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Rı́o Hondo 1, Col. Progreso Tizapán 01080, México
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Abstract

Let τ be a hereditary torsion theory on Mod-R. For a right τ -full
R-module M, we establish that [τ, τ ∨ ξ (M)] is a boolean lattice; we
find necessary and sufficient conditions for the interval [τ, τ ∨ ξ (M)] be
atomic, and we give conditions for the atoms be of some specific type in
terms of the internal structure of M.

We also prove that there are lattice isomorphisms between the lattice
[τ, τ ∨ ξ (M)] and the lattice of τ -pure fully invariant submodules of M,
under the additional assumption that M is absolutely τ -pure.

With the aid of these results, we get a decomposition of a τ -full and
absolutely τ -pure R-module M as a direct sum of τ -pure fully invari-
ant submodules N and N ′ with different atomic characteristics on the
intervals [τ, τ ∨ ξ (N)] and [τ, τ ∨ ξ (N ′)] , respectively.

∗ This author appreciates the support from Asociación Mexicana de Cultura, A.C. in
Mexico City
Key words: hereditary torsion theory, τ -full R-module, atomic characteristics.
2000 AMS Mathematics Subject Classification: Primary: 16S90; secondary: 16D50; 16P50;
16P70.

139



140 Some aspects of τ−full modules

1 Introduction

Let R be an associative ring with unit. Mod-R denotes the category of unitary
right R-modules and R-tors denotes the frame of all hereditary torsion theories
on Mod-R.

For a hereditary torsion theory τ ∈ R-tors, William George Lau studied
the τ -full modules, that is, τ -torsion-free modules which have the property
that every essential submodule is τ -dense. The latest condition was named the
τ -large condition by Lau, [12]. Earlier on, this notion was studied by Ann K.
Boyle [4] in connection with her work on modules having Krull dimension and
also, Robert Wisbauer worked with them in [16]. Later, some properties about
these modules were pointed out in [8]. Zelmanowitz defined polyform modules
in [18] which were proved to be full modules by Wisbauer in [17]. Other works
concerned with these modules can be found in [14] and [15].

In this paper, for a τ -full module M ∈ Mod-R, we investigate the behav-
ior of the fully invariant submodules N such that M/ N is τ -torsion-free. We
establish a lattice isomorphism between the set of these submodules and a
sublattice of R-tors determined by τ and M, considering that M be also rela-
tively injective. Therefore, we can get some results about the structure of this
modules. In order to do this, we have divided the paper in three sections: in
Section 2 we give the concepts, characterizations and some results related to
τ -full modules. In Section 3, we establish the lattice isomorphism between the
lattice [τ, τ ∨ ξ (M)] and the lattice of τ -pure fully invariant submodules of M,
assuming, in addition, that M is absolutely τ -pure. Under these conditions,
it was proved, in [8, Proposition 15.6], that every τ -pure submodule of M is
a direct summand of M ; in this section we prove that if N is a τ -pure fully
invariant submodule of M . there is another τ -pure fully invariant submodule of
M which is complement of N to get M . Also, we get a decomposition of M in
terms of some τ -pure fully invariant submodules N of M with different atomic
structure on their intervals [τ, τ ∨ ξ (N)] . In Section 4, we prove some equiv-
alent statements so that interval [τ, τ ∨ ξ (M)] be atomic, for a τ -full module
M , and give conditions on the internal structure of M in order that atoms be
of some specific type. Among these conditions we get some decompositions of
χ (M) .

For M, N ∈ Mod-R, the notation N ≤ M (N < M) means that N is
a (proper) submodule of M. If N is an essential submodule of M, we write
N ≤

ess
M. Also we use this symbols ≤ (<) for the partial order in the lattice

R-tors. For τ, σ ∈ R-tors with τ ≤ σ, [τ, σ] = {γ ∈ R-tors| τ ≤ γ ≤ σ} .
When we mean that X is a (proper) subset or a (proper) subclass of Y, we
write X ⊆ Y (X ⊂ Y ) . For a family of right R-modules {Ma}, let χ ({Ma}) be
the torsion theory cogenerated by the family {Ma} , i.e. the maximal element
of R-tors for which all the Mα are torsion free; and let ξ ({Ma}) be the torsion
theory generated by the family {Ma} , i.e. the minimal element of R-tors for
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which all the Mα are torsion. In particular, we write χ (M) and ξ (M) instead of
χ ({M}) and ξ ({M}), respectively. The greatest element of R-tors is denoted
by χ and the least by ξ. For τ ∈ R-tors, Tτ , Fτ and tτ denotes the torsion class,
the torsion free class and the torsion functor associated to τ, respectively.

We give some concepts and results that we will refer to throughout this
paper.

Let (L,∧,∨, 0, 1) be a complete lattice. A non-zero element a ∈ L is an
atom if x < a implies x = 0, for each x ∈ L. The lattice L is said to be atomic
if for every 0 �= y ∈ L, there is an atom a ∈ L such that a ≤ y. L is said to
be locally atomic if every non-zero element in L is a join of atoms. If L is a
complete Boolean lattice, then L is atomic if and only if L is locally atomic if
and only if the element 1 is a join of atoms of L. We also observe that if L is
Boolean and if a, b ∈ L are such that a < b, then [a, b] is Boolean. For other
concepts and terminology about lattice theory, the reader is referred to [5, 10].

Let τ ∈ R-tors and M ∈ Mod-R, a submodule N of M is said to be τ -dense
in M if M/N ∈ Tτ . N is τ -pure in M if M/N ∈ Fτ . M is called τ -cocritical
if M ∈ Fτ and every 0 �= N ≤ M is τ -dense in M. M is cocritical if there
is τ ∈ R-tors such that M is τ -cocritical. We say that M is a τ -A-module if
M ∈ Fτ and τ ∨ ξ (M) is an atom in [τ, χ] . We write E (M) for the injective
hull of M , and for a τ ∈ R-tors, we denote Eτ (M) the τ -injective hull of M
which can be described as Eτ (M)/M = tτ (E (M)/ M) .

τ ∈ R-tors is said to be irreducible if for τ ′, τ ′′ ∈ R-tors with τ ′ ∧ τ ′′ = τ,
we have that τ ′ = τ or τ ′′ = τ. The element τ is strongly irreducible if ∧U ≤ τ
implies that there exists σ ∈ U such that σ ≤ τ, for each φ �= U ⊆ R-tors. We
say that τ is prime if it is of the form χ (M) for some cocritical right R-module.

For all other concepts and terminology concerning torsion theories, the
reader is referred to [8, 13].

2 τ-full modules

Definition 1. Let τ ∈ R-tors. A nonzero right R-module M is said to be a
τ -full module if M ∈ Fτ and for every 0 �= N ≤

ess
M, we have that M /N ∈ Tτ .1

Examples 2. 1. If M is τ -cocritical, then M is a τ -full module.

2. If M is a semisimple τ -torsion free module, then M is a τ -full module.

3. Let τg denote the Goldie torsion theory and M ∈ Mod-R. Then M is
τg-torsion free if and only if M is a τg-full module.

4. Let τ ∈ R-tors be a hereditary torsion theory. τ is said to be spectral
if the class of τ -injective and τ -torsion free right R-modules is a spectral

1The concept of τ -full module can also be defined for modules that are not necessarily
τ -torsion free, as it is in [1].
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category, i.e. a Grothendieck category where every short exact sequence
splits. If τ is a spectral torsion theory and M ∈ Fτ , then M is a τ -full
module. For further details see [2, Proposition 1.1], [3], and [13].

