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Abstract

We consider the minimum maximal flow problem, i.e., minimizing
the flow value among maximal flow, which is an NP-hard problem. This
problem is formulated as an optimization problem over the Pareto set
of a linear vector program. We use a d.c. optimization formulation of
the problem to obtain solution methods for the problem. Two solution
approaches are described. The first one is a global optimization method
based upon a branch-and-bound strategy. The second is a local search
technique based upon a d.c. optimization algorithm.

1 Introduction

The field of network flows has a rich and long history, tracing its roots back to
the work of Gustav Kirchof who first systematically analyzed electrical circuits
and other early pioneers of electrical engineering and mechanics. Such early
work established the foundation of the key ideas of network flow theory. The
key task of this field is to answer such questions as: which way to use a network
is most cost-effective? Maximum flow problem and minimum cost flow problem
are two typical problems of them. However, from the point of view of practical
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cases, we have another kind of problems which are inherently different from the
typical ones. For instance, Figure 1 portrays a network with edge-flow-capacity
1 (unit) on all edges, where node s is the source and node t is the sink. The
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Figure 1: Minimum maximal flow problem.

case (a) of the figure illustrates the controllable flow, i.e., we freely increase
and decrease each arc flow as long as the conservation equations and capacity
constraints are kept satisfied. On the other hand, if the given arc flow is fixed
and we cannot reduce it by some reasons, then the network cannot be exploited
at the most economical situation. In the case (a), if we reduce flow on the edge
x3 to 0, we can send 2 (unit) of flow between nodes s and t. But in the case (b),
where the flow on x3 is fixed at 1, the possible flow value we can send between
s and t is 1 (unit). The flow value we can send between s and t reduces from
2 (case (a)) to 1 (case (b)) due to the fact that the flow value on x3 is not
controllable. It means that the maximum flow value is not attainable in some
cases. For example, if the users on a highway network are disobedient, such a
case might occur.

From the point of view of modeling, the two cases are essentially different
even though there is a little resemblance between the two cases. If the flow is
controllable, we want to find an optimal value of flow, that is the case (a). In
the case (b), the flow value is also optimal in the sense that one can not reduce
the value on x3. The standard network-flow with the controllability has been
well studied for several decades. Without the controllability, many problems
in network-flow, e.g., the maximum flow problem, become more difficult. By
contrast with the standard network-flow theory, uncontrollable network-flow
theory is a new field, hence is still in its infancy.

In this paper we consider minimum maximal flow (mmf) problem which
finds out the minimum-value among the maximal flow of the network N. Iri [6]
gave the definition of uncontrollable flow (u-flow) and presented fundamental
problems related to u-flow. Although the concept of u-flow is quite different
from maximal flow and their relationship is not known yet so much, the optimal
value of minimum maximal u-flow of N is equal to the optimal value of mmf
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under some assumptions. In Iri’s profound essay, several fundamental theorems
and new research topics are described, but no algorithms for the corresponding
problems are proposed there. To the authors’ knowledge, no algorithms for mmf

were known until Shi-Yamamoto [12]. As pointed out in [14], Shi-Yamamoto’s
algorithm is not efficient enough. After that, some algorithms for solving the
problem were proposed by Shigeno-Takahashi-Yamamoto in [13] and others. In
this paper we focus on the development of algorithm for mmf in virtue of d.c.
optimization methods.

In next section 2, we present the problem and its equivalent formulations.
In section 3, we discuss some related properties of d.c. programming and
d.c. algorithm. Section 4 is devoted to describe two solution methods for the
problem. The first one is based upon a branch-and-bound strategy that can
find a global optimal solution to the problem. The second one is based upon
a d.c. optimization local search technique, called DCA. The latter can find
only a local solution but it works well for practical problems. Finally, a brief
concluding remark is given in Section 5.

2 Equivalent Formulations

Consider a directed network N(V, E, s, t, c), where V is the set of m nodes with
two designated nodes source s and sink t, E is the set of n arcs, and c is the
vector of capacities on arcs. A vector x = (. . . , xh, . . .) ∈ Rn is said to be a
feasible flow if it satisfies the conservation equations and capacity constraints:∑

h∈Δ+(i)

xh =
∑

h∈Δ−(i)

xh ∀i ∈ V \ {s, t}

0 ≤ x ≤ c < ∞, and c > 0.

where Δ+(i) and Δ−(i) are the sets of arcs which leaves and enters the node
i, respectively. We define the (m × n) matrix A = [aih]i∈V \{s,t}

h∈E , called the
node-arc incidence matrix, by

aih =

⎧⎪⎨⎪⎩
1 if h ∈ Δ+(i)
−1 if h ∈ Δ−(i)
0 otherwise.

