which should contain a uniform submodule. This is not possible. So, by [6, Corollary 2.6] the family $\{U_{\lambda}\}_{\lambda \in \Lambda}$ satisfies condition 2 of Theorem 42 which implies that $\chi(M)$ can be expressed as an irredundant meet $\chi(M) = \bigwedge_{i \in I} \chi(E_i)$ with E_i a τ -*A*-module and $E_i \leq M$ for every $i \in I$. By 2., each E_i contains a uniform submodule C_i . Hence, $C_i \leq M$ is τ -cocritical $\forall i \in I$ and $\chi(M) = \bigwedge_{i \in I} \chi(E_i) = \bigwedge_{i \in I} \chi(C_i)$ is an irredundant meet.

Now, we can use similar arguments as in Theorem 45 to obtain the proofs of $3. \Rightarrow 4. \Rightarrow 1. \Rightarrow 5. \Rightarrow 4.$

Corollary 47. Let M be a τ -full R-module. If $[\tau, \tau \lor \xi(M)]$ is an atomic lattice, and every atom in this lattice can be written as $\tau \lor \xi(C)$ with C as τ -cocritical module, then $\sum \{U \leq M | U \text{ is uniform}\} \leq M$.

References

- Albu, T., "F-semicocritical modules, F-primitive ideals and prime ideals", Rev. Roumaine Math. Pueres Appl. 31, No. 6, 449-459, (1986).
- [2] Arroyo, M. J. and Ríos J., "Some aspects of spectral torsion theories", Comm. Algebra 22(12), 4991-5003, (1994).
- [3] Arroyo, M. J., Ríos J. and Wisbauer, R., "Spectral torsion theories in module categories", Comm. Algebra 25(7), 2249-2270, (1997).
- [4] Boyle, Ann K., "The large condition for rings with Krull dimension", Proc. Amer. Math. Soc. 72, 27-32, (1978).
- [5] Călugăreanu, G., Lattice Concepts of Module Theory, Kluwer Academic Publishers, USA, (2000).
- [6] Castro, J., Raggi, F., Ríos J. and Van den Berg, J., "On the atomic dimension in module categories", Comm. Algebra 33, 4679-4692, (2005).
- [7] Castro, J., Raggi, F. and Ríos J., "Decisive dimension and other related torsion theoretic dimensions", to appear in Journal of Pure and Applied Algebra.
- [8] Golan, J., Torsion Theories, Longman Scientific & Technical, Harlow, (1986).
- [9] Golan, J. and Simmons, H., Derivatives, nuclei and dimensions on the frame of torsion theories, Longman Scientific & Technical, Harlow, (1988).
- [10] Grätzer, G., General Lattice Theory, Second edition, Birkhäuser Verlag, Berlin, (1998).
- [11] Lambek, J., Torsion Theories, Additive Semantics, and Rings of Quotients, Lecture Notes in Mathematics #177, Springer-Verlag, Berlin, (1971).
- [12] Lau, William G., Torsion Theoretic Generalizations of Semisimple Modules, PhD Thesis, University of Wisconsin-Milwaukee, (1980).
- [13] Stenström, B. Rings of Quotients, Die Grundlehren der Math. Wiss. in Eizeld, Vol. 217, Springer-Verlag, Berlin, (1975).
- [14] Teply, M. L., Semicocritical modules, Secretariado de publicaciones e intercambio científico, Universidad de Murcia, España, (1988).
- [15] Vachuska, P., Applications of the τ -full socle, PhD Thesis, University of Wisconsin-Milwaukee, (1992).
- [16] Wisbauer, R., "Localization of Modules and the Central Closure of Rings", Comm. in Algebra 9(14), 1455-1493, (1981).

- [17] Wisbauer, R., Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Pitman Monographs and Surveys in Pure and Applied Mathematics 81, (1996).
- [18] Zelmanowitz, J. M., "Representation of Rings with faithful polyform modules", Comm. in Algebra 14(6), 1141-1169, (1986).