5. Let M ∈ Mod-R. M is a ξ-full module if and only if M is a semisimple
module.

6. Let τsp be the hereditary torsion theory whose torsion class consists of
all semisimple and projective modules. For each M ∈ Mod-R, tτsp (M) =∑{S ≤ M | S is simple and projective}. Then M ∈ Mod-R is a τsp-full
module if and only if M is semisimple and singular.

7. Let τ ∈ R-tors. If R is τ -full, then τ = τg.
�

In order to make this work self-contained we include the following results
from [8, Chapter 15].

Proposition 3. Let M be a τ -full module. Then the following conditions hold.

1. If 0 �= N ≤ M, then N is also τ -full.

2. If N is a τ -pure submodule of M, then M/N is τ -full.

The next proposition shows that the property of being τ -full of the module
MR, extends to any generalization σ of τ, when M is σ-torsion free.

Proposition 4. Let τ, σ ∈ R-tors such that τ ≤ σ. If M ∈ Mod-R is τ -full
and M ∈ Fσ, then M is σ-full.

Proof Let 0 �= N ≤
ess

M, then M/N ∈ Tτ . Therefore, M/N ∈ Tσ and M is

σ-full. �

Corollary 5. If M ∈ Mod-R is τ -full for τ ∈ R-tors, then M is a χ (M)-full
module.

Remark 6. As a consequence of Proposition 4 it can be proved that M ∈
Mod-R is τ -full if and only if the restriction of the torsion theory τ to the
category σ [M ] is a spectral torsion theory.

Proposition 7. Let M ∈ Mod-R and τ, σ ∈ R-tors. If M is τ -full and M ∈ Tσ,
then M is (τ ∧ σ)-full.

Proof As (τ ∧ σ) ≤ τ and M ∈ Fτ we see that M ∈ Fτ∧σ . If N ≤
ess

M, then

M/ N ∈ Tτ ∩ Tσ. Hence M is (τ ∧ σ)-full. �

Definition 8. A module M is called full if there exists τ ∈ R-tors such that
M is τ -full.
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Remark 9. By Corollary 5 we see that a module M is full if and only if M is
χ (M)-full.

Now, for each R-module M we write ξM = ξ({ M/N | N ≤
ess

M}). Note

that if M is a full module, then M/ N ∈ Tχ(M), for each N ≤
ess

M ; thus

ξM ≤ χ (M) .
In the next result we assume that M is a full module. In Example 13 we

shall see that this is a necessary condition.

Proposition 10. Let M be a full R-module and τ ∈ R-tors. Then M is τ -full
if and only if τ ∈ [ξM , χ (M)] .

Proof ⇒] Let τ ∈ R-tors such that M is τ -full, then τ ≤ χ (M) , and if
N ≤

ess
M, we have that M/ N ∈ Tτ ; therefore ξM ≤ τ.

⇐] Now, let π ∈ [ξM , χ (M)] . Since ξM ≤ π, M/ N ∈ Tπ, for every N ≤
ess

M. On the other hand, π ≤ χ (M) tells us that M ∈ Fπ . Thus, M is π-full. �

Corollary 11. Let {τα}α∈I ⊆ R-tors and M ∈ Mod-R. If M is τα-full for
every α ∈ I, then M is ∧

α∈I
τα-full and ∨

α∈I
τα-full.

Proof If M is τα-full, then τα ∈ [ξM , χ (M)] for every α ∈ I. So ∧
α∈I

τα and

∨
α∈I

τα are in the interval [ξM , χ (M)] . The result follows straightforwardly from

the above proposition. �

The next proposition is an immediate result from the definitions.

Proposition 12. Let τ ∈ R-tors and M ∈ Mod-R. M is τ -cocritical if and
only if M is τ -full and uniform.

The following example shows that the injective hull of a full module is not
always a full module.

Example 13. Let R = Z, p ∈ R be a prime number and M = Zp. M is
simple and χ (Zp)-torsion free module, so it is a χ (Zp)-full module. However,
E (Zp) = Zp∞ is not full since for every essential submodule Zpk we have that
Zp∞

/
Zpk � Zp∞ /∈ Tχ(Zp∞). Notice that in this case ξZp∞ � χ (Zp∞) , since

ξZp∞ = ξ (Zp∞) . �

Remark 14. In the following proposition, which was proved in [17], condition
2. is Zelmanowitz’ definition of polyform module. So, this proposition says
that a module M ∈ Mod-R is full if and only if M is polyform.

Proposition 15. Let M ∈ Mod-R. The following conditions are equivalent.

1. M is full.
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2. For every submodule N of M and every morphism f : N → M such
that ker (f) ≤

ess
N, we have that f = 0.

Proposition 16. Let τ ∈ R-tors and M ∈ Mod-R a τ -full module. If N ∈
Mod-R is such that χ (N) = χ (M) , then N contains a τ -full submodule.

Proof Since M is τ -full, τ ∈ [ξM , χ (M)] by Proposition 10, and thus τ ≤
χ (N) . As M ∈ Fχ(N), then HomR (M, E (N)) �= 0. Let 0 �= f : M → E (N) ,
then there is a non-zero submodule M ′ ≤ M such that 0 �= f (M ′) ≤ N.
Therefore f (M ′) ∈ Fχ(N) ⊆ Fτ . By Proposition 3, we can conclude that f (M ′)
is τ -full. �

Proposition 17. Let τ ∈ R-tors and M a τ -full R-module. Then the following
conditions hold.

1. Eτ (M) is a τ -full R-module.

2. Eτ (M) is the greatest τ -full submodule of E (M).

Proof 1. It is a consequence of [8, Proposition 15.4].
2. Let K be a τ -full submodule of E (M) , then K �= 0 and thus K∩M �= 0.

Moreover K∩M ≤
ess

K. Note that K /K ∩ M ∈ Tτ since K is a τ -full R-module.

As E (M)/Eτ (M) ∈ Fτ , then the morphism f : K /K ∩ M → E (M)/Eτ (M)
defined by f ((x + K ∩ M)) = x + Eτ (M) must be zero. Hence K ⊆ Eτ (M) .
�

Let τ ∈ R-tors. A right R-module M is said to be absolutely τ -pure if it is
τ -torsion free and τ -injective.

Remark 18. Let M ∈ Mod-R and σ = χ (M)∧χ (E (M) /M ) . As σ ≤ χ (M) ,
then M ∈ Fσ ; on the other hand σ ≤ χ (E (M) /M ) implies that E (M) /M ∈
Fσ , i.e. Eσ (M) /M = tσ (E (M) /M ) = 0, which means that M is σ-injective.
Therefore, M is absolutely σ-pure. So, if τ ∈ R-tors, then M is absolutely
τ -pure if and only if τ ∈ [ξ, χ (M) ∧ χ (E (M) /M )] . (See [8, Chapter 10] for
further details about absolutely τ -pure modules.)

From Proposition 10, we can conclude that for a full module M, if τ ∈ R-tors
is such that M is absolutely τ -pure and τ -full, then τ ∈ [ξM , χ (M) ∧ χ (E (M) /M )] .
However, it is not enough that M be a full module to have that ξM ≤ χ (M)∧
χ (E (M) /M ) , as we can see in the following example. Thus the converse is
not true in general.

Example 19. Let R = Z and M = Z, then E (M) = Q, M is τg-full,
χ (M) = χ (Z) = τg, χ (E (M) /M ) = χ (Q /Z) = ξ and ξM = ξZ = τg. Thus
ξM � χ (M) ∧ χ (E (M) /M ) . �



J. C. Pérez, M. G. Peláez and J. R. Montes 145

3 Structure of SubPτFI (M) and [τ, τ ∨ ξ (M)]

Let τ ∈ R-tors and M ∈ Mod-R. In this section we are going to study some
properties of the set {N ≤ M | N is τ -pure and fully invariant in M}, hence-
forth we shall denote it as SubPτ FI (M) .