The conservation equation is then simply written as Ax = 0. Let X denote the
set of feasible flow, i.e.,

X := {x | x ∈ Rn, Ax = 0, 0 ≤ x ≤ c < ∞}.
Obviously, X is a compact convex set. A vector z ∈ X is said to be maximal
flow if there does not exist x ∈ X such that x ≥ z and x �= z. Denote by f the
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flow value function which is defined for the source node by

f(x) =
∑

i∈Δ+(s)

xi −
∑

i∈Δ−(s)

xi.

Then, f is a linear function. Let d� ∈ Rn with

di =

⎧⎪⎨⎪⎩
1 if i ∈ Δ+(s)
−1 if i ∈ Δ−(s)
0 otherwise.

(2.1)

We see that f(x) = dx.
Throughout this paper Rk denotes the set of k-dimensional real column

vectors, Rk
+ = {x | x ∈ Rk; x ≥ 0} and Rk

++ = {x | x ∈ Rk, x > 0}. Rk

denotes the set of k-dimensional real row vectors, and R+
k and R++

k are defined
similarly. We use e to denote both a row vector and a column vector of ones,
and ei to denote the ith unit row vector with appropriate dimension. For a set
S, V (S) is the set of extreme points of S.

Denote by XM be the set of all maximal flows, i.e.,

XM := {z ∈ X | there does not exist x ∈ X such that x ≥ z and x �= z}.

The problem to be considered is given as

(P ) min{dx | x ∈ XM}. (2.2)

Denote by XE the efficient set of the vector optimization problem

vmax {x | x ∈ X}.

We recall that a point x∗ is an efficient point of X if there does not exist x̃ ∈ X
such that x̃i ≥ x∗

i ∀i = 1, . . . , n and x̃ �= x∗. In this case XM coincides with
the efficient set of X. Then (P ) is equivalent to the problem

min{dx | x ∈ XE}. (2.3)

2.1 Primal Formulation

Following Benson [3] we define a function r as

r(x) := max {e(y − x) | y ≥ x, y ∈ X} . (2.4)

It follows from [8] that
dom(r) = X + Rn

−.
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Clearly, r(x) ≥ 0 for all x ∈ X. It is easy to see that r is a concave function
on X. In fact, ∀β ∈ (0, 1) and x′, x′′ ∈ X we have

βr(x′) + (1 − β)r(x′′)
= β max{e(y − x′) | y ≥ x′, y ∈ X} + (1 − β)max {e(y − x′′) | y ≥ x′′, y ∈ X}
= βe(yr(x′) − x′) + (1 − β)e(yr(x′′) − x′′)
= e(βy′ + (1 − β)y′′ − (βx′ + (1 − β)x′′))
≤ max{e(y − (βx′ + (1 − β)x′′)) | y ≥ βx′ + (1 − β)x′′, y ∈ X}
= r(βx′ + (1 − β)x′′),

where yr(x) ∈ arg max{e(y − x) | y ≥ x, y ∈ X}. Moreover, by taking the dual
problem of the linear program defining r(x), we can see that r is piecewise-linear
on X. In fact, adding a slacks u and v such that⎛⎝ A 0 0

I I 0
I 0 −I

⎞⎠⎛⎝ y
u
v

⎞⎠ =

⎛⎝ 0
c
x

⎞⎠ , u, v ∈ Rn
+, ⇐⇒ Ay = 0, x ≤ y ≤ c.

Then for a given x ∈ Rn, r(x) is the optimal value of the following linear
program ∣∣∣∣∣∣∣∣∣∣

max ey − ex

s.t.

⎛⎝ A 0 0
I I 0
I 0 −I

⎞⎠⎛⎝ y
u
v

⎞⎠ =

⎛⎝ 0
c
x

⎞⎠ ,

y ≥ 0, u ≥ 0, v ≥ 0,

(2.5)

where I is an (n × n) unit matrix.