We begin with a characterization of the τ -pure submodules of a τ -full R-
module.

Proposition 20. Let τ ∈ R-tors and M a τ -full R module. Then N ≤ M is
τ -pure in M if and only if N is essentially closed in M.

Proof ⇒] Let N be a τ -pure submodule of M If N ≤
ess

N ′ < M, then

N ′ /N ∈ Tτ since N ′ is τ -full; on the other hand M/N ∈ Fτ implies that
N ′/ N ∈ Fτ , hence, N ′ = N.

⇐] Let N ≤ M essentially closed in M and let N ′ ≤ M be a pseudocom-
plement of N in M. Then N must be also a pseudocomplement of N ′ in M.

Therefore we have an essential monomorphism N ′ � N ⊕ N ′/N
ess
↪→ M/ N.

So, we can deduce that M/N ∈ Fτ , since N ′ ∈ Fτ . �

Remark 21. We see, by Proposition 20, that the set SubPτ FI does not depend
on τ when M is a τ -full module, i.e. SubPτ FI (M) = {N ≤ M | N is fully
invariant and essentially closed in M}.
Theorem 22. Let τ ∈ R-tors, M ∈ Mod-R and ϕ : [τ, τ ∨ ξ (M)] → SubPτ FI (M)
defined by ϕ (σ) = tσ (M) . Then the following conditions hold.

1. If M is a τ -full module, then ϕ is injective.

2. If M is a τ -full and absolutely τ -pure module, then ϕ is bijective.

Proof 1. We first claim that for every σ ∈ [τ, τ ∨ ξ (M)] , σ = τ∨ξ (tσ (M)) .
Let N = tσ (M) , then τ ≤ τ ∨ ξ (N) ≤ σ ≤ τ ∨ ξ (M) . Assume that τ ∨
ξ (N) < σ; then there exists 0 �= K ∈ Mod-R such that K ∈ Tσ and K ∈
Fτ∨ξ(N). Therefore, K ∈ Fτ and K ∈ Fξ(N); so HomR (N, E (K)) = 0. On
the other hand, K ∈ Tσ ⊆ Tτ∨ξ(M) implies that HomR (M, E (K)) �= 0. Let
0 �= f ∈ HomR (M, E (K)) , then N ≤ ker (f) , and so there is a morphism
0 �= f : M/N → E (K) . It follows that there exists submodules H/N <
L/ N ≤ M/N and a monomorphism L/ H ↪→ K ∈ Tσ, then L/ H ∈ Tσ.
Since L/ N ≤ M/ N = M/ tσ (M) ∈ Fσ , it follows that H/ N ≤

ess
L/ N by [8,

Proposition 5.7], thus H ≤
ess

L. As L is τ -full, we have that L/H ∈ Tτ ; but

this is a contradiction because L/ H ↪→ K ∈ Fτ . Hence, σ = τ ∨ ξ (tσ (M)) .
Now, let σ, σ′ ∈ [τ, τ ∨ ξ (M)] such that ϕ (σ) = ϕ (σ′) , then tσ (M) =

tσ′ (M) . Using the above equality, we have that σ = τ ∨ ξ (tσ (M)) = τ ∨
ξ (tσ′ (M)) = σ′. Therefore, ϕ is injective.
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2. By 1. we already know that ϕ is injective. Now, let N ∈ SubPτ FI (M)
and σ = τ ∨ ξ (N) . We claim that tσ (M) = N.

As tσ (M) is τ -pure in M, there exists L ≤ M such that M = tσ (M) ⊕ L
by [8, Proposition 15.6]. Thus, tσ (M) is absolutely τ -pure and τ -full. Notice
that N ≤ tσ (M), even more, N is τ -pure in tσ (M) . Then N is a direct
summand of tσ (M); so there exists K ≤ tσ (M) such that tσ (M) = N ⊕ K.
Inasmuch as K � tσ (M)/ N ∈ Tσ ∩ Fτ , we have that K �∈ Fξ(N); therefore
HomR (N, E (K)) �= 0. Let 0 �= g : N → E (K) and let N0 = g−1 (K) , then
there is a morphism f : N /N0 → E (K)/K defined by f (x + N0) = g (x)+K.
We can see that f is a monomorphism. On the other hand, as K is a direct
summand of tσ (M) , K is τ -injective from where we get that E (K)/ K ∈ Fτ ;
hence, N /N0 ∈ Fτ . Since N is a τ -full and absolutely τ -pure module, there
exists N1 ≤ N such that N = N0⊕N1 . In this way we have that M = tσ (M)⊕
L = N ⊕ K ⊕ L = N0 ⊕ N1 ⊕ K ⊕ L. Consequently, unless K = 0, it can be
defined an endomorphism 0 �= h : M → M in such a way that 0 �= h (N) ⊆ K,
which is a contradiction since N is fully invariant. Thus N = tσ (M) , that is,
ϕ is surjective. �

Now, considering Remarks 18 and 21 we have the following corollary.

Corollary 23. Let τ ∈ R-tors. If M is a τ -full and absolutely τ -pure R-module
, then [σ, σ ∨ ξ (M)] � SubPτ FI (M) ∀σ ∈ [ξM , χ (M) ∧ χ (E (M)/M)], where
ξM = ξ({ M/N | N ≤

ess
M}).

Corollary 24. If M is a τ -full and absolutely τ -pure module, then ϕ is an
isomorphism of complete lattices.

Proof It follows from the fact that ϕ preserves order and arbitrary meets. �

The following examples show that the hypothesis of M be τ -full in Theorem
22,1 is not superfluous, neither the hypothesis of M be absolutely τ -pure in
Theorem 22,2.

Example 25. Let R = Z, τ = ξ and M = Z, then [ξ, ξ (Z)] = Z-tors. In this
case M is not ξ-full, nor ϕ : Z-tors→ SubPτ FI (Z) such that ϕ (σ) = tσ (Z) is
an injective function, since tσ (Z) = 0 ∀σ ∈ Z-tors with σ < χ.

Example 26. Let F be a field, A = F (ℵ0) and P the subalgebra of F ℵ0

generated by 1 and A, where 1 denotes the unitary element in the ring F ℵ0.
Note that A is a maximal ideal of P, and that A ∈ Mod-P is faithful and
semisimple. We can see F as a unital subring of P if we consider F0 =
{ (a) = (a, a, a, ...)| a ∈ F } . Now, let Q = M2×2 (P ) , the ring of all 2 × 2

matrices over P and R the subring
(

P A
0 F0

)
of Q. The minimal right ideals

of R are of the form
(

0 S
0 0

)
where S ≤ A is a minimal ideal of P , and
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(
0 0
0 F0

)
. So, the right socle of R is socr (R) =

(
0 A
0 F0

)
; it is an es-

sential right ideal of R since for every 0 �= r ∈ R there is an element s ∈ R
such that 0 �= rs ∈ socr (R) . Moreover, if x ∈ R is such that x (socr (R)) = 0,
then x = 0; thus, R is a right non-singular R-module. Hence R ∈ Fτg , which
means that R is τg-full. On the other hand, R is not absolutely τg-pure since

M =
(

F ℵ0 A
0 F0

)
∈ Mod-R and R ≤

ess
M.

Now, set H =
(

P A
0 0

)
. H is a two-sided ideal of R, so it is a τg-

torsion-free fully invariant submodule of R; furthermore, H is τg-pure in R since

R = H ⊕
(

0 0
0 F0

)
as a right R-module. Let x =

(
0 e1

0 0

)
∈ H with

e1 = (1, 0, 0, ...) , and y =
(

0 0
0 1

)
∈ R − H. We can verify that (0 : x) =

{r ∈ R| xr = 0} = H = {r ∈ R| yr ∈ H} = (H : y) ; hence, H �= tσ (R) ∀σ ∈
R-tors by [11, Corollary of Proposition 2.1], specially, H �= tσ (R) for every
σ ∈ [τg, τg ∨ ξ (R)] = [τg, χ] . �

Now for τ, σ ∈ R-tors, we shall write τ � σ if τ ≤ σ and for every α ∈ R-
tors such that σ ∧ α ≤ τ , we have that α ≤ τ.

Using this, we are going to prove that when we have a τ -full R-module, the
interval [τ, τ ∨ ξ (M)] is a Boolean lattice.

Definition 27. The Cantor-Bendixson derivative on R-tors is the function dcb

from R-tors to itself given by dcb (τ ) = ∧ {σ| τ � σ} .

The following result has been already stated in [9, Proposition 1.10]; here
we give a different proof.

Proposition 28. If τ ∈ R-tors and M is τ -full, then τ ∨ ξ (M) ≤ dcb (τ ) .

Proof Let M be a τ -full module. We are going to prove that τ ∨ ξ (M) ≤ ρ,
for every ρ ∈ R-tors such that τ � ρ.

Assume that there is a ρ ∈ R-tors such that τ � ρ and τ ∨ξ (M) �≤ ρ. Since
τ ≤ ρ, then M /∈ Tρ. Let M = M /tρ (M) , then M �= 0 and M ∈ Fρ ⊆ Fτ ; so
M is τ -full and ρ-full, because M is τ -full. As M ∈ Fρ, then τ ∨ ξ

(
M

) �≤ ρ.

Now, we claim that ρ ∧ ξ
(
M

) ≤ τ. Let L ∈ Tρ∧ξ(M), then L ∈ Tρ and L ∈
Tξ(M); so HomR

(
M, E (L)

) �= 0. Then there exists submodules H ⊂ T ⊆ M

and a monomorphism T /H ↪→ L ∈ Tρ, which means that T /H ∈ Tρ. As T ∈
Fρ, we have that H ≤

ess
T . Since M is τ -full, T is τ -full, and then T /H ∈ Tτ .

Hence tτ (L) �= 0. So we have proved that any
(
ρ ∧ ξ

(
M

))
-torsion module has

non-zero τ -torsion. So, if L �= tτ (L) , 0 �= L′ = L /tτ (L) ∈ Tρ∧ξ(M), then L′

must have non-zero τ -torsion, which is impossible. Therefore L ∈ Tτ . It proves
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that ρ ∧ ξ
(
M

) ≤ τ, then ξ
(
M

) ≤ τ because τ � ρ; but this is a contradiction
since τ ≤ ρ and τ ∨ ξ

(
M

) �≤ ρ. �

Corollary 29. Let τ ∈ R-tors and M a τ -full R-module. Then [τ, τ ∨ ξ (M)]
is a Boolean lattice.

Proof It follows from the fact that the interval [τ, dcb (τ )] is Boolean [9, Propo-
sition 1.2] and from the above result. �

Corollary 30. Let τ ∈ R-tors and M ∈ Mod-R. If M is τ -full and absolutely
τ -pure, then SubPτ FI (M) is a Boolean lattice.

Now, using the fact that [τ, τ ∨ ξ (M)] is a Boolean lattice and the bijective
correspondence between [τ, τ ∨ ξ (M)] and SubPτ FI (M) when M is a τ -full and
an absolutely τ -pure module, we shall establish some equivalent conditions
among the lattice [τ, τ ∨ ξ (M)] , the module M and the hereditary torsion
theory χ (M) . Also, considering that Eτ (M) is τ -full and absolutely τ -pure
module, when M is a τ -full, we shall give some properties of SubPτ FI (Eτ (M)) .

Proposition 31. Let τ ∈ R-tors, and let M ∈ Mod-R an absolutely τ -pure and
τ -full module. If K1, K2, . . . , Kn are τ -pure submodules of M, then

∑n
i=1 Ki is

absolutely τ -pure.

Proof It is enough to prove for n = 2. Let K1 and K2 be τ -pure submodules of
M, then there exists H1 and H2 submodules of M such that M = K1 ⊕H1 and
M = K2 ⊕ H2, by [8, Proposition 15.6]. Therefore K1 and K2 are absolutely
τ -pure and τ -full modules and K1 ∩ K2 is a τ -pure submodule of K1 and K2.
So, there exists L1 ≤ K1 and L2 ≤ K2 such that K1 = (K1 ∩K2) ⊕ L1 and
K2 = (K1 ∩ K2)⊕L2. Then K1 +K2 = (K1 ∩ K2)⊕L1 ⊕L2. As K1 ∩K2, L1

and L2 are τ -injective modules, K1 + K2 is an absolutely τ -pure module. �

Corollary 32. Let τ ∈ R-tors, and let M ∈ Mod-R an absolutely τ -pure and
τ -full module. If K1, K2, . . . , Kn are τ -pure submodules of M, then

∑n
i=1 Ki is

a τ -pure submodule of M .

Proof Since K1 + K2 is absolutely τ -pure, by the above proposition, and
M ∈ Fτ , then K1 + K2 is a τ -pure submodule of M, by [8, Proposition 10.1].
�

Proposition 33. Let τ ∈ R-tors, and let M ∈ Mod-R be an absolutely τ -pure
and τ -full module. If N ∈ SubPτ FI (M), then there exists N ′ ∈ SubPτ FI (M)
such that N ⊕ N ′ = M.

Proof Let N ∈ SubPτ FI (M) and σ = τ ∨ ξ (N) ∈ [τ, τ ∨ ξ (M)] . Since
[τ, τ ∨ ξ (M)] is Boolean, there exists σc ∈ [τ, τ ∨ ξ (M)] , the complement of σ
in this lattice. By Theorem 22, there is a τ -pure fully invariant submodule N ′

of M such that σc = τ ∨ ξ (N ′) . Then τ ∨ ξ (M) = σ ∨ σc = (τ ∨ ξ (N)) ∨
(τ ∨ ξ (N ′)) = τ ∨ ξ (N ⊕ N ′) .
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Now, we claim that N ⊕ N ′ = M. As N is a τ -pure submodule of M, there
exists K ≤ M such that M = N ⊕ K, by [8, Proposition 15.6]. This implies
that N ′ = tσc (M) = tσc (N) ⊕ tσc (K) = tσc (K) ≤ K. Similarly, as K is a
τ -full and absolutely τ -pure R-module, and N ′ is τ -pure in K, then N ′ is a
direct summand of K, that is, K = N ′ ⊕ K′ where K′ ≤ M. Therefore M =
N⊕N ′⊕K′ and thus N⊕N ′ ∈ SubPτ FI (M) . Since τ∨ξ (N ⊕ N ′) = τ∨ξ (M) ,
it must happen that K′ = 0; so N ⊕ N ′ = M. �
Remark 34. As we can see in the Example 26, the only complement of H in

R is
(

0 0
0 F0

)
/∈ SubPτg FI (R), so, we cannot avoid the hypothesis that M

be absolutely τ -pure in Proposition 33.

Remark 35. Let τ ∈ R-tors and M ∈ Mod-R such that M is a τ -full and
absolutely τ -pure module. Then the following conditions hold.