Lemma 1. If the capacity c is integral, then so is r(x) for any integer x and
feasible flow.

Proof This is trivial from (2.4). � It is easy to see that x ∈ X, r(x) = 0 if
and only if x ∈ XE . Hence Problem (2.2) can be rewritten equivalently as

min{dx | x ∈ X, r(x) ≤ 0}. (2.6)

Consider the following penalized problem for a fixed number t.

P (t) min{dx + tr(x) | x ∈ X}. (2.7)

If V (X) ⊂ {x ∈ X | r(x) ≤ 0} we set t∗ = 0, otherwise we set

t∗ =
max{dx | x ∈ X} − min{dx | x ∈ X}

min{r(x) | x ∈ V (X) \ XE}
=

max{dx | x ∈ X} − min{dx | x ∈ X}
min{r(x) | x ∈ V (X), r(x) > 0} ≥ 0. (2.8)

We have (see [9])
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Lemma 2. For every t > t∗, the solution-sets of problem (2.6) and (2.7)
coincide.

Note that if r(x) is integral for any integer x and feasible flow, then we can
take

t∗ = max{dx | x ∈ X} − min{dx | x ∈ X} (2.9)

Denote by δX the indicator of X, i.e.,

δX(x) =

{
0 if x ∈ X

+∞ if x /∈ X,

and g(x) := dx + δX(x),

h(x) :=
{ −t∗r(x) if x ∈ X

+∞ if x �∈ X.

Then g(x) and h(x) are convex and problem (P ) is rewritten as

(P ) min{dx + δX(x) − h(x)} = min{g(x) − h(x)}. (2.10)

This is a d.c. optimization problem. Hereafter, we use this primal d.c. forma-
tion for local search in DCA.

2.2 A Dual formulation

From a result of Philip [11] it follows that there exists a simplex Λ ⊆ Rn such
that a vector x is maximal flow if and only if there exists λ ∈ Λ such that

λx ≥ λy, ∀ y ∈ X. (2.11)

Thus the minimum-maximal flow problem under consideration can also be for-
mulated as ∣∣∣∣∣∣∣∣

min dx
s.t. λ ∈ Λ,

x ∈ X,
−λ(y − x) ≥ 0, ∀ y ∈ X.

(2.12)

This is a special case of mathematical programming with equilibrium varia-
tional constraints (see e.g. [7])

Let

ĝ(x, λ) :=
1
2
||x||2 +

1
2
‖λ‖2 + max

v∈X

{
vx + vλ − 1

2
||v||2

}
(2.13)
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and

ĥ(x, λ) :=
1
2
‖x + λ‖2 +

1
2
‖x‖2. (2.14)

Then we have the following result;

Lemma 3. The constraints in (2.12) can be cast into the form

λ ∈ Λ, x ∈ X, ĝ(x, λ) − ĥ(x, λ) = 0. (2.15)

Proof It is easy to see that

ĝ(x, λ) − ĥ(x, λ) = max
v∈X

{
λ(v − x) − 1

2
‖v − x‖2

}
.

Note that X is a convex set. Suppose that (2.11) holds for some x ∈ X and
some λ ∈ Λ. Then we have that

0 ≤ max
v∈X

{
λv − λx − 1

2
‖v − x‖2

}
≤ max{λv − λx | v ∈ X} = 0

which yields ĝ(x, λ) − ĥ(x, λ) = 0.

Suppose that ĝ(x, λ) − ĥ(x, λ) = 0 for some x ∈ X and λ ∈ Λ. Then we
have that

max
v∈X

{
λ(v − x) − 1

2
‖v − x‖2

}
= 0 (2.16)

which implies that λ(v − x) ≤ 0 for all v ∈ X. In fact, if we have some v0 ∈ X
such that λ(v0 − x) > 0 then we can take a point v̄ on line segment [v0, x]
satisfying ‖v̄−x‖ < ‖λ‖ cos θ, where θ is the acute angel between λ and v0−x.
Note that X is convex then v̄ ∈ X but λ(v̄−x)− 1

2‖v̄−x‖2 > 0. It contradicts
(2.16). � Note that the both functions ĝ and ĥ are convex and differentiable.

From this lemma, it follows that the problem can be formulated by the
following d.c. differentiable programming:

(DP )

∣∣∣∣∣∣∣∣
min dx
s.t. λ ∈ Λ,

x ∈ X,

ĝ(x, λ) − ĥ(x, λ) = 0.