1. If K, N ∈ SubPτ FI (M) , then K ∩ N ∈ SubPτ FI (N).

2. If N ∈ SubPτ FI (M) , then SubPτ FI (N) ⊆ SubPτ FI (M) .

– If K ∈ SubPτ FI (N) , then there is K′ ∈ SubPτ FI (N) such that K ⊕
K′ = N, by Proposition 33, since N is also a τ -full and absolutely τ -
pure module. By the same Proposition we know that there is N ′ ∈
SubPτ FI (M) such that N ⊕N ′ = M ; thus K ⊕K′ ⊕N ′ = M. Therefore,
K is τ -pure in M. On the other hand, for any morphism f : M → M,
f (N) ⊆ N, then if we take the restriction to N, we have that f (K) ⊆ K.
Hence SubPτ FI (N) ⊆ SubPτ FI (M).

Considering this, from Theorem 22 we get a decomposition of a τ -full and
absolutely τ -pure module M as a direct sum of absolutely τ -pure fully invariant
submodules.

Proposition 36. Let τ ∈ R-tors and let M ∈ Mod-R be τ -full and absolutely
τ -pure. If N, K, K′ ∈ SubPτ FI (M) are such that N ⊕ K = N ⊕ K′ = M, then
K = K′.

Proof Let σ = τ ∨ ξ (N) . By Theorem 22, K = tρ (M) and K′ = tρ′ (M)
where ρ = τ ∨ ξ (K) and ρ′ = τ ∨ ξ (K′) . As M = N ⊕ K = N ⊕ K′, we
have that ρ and ρ′ are complements of σ in [τ, τ ∨ ξ (M)] . Since this interval
is Boolean, ρ = ρ′, which means that K = K′. �
Corollary 37. Let τ ∈ R-tors and let M ∈ Mod-R be τ -full and absolutely
τ -pure. If N, K, K′ ∈ SubPτ FI (M) are such that N ⊕ K = N ⊕ K′, then
K = K′.

Proof Let L = N ⊕ K, then L ∈ SubPτ FI (M) , by Corollary 32. Since
N ∈ SubPτ FI (M) , then N = N ∩ L ∈ SubPτ FI (L) . Analogously, it happens
that K, K′ ∈ SubPτ FI (L) . So, we can conclude that K = K′. �
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Now, we shall prove some results about the internal structure of a τ -full
and absolutely τ -pure module.

Theorem 38. Let N be a τ -full and absolutely τ -pure module such that
[τ, τ ∨ ξ (N)] is atomic. Then there is a unique decomposition of N as N =
K ⊕ K′, where K, K′ ∈ SubPτ FI (N) and satisfy the following properties:

a) K contains an independent family of uniform submodules {Uα}α∈A such
that

⊕
α∈A

Uα ≤
ess

K,

b) K′ does not contain any uniform submodule.

Proof Let {σi}i∈I be the set of atoms in [τ, τ ∨ ξ (N)] , then σi = τ ∨ ξ (Ni)
with Ni ≤ N. Now, let J = { j ∈ I| exists Uj uniform such that Uj ≤ Nj}.

If J = φ, then N does not contain a uniform submodule; so the claim is
satisfied. Let us suppose that J �= φ and let σ =

∨
j∈J

σj, then N = K⊕K′ where

K = tσ (N) , K′ = tσc (N) and σc =
∨

i∈I−J

σi. Therefore, K′ does not contain

uniform submodules and we claim that for each 0 �= H ≤ K there is a uniform
module U ≤ H. As H ∈ Tσ = T ∨

j∈J

σj
, there is j0 ∈ J such that H /∈ Fσj0

, where

σj0 = τ ∨ ξ (Uj0) with Uj0 ≤ Nj0 a uniform submodule. But H ∈ Fτ implies
that H /∈ Fξ(Uj0) which means that HomR (Uj0 , E (H)) �= 0. Since E (H) ∈ Fτ

and Uj0 is τ -cocritical, we have that there is a submodule 0 �= U ′
j0

≤ Uj0 and a
monomorphism U ′

j0
↪→ H. Whence, each non-zero submodule of K contains a

uniform submodule.
Now, let {Uα}α∈A a maximal independent family of uniform submodules of

K, then
⊕

α∈A

Uα ≤
ess

K because, as before, if there were a non-zero pseudocom-

plement of
⊕

α∈A

Uα it should contain a uniform submodule, which is impossible.

To see uniqueness, suppose that N = L ⊕ L′ with L, L′ ∈ SubPτ FI (N) be
such that they satisfy conditions a) and b), respectively. Then we have that
K = tσ (N) =tσ (L) ⊕ tσ (L′) = tσ (L) , by definition of σ; thus K ≤ L.

Let
{

U ′
β

}
β∈B

be an independent family of uniform submodules of L, such

that
⊕

β∈B

U ′
β ≤

ess
L; again, by definition of σ, we have that U ′

β ∈ Tσ ∀β ∈ B. As

L is τ -full, we conclude that L ∈ Tσ; thus L ≤ K. Therefore, L = K. Then,
we get that L′ = K′, by Proposition 36. This proves that the decomposition is
unique. �

Theorem 39. Let τ ∈ R-tors and let M be a τ -full and absolutely τ -pure R-
module. Then there exist unique submodules N, N ′ ∈ SubPτ FI (M) such that
M = N ⊕ N ′ with [τ, τ ∨ ξ (N)] atomic and [τ, τ ∨ ξ (N ′)] atomless.
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Proof Let {σi}i∈I be the set of atoms in [τ, τ ∨ ξ (M)] , then σi = τ ∨ ξ (Ni)
where Ni = tσi (M) . Let σ =

∨
i∈I

σi =
∨
i∈I

(τ ∨ ξ (Ni)) , then σ ∈ [τ, τ ∨ ξ (M)] .

Thus σ = τ ∨ ξ (N) with N = tσ (M) . Then there is N ′ ∈ SubPτ FI (M) such
that N ⊕N ′ = M, by Proposition 33. Observe that {σi}i∈I ⊆ [τ, τ ∨ ξ (N)] and
that

∨
i∈I

σi = τ ∨ ξ (N) , then [τ, τ ∨ ξ (N)] is atomic.

Now, we claim that [τ, τ ∨ ξ (N ′)] is atomless since any atom in this lattice
would be an atom in [τ, τ ∨ ξ (M)] , that is a σi for some i ∈ I.

It can be proved uniqueness with a similar argument as the one used in
Theorem 38. �

As a consequence of theorems 38 and 39 we have the following result.

Corollary 40. Let τ ∈ R-tors and let M be a τ -full and absolutely τ -pure R-
module. Then there exists N, N ′, N ′′ ∈ SubPτ FI (M) unique submodules of M
such that M = N ⊕N ′ ⊕ N ′′ where [τ, τ ∨ ξ (N ′′)] is atomless, N ′ contains no
uniform submodules and N is an essential extension of a direct sum of uniform
submodules.

4 Structure of [τ, τ ∨ ξ (M)] and decompositions

of the torsion theory χ (M)

As we mentioned in the Introduction, a right R-module M is said to be a τ -
A-module, with τ ∈ R-tors, if it is τ -torsion free and τ ∨ ξ (M) is an atom in
[τ, χ] . The next proposition involves this concept.

Proposition 41. Let M be a τ -full R-module. Then the following conditions
are equivalent.

1. τ ∨ ξ (M) is an atom in gen (τ ) .

2. Eτ (M) is a τ -A-module.

3. χ (M) is an irreducible element of R-tors.

4. The only τ -pure fully invariant submodules of Eτ (M) are 0 and Eτ (M) .

Proof 1. ⇔ 2. It follows from [6, Propositions 2.4, 2.9].

1. ⇒ 3. It follows from [6, Corollary 2.17] .

3. ⇒ 4. Suppose that 0 ≤ N ≤ Eτ (M) is a τ -pure fully invariant submod-
ule of Eτ (M). Then there is σ ∈ [τ, τ ∨ ξ (Eτ (M))] such that tσ (Eτ (M)) = N,
by Theorem 22. Now, by Corollary 29, σ has a complement in [τ, τ ∨ ξ (Eτ (M))]
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which we denote by σc. If N ′ = tσc (Eτ (M)) , then Eτ (M) = N⊕N ′, by Propo-
sition 33. It means that χ (M) = χ (Eτ (M)) = χ (N ⊕ N ′) = χ (N) ∧ χ (N ′) .
Since χ (M) is irreducible, χ (M) = χ (N) or χ (M) = χ (N ′) .

If χ (M) = χ (N) , then N ′ ∈ Fχ(N); so there exists a submodule 0 �= N ′′ ≤
N ′ and a non-zero morphism f : N ′′ → N such that 0 �= f (N ′′) ∈ Tσ ∩ Tσc =
Tσ∧σc = Tτ . Then f (N ′′) ∈ Tτ ∩ Fτ = 0, which is a contradiction unless
N ′ = 0, and thus N = Eτ (M) . Similarly, if χ (M) = χ (N ′) , we prove that
N = 0.

4. ⇒ 1. Let ρ ∈ [τ, τ ∨ ξ (M)] = [τ, τ ∨ ξ (Eτ (M))]. If N = tρ (Eτ (M)) ,
then N is a τ -pure fully invariant submodule of Eτ (M) . Therefore, N = 0 or
N = Eτ (M) . Hence ρ = τ or ρ = τ ∨ ξ (M) , respectively, by Theorem 22. �

Theorem 42. Let M be a τ -full R-module. Then the following conditions are
equivalent.

1. [τ, τ ∨ ξ (M)] is an atomic lattice.

2. There is an independent family {Mi}i∈I of submodules of M such that
Mi is a τ -A-module for every i ∈ I, τ ∨ ξ (Mi) �= τ ∨ ξ (Mj) if i �= j, and⊕
i∈I

Mi ≤
ess

M.

3. χ (M) decomposes as the meet of an irredundant family of torsion theories
{χ (Ei)}i∈I , where Ei ≤ M and Ei is a τ -A-module ∀ i ∈ I.

4. χ (M) uniquely decomposes as the meet of an irredundant family of irre-
ducible torsion theories.

5. If 0 �= N ≤ M, then χ (N) uniquely decomposes as the meet of an irre-
dundant family of irreducible torsion theories.

Proof 1. ⇒ 2. Let {σi}i∈I be the set of atoms in [τ, τ ∨ ξ (M)] . If Mi =
tσi (M) , then σi = τ ∨ ξ (Mi) and Mi is a τ -A-module, since σi is an atom.
We claim that {Mi}i∈I is an independent family in M . Let j ∈ I and N =

Mj ∩
(∑

i �=j Mi

)
, then N ∈ Tσj∧ ∨

i�=j

σi
= T ∨

i�=j

(σj∧σi) = Tτ , because σj ∧ σi = τ

∀ i �= j. As N ≤ M ∈ Fτ , we have that N ∈ Tτ ∩ Fτ = {0} , so N = 0.
Therefore, {Mi}i∈I is an independent family of submodules of M which are
τ -A-modules. Also, by construction, τ ∨ ξ (Mi) �= τ ∨ ξ (Mj) if i �= j. Now, we
just need to prove that

⊕
i∈I

Mi ≤
ess

M.

Suppose that
⊕
i∈I

Mi is not an essential submodule of M. Let 0 �= K ≤ M a

pseudocomplement of
⊕
i∈I

Mi, then τ∨ξ (K) ∈ [τ, τ ∨ ξ (M)] . Since [τ, τ ∨ ξ (M)]

is a locally atomic lattice, then τ ∨ ξ (K) =
∨

j∈J

σj for some J ⊆ I. Thus,
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K ∈ T ∨
j∈J

σj
, which means that there is j0 ∈ J such that K /∈ Fσj0

. But

tσj0
((

⊕
i∈I

Mi)⊕K) = tσj0
(
⊕
i∈I

Mi)⊕tσj0
(K) ≤ tσj0

(M) = Mj0 , then tσj0
(K) = 0.

Hence K = 0, which is a contradiction. Therefore
⊕
i∈I

Mi ≤
ess

M.

2. ⇒ 3. Let {Mi}i∈I be an independent family of submodules of M such
that Mi is a τ -A-module for every i ∈ I, τ ∨ ξ (Mi) �= τ ∨ ξ (Mj) if i �= j, and⊕
i∈I

Mi ≤
ess

M. The last condition implies that
∧
i∈I

χ (Mi) = χ(
⊕
i∈I

Mi) = χ (M) .

As τ ∨ ξ (Mi) �= τ ∨ ξ (Mj) if i �= j, then χ (Mi) �= χ (Mj) if i �= j, by [6,
Corollary 2.16]. Now, suppose that there exists j ∈ I such that

∧
i �=j

χ (Mi) =

χ (M) . Then Mj ∈ Fχ(M) = F ∧
i�=j

χ(Mi); so there is k ∈ I such that k �= j and

Mj /∈ Tχ(Mk). Therefore, HomR (Mj , E (Mk)) �= 0, which means that there are
submodules M ′′

j < M ′
j ≤ Mj and a monomorphism M ′

j

/
M ′′

j ↪→ Mk ∈ Fτ .

Hence, by [6, Proposition 2.4], τ ∨ ξ (Mj) = τ ∨ ξ
(
M ′

j

)
= τ ∨ ξ

(
M ′

j

/
M ′′

j

)
=

τ ∨ ξ (Mk) , that is a contradiction.

3. ⇒ 1. Let χ (M) =
∧
i∈I

χ (Ei) be an irredundant meet, with Ei a τ -A-

module and Ei ≤ M for every i ∈ I. We are going to prove that τ ∨ ξ (M) is a
join of atoms.

Let σi = τ∨ξ (Ei) and Mi = tσi (M) , then σi = τ∨ξ (Mi) , by Theorem 22,1;
furthermore, if N = Mj ∩

∑
i �=j Mi for some j ∈ I, then N ∈ Tσj∧(

∨
i�=j

σi) =

T ∨
i�=j

(σi∧σj) = Tτ , i.e. N ∈ Tτ ∩ Fτ = {0} ; thus the sum
∑

i∈I Mi is direct.

Now we claim that τ∨ξ(
⊕
i∈I

Mi) = τ ∨ξ (M) . Let σ = τ∨ξ(
⊕
i∈I

Mi) and sup-

pose that σ < τ ∨ ξ (M) . As σ ∈ [τ, τ ∨ ξ (M)] , there exists σc ∈ [τ, τ ∨ ξ (M)] ,
and σc = τ ∨ ξ (K) where K = tσc (M) , by Theorem 22. However, K ≤ M
implies that K ∈ Fχ(M) = F ∧

i∈I

χ(Ei) = F ∧
i∈I

χ(Mi), by [6, Corollary 2.16]. Then

there exists j ∈ I such that K /∈ Tχ(Mj); so there are submodules K′′ < K′ ≤ K
and a monomorphism K′ /K′′ ↪→ Mj ∈ Tσ. But as K ∈ Tσc , K′ /K′′ ∈
Tσc ∩ Tσ = Tτ . Therefore, K′ /K′′ ∈ Tτ ∩ Fτ = {0} , since Mj ∈ Fτ ; thus
K′ = K′′ which is a contradiction; whence K = 0 and σ = τ ∨ ξ (M). Hence,
τ ∨ ξ (M) = τ ∨ ξ(

⊕
i∈I

Mi) =
∨
i∈I

(τ ∨ ξ (Mi)) is a join of atoms, which is equiv-

alent to [τ, τ ∨ ξ (M)] be atomic.

3. ⇒ 4. The decomposition of χ (M) as a meet of an irredundant family of
irreducible torsion theories is an immediate consequence of 3, since if χ (M) =∧
i∈I

χ (Ei) , where Ei ≤ M and Ei is a τ -A-module ∀ i ∈ I, which means that

χ (Ei) is an irreducible element of R-tors [6, Corollary 2.17].
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Now, suppose that there is {αj}j∈J ⊆ R-tors an irredundant family of irre-
ducible torsion theories such that χ (M) =

∧
j∈J

αj. For any i ∈ I, Ei ∈ Fχ(M) =

F ∧
j∈J

αj
, which means that there is a ji ∈ J such that Ei /∈ Tαji

. Let αji =

χ (Lji ) with Lji an injective R-module. Then HomR (Ei, Lji) �= 0; thus there
are submodules E′′

i < E′
i ≤ Ei and a monomorphism E′

i/ E′′
i ↪→ Lji . Whence

there is a τ -full submodule Ni of Lji . Let us take N =
∑{Nγ ≤ Lji | Nγ is τ -full}

and K ≤ Lji such that N⊕K ≤
ess

Lji . Then χ (N)∧χ (K) = χ (Lji ) = αji . Since

αji is irreducible, αji = χ (N) or αji = χ (K) . If αji = χ (K) , using a similar
argument as above, we can prove that there is a τ -full submodule of K. But this
is not possible, by definition of N. Then χ (N) = χ (Lji) = αji ; thus Eτ (N)
is a τ -A-module, by Proposition 41. Since every submodule of a τ -A-module
cogenerates the same, we have that χ (Ni) = χ (Eτ (N)) = χ (N) = χ (Lji) ;
but χ (Ni) = χ (Ei) implies that χ (Ei) = αji . Therefore, since both meets are
irredundant we have that for each χ (Ei) there is an αji such that χ (Ei) = αji .

4. ⇒ 3. Let χ (M) =
∧
i∈I

χ (Ei) where χ (Ei) is irreducible for every i ∈ I.

We can assume that each Ei is injective.
We claim that M /∈ Tχ(Ei), ∀ i ∈ I. Suppose that there is j ∈ I such

that M ∈ Tχ(Ej). Since M ∈ Fχ(M) = F ∧
i∈I

χ(Ei) = Fχ(Ej)∧(
∧

i�=j

χ(Ei)), then

M ∈ F ∧
i�=j

χ(Ei); therefore,
∧
i �=j

χ (Ei) ≤ χ (M) . But, as
∧
i∈I

χ (Ei) is an irre-

dundant meet, χ (M) =
∧
i∈I

χ (Ei) <
∧
i �=j

χ (Ei) which is a contradiction. Hence,

M /∈ Tχ(Ei), ∀ i ∈ I. It means that HomR (M, Ei) �= 0; then there are sub-
modules Ki < Ni ≤ M and a monomorphism Ni /Ki ↪→ Ei. Since M is τ -full
and Ni /Ki ∈ Fχ(Ei) ⊆ Fτ , Ni /Ki is τ -full; then each Ei contains a τ -full
submodule.

Let Mi =
∑ {L ≤ Ei| L is τ -full} , then Mi is the greatest τ -full submodule

of Ei [14, Proposition 1.7]. We claim that χ (Mi) = χ (Ei) ∀ i ∈ I. If Mi ≤
ess

Ei, the assertion is satisfied. If Mi is not essential in Ei, then there is 0 �=
Ki ≤ Ei a pseudocomplement of Mi in Ei; then Mi ⊕ Ki ≤

ess
Ei. Therefore,

χ (Mi) ∧ χ (Ki) = χ (Mi ⊕ Ki) = χ (Ei) . Since χ (Ei) is irreducible, we have
that χ (Ei) = χ (Mi) or χ (Ei) = χ (Ki) .

If χ (Ei) = χ (Ki) , then M /∈ Tχ(Ki), from what we proved above. Then,
with a similar argument than the one used for Ei, Ki contains a τ -full module.
But this is impossible, by the definition of Mi. Therefore, χ (Ei) = χ (Mi) .

Now, since Mi is τ -full and χ (Ei) is irreducible we have that Eτ (Mi) is
a τ -A-module, by Proposition 41. Hence χ (M) =

∧
i∈I

χ (Ei) =
∧
i∈I

χ (Mi) is

an irredundant meet of torsion theories cogenerated by τ -A-modules. Aside,
Mi ∈ Fχ(M) implies that HomR (Mi, E (M)) �= 0, which means that there are
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submodules Ki < K′
i ≤ Mi and a monomorphism K′

i /Ki ↪→ M. If Ni =
K′

i /Ki , then Ni ≤ M is a τ -A-module with χ (Ni) = χ (Mi) . Therefore,
χ (M) =

∧
i∈I

χ (Ni) is an irredundant meet of torsion theories cogenerated by

τ -A-modules that are submodules of M.

1. ⇒ 5. Let N ≤ M, then N is τ -full. Since [τ, τ ∨ ξ (N)] ⊆ [τ, τ ∨ ξ (M)] ,
then [τ, τ ∨ ξ (N)] is also an atomic lattice. Hence, χ (N) uniquely decomposes
as the meet of an irredundant family of irreducible torsion, by 1. ⇒ 4.

5. ⇒ 4. It is immediate considering N = M. �

Now, we fit the last theorem in case the decomposition of χ (M) can be
done with strongly irreducible torsion theories. In order to do this, we give
some concepts.

Definition 43. 1. A non-zero right R-module M is decisive if M is τ -
torsion or τ -torsion free for every τ ∈ R-tors.

2. Let τ ∈ R-tors and M ∈ Mod-R. M is a τ -D-module if M is a τ -A-
module and there exists a decisive module D such that χ (M) = χ (D) .
See [7] for details about these modules.

The following technical result will be used to prove the next theorem.

Lemma 44. If N is a right τ -D-module, then N contains a decisive submodule.

Proof As N is a τ -D-module, there is a decisive module D such that χ (N) =
χ (D) . Then D /∈ Tχ(N), which means that HomR (D, E (N)) �= 0; hence, there
are submodules D′′ < D′ ≤ D and a monomorphism D′ /D′′ ↪→ N. We claim
that D′ /D′′ is decisive. Let α ∈ R-tors; since D is decisive, D ∈ Tα or
D ∈ Fα. In the first case, D′ ∈ Tα and thus D′ /D′′ ∈ Tα. In the second one,
α ≤ χ (D) = χ (N) = χ (D′ /D′′ ) which implies that D′ /D′′ ∈ Fα. �

Theorem 45. Let M be a τ -full R-module. Then the following conditions are
equivalent.

1. [τ, τ ∨ ξ (M)] is an atomic lattice, and every atom in this lattice can be
written as τ ∨ ξ (D) with D a decisive module.

2. There is an independent family {Mi}i∈I of submodules of M such that
Mi is τ -D-module for every i ∈ I, τ ∨ ξ (Mi) �= τ ∨ ξ (Mj) if i �= j, and⊕
i∈I

Mi ≤
ess

M.

3. χ (M) decomposes as the meet of an irredundant family of torsion theories
{χ (Di)}i∈I , where Di ≤ M and Di is a τ -D-module ∀ i ∈ I.

4. χ (M) uniquely decomposes as the meet of an irredundant family of strongly
irreducible torsion theories.
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5. If 0 �= N ≤ M, then χ (N) uniquely decomposes as the meet of an irre-
dundant family of strongly irreducible torsion theories.

Proof 1. ⇒ 2. Let {σi}i∈I be the set of atoms in [τ, τ ∨ ξ (M)] . If Mi =
tσi (M) , then σi = τ ∨ ξ (Mi) . By 1, σi = τ ∨ ξ (Di) with Di a decisive module.
As Di is decisive, Di ∈ Fτ ; thus Di is a τ -D-module. Therefore, χ (Mi) =
χ (Di) , by [6, Corollary 2.16]. So, Mi is a τ -D-module. Now, statement 2
follows with the same arguments of 1. ⇒ 2. of Theorem 42.

2. ⇒ 3. Let {Mi}i∈I be an independent family of submodules of M such
that Mi is τ -D-module for every i ∈ I, τ ∨ ξ (Mi) �= τ ∨ ξ (Mj) if i �= j, and⊕
i∈I

Mi ≤
ess

M. Then χ (Mi) = χ (Di) with Di decisive ∀ i ∈ I, and χ (M) =∧
i∈I

χ (Mi) =
∧
i∈I

χ (Di) , where χ (Di) �= χ (Dj) if i �= j by [6, Corollary 2.16].

Now, we can use the same argument as 2. ⇒ 3. of Theorem 42 to deduce the
irredundancy.

3. ⇒ 4. Let χ (M) =
∧
i∈I

χ (Di) be an irredundant meet with Di ≤ M

and Di a τ -D-module ∀ i ∈ I. As χ (Di) is strongly irreducible ∀ i ∈ I, by [8,
Proposition 32.7], this is an irredundant meet of strongly irreducible torsion
theories. The uniqueness of the decomposition can be proved with a similar
argument as the one used in 3. ⇒ 4. of the previous theorem.

4. ⇒ 1. By 4, we know that χ (M) =
∧
i∈I

χ (Di) with Di a decisive module

∀ i ∈ I. We can use the same argument as in the proof of 4. ⇒ 3. of Theorem
42 to prove that M /∈ Tχ(Di), ∀ i ∈ I. This means that Hom (M, E (Di)) �= 0
∀ i ∈ I which implies that there is a submodule Ni of Di which is τ -full and
χ (Ni) = χ (Di) is irreducible. Then Eτ (Ni) is a τ -A-module, by Proposition
41, in fact, Eτ (Ni) is a τ -D-module. Analogously, we can argue as at the end of
the proof of 4. ⇒ 3. of Theorem 42 to prove that there is a τ -D-module, D′

i ≤ M,
∀ i ∈ I such that χ (D′

i) = χ (Ni) . Therefore, we have that χ (M) =
∧
i∈I

χ (D′
i)

with D′
i ≤ M and D′

i a τ -D-module ∀ i ∈ I; hence, the lattice [τ, τ ∨ ξ (M)] is
atomic, by Theorem 42.

Now, let σ ∈ [τ, τ ∨ ξ (M)] be an atom. If N = tσ (M) , then σ = τ ∨ ξ (N)
and N ∈ Fχ(M) = F ∧

i∈I

χ(D′
i). Thus, considering that N /∈ Tχ(D′

j) for some j ∈
I, one can prove that χ (N) = χ

(
D′

j

)
. Then, N is a τ -D-module. Otherwise,

by Lemma 44 there exists a decisive submodule D of N and we conclude that
σ = τ ∨ ξ (N) = τ ∨ ξ (D) .

1. ⇒ 5. Let 0 �= N ≤ M. Then N is τ -full, and [τ, τ ∨ ξ (N)] ⊆ [τ, τ ∨ ξ (M)]
means that [τ, τ ∨ ξ (N)] is atomic, by 1. We also have, by 1, that each atom
of [τ, τ ∨ ξ (N)] can be written as τ ∨ ξ (D) with D a decisive module. Thence,
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χ (N) uniquely decomposes as the meet of an irredundant family of strongly
irreducible torsion theories, by 1. ⇒ 4.

5. ⇒ 4. It immediately holds. �
Now we present the case where the atoms in [τ, τ ∨ ξ (M)] can be written

as τ ∨ ξ (C) with C a τ -cocritical module.

Theorem 46. Let M be a τ -full R-module. Then the following conditions are
equivalent.

1. [τ, τ ∨ ξ (M)] is an atomic lattice, and every atom in this lattice can be
written as τ ∨ ξ (C) with C a τ -cocritical module.

2. Every non-zero submodule of M contains a uniform submodule.

3. χ (M) decomposes as the meet of an irredundant family of torsion theories
{χ (Ci)}i∈I , where Ci ≤ M and Ci is τ -cocritical ∀ i ∈ I.

4. χ (M) uniquely decomposes as the meet of an irredundant family of prime
torsion theories.

5. If 0 �= N ≤ M, then χ (N) uniquely decomposes as the meet of an irre-
dundant family of prime torsion theories.

Proof 1. ⇒ 2. Let 0 �= N ≤ M. Since [τ, τ ∨ ξ (N)] ⊆ [τ, τ ∨ ξ (M)] , then
[τ, τ ∨ ξ (N)] satisfies the same conditions of 1. for [τ, τ ∨ ξ (M)] .

Let σ ∈ [τ, τ ∨ ξ (N)] be an atom, then σ = τ ∨ ξ (tσ (N)) = τ ∨ ξ (C)
with C a τ -cocritical module, by 1. and [6, Proposition 2.4, 2.]. Therefore,
tσ (N) ∈ Tτ∨ξ(C), which means that tσ (N) �∈ Fξ(C). Thus, there is a morphism
0 �= f : C → E (tσ (N)) . So, as C is τ -cocritical, there exists a submodule C ′ of
C and a monomorphism C ′ ↪→ tσ (N) . Hence, N has a τ -cocritical submodule
and consequently it has a uniform submodule.

2. ⇒ 3. As M has a uniform submodule, there must exist a maximal inde-
pendent family {Uλ}λ∈Λ of uniform submodules of M. We claim that

⊕
λ∈Λ

Uλ is

essential in M, since if it was no essential there should be a pseudocomplement
K �= 0 of

⊕
λ∈Λ

Uλ in M, which should contain a uniform submodule. This is

not possible. So, by [6, Corollary 2.6] the family {Uλ}λ∈Λ satisfies condition
2 of Theorem 42 which implies that χ (M) can be expressed as an irredundant
meet χ (M) =

∧
i∈I

χ (Ei) with Ei a τ -A-module and Ei ≤ M for every i ∈ I. By

2., each Ei contains a uniform submodule Ci. Hence, Ci ≤ M is τ -cocritical
∀ i ∈ I and χ (M) =

∧
i∈I

χ (Ei) =
∧
i∈I

χ (Ci) is an irredundant meet.

Now, we can use similar arguments as in Theorem 45 to obtain the proofs
of 3. ⇒ 4. ⇒ 1. ⇒ 5. ⇒ 4. �
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Corollary 47. Let M be a τ -full R-module. If [τ, τ ∨ ξ (M)] is an atomic
lattice, and every atom in this lattice can be written as τ ∨ ξ (C) with C a
τ -cocritical module, then

∑ {U ≤ M | U is uniform} ≤
ess

M.
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