(2.17)

From Shigeno-Takahashi-Yamamoto [13], we see that if N is acyclic then Λ in
(2.17) could be replaced by

{λ | λ ∈ R++
n , λ ≥ e, λe = n2}.

Then one can take the above set as Λ to design algorithms.
Another dual d.c. formulation can be found in [1].
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3 Properties of d.c programming and DCA

DCA (D.C algorithm) [10] is a prime-dual approach for finding local optimum
in d.c. programming. More detailed results on DCA can be found in such as
[9]. Some numerical experiments are reported that it finds a global minimizer
often if one chose a ’good’ start point.

Consider the following general problem:

(DCp) vp := inf{g(x) − h(x) | x ∈ Rn} (3.18)

where g(·), h(·) : Rn → R ∪ {−∞, +∞} are lower semicontinuous (lsc) convex
functions on Rn. It is easy to see that problem (P ) is a special case of (DCp)
as shown in (2.10) under the convention +∞ = +∞ − (+∞). The set of
ε-subgradient of g at point x0 are defined by

∂εg(x0) := {y ∈ Rn | g(x) ≥ g(x0) + 〈x − x0, y〉 − ε, ∀x ∈ X}

and ∂g(x0) := ∂0g(x0). The conjugate function of g is given by

g∗(y) := sup{〈x, y〉 − g(x) | x ∈ Rn}.

Notice that g and h are lsc, we see that g = g∗∗ and h = h∗∗ hold. Consider a
dual problem of (DCp):

(DCd) vd := inf{h∗(y) − g∗(y) | y ∈ Rn}. (3.19)

We have that vp = vd (see [9]).
For a pair (x, y), Fenchel’s inequality g(x) + g∗(y) ≥ 〈x, y〉 holds for any

proper convex function g and its conjugate g∗. If y ∈ ∂g(x) then g(x)+g∗(y) =
〈x, y〉.
Theorem 4. (Hiriart-Urruty ’88) A point x∗ is a globally optimal solution of
DCp if and only if ∂εh(x∗) ⊆ ∂εg(x∗) holds for every ε > 0.

For a given point, it is still very difficult to check its globally optimality by
Theorem 4. Let us consider some local properties of g − h. A point x� is said
to be local minimal of g − h if there exists a neighborhood N of x� such that

(g − h)(x) ≥ (g − h)(x�), ∀x ∈ N.

It is easy to see the following results (see also [9]).

Lemma 5. A point x∗ is local minimal for g − h, then ∂h(x�) ⊆ ∂g(x�).

Lemma 6. If h is a piecewise-linear convex function on dom(h) and ∂h(x�) ⊆
∂g(x�), then x� is local minimal for g − h.
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From the above Lemmas, we have

Theorem 7. Suppose that h is a piecewise-linear convex function on dom(h).
Then x� is local minimal for g − h if and only if ∂h(x�) ⊆ ∂g(x�).

Note that in problem (2.7) g(x) = dx and h(x) = −t∗r(x). Since X is
polyhedral, the function r(x) defined by (2.4) is piecewise linear concave. Now
we can describe the framework of DCA. This algorithm in general converges to
a stationary point which may be not a local minimum.

algorithm basidca

step 0: pick up a point x0 ∈ dom(h), calculate y0 ∈ ∂h(x0); k = 1;
step 1: calculate xk ∈ arg min{g(x) − (h(xk−1) + 〈x − xk−1, yk−1〉) | x ∈ Rn};

If ∂h(xk) ∩ ∂g(xk) �= ∅, stop; otherwise goto step 2.
step 2: calculate yk ∈ arg min{h∗(y) − (g∗(yk−1) + 〈xk, y − yk−1〉) | y ∈ Rn};

k := k + 1, goto step 1.

Lemma 8. Suppose that the points xk and yk are generated in basidca, then
xk ∈ ∂h∗(yk) and yk−1 ∈ ∂g(xk).

Proof Suppose that xk−1 and yk−1 are in hand. We have

min{g(x) − (h(xk−1) + 〈x − xk−1, yk−1〉) | x ∈ Rn}
= min{g(x) − 〈x, yk−1〉 | x ∈ Rn} − h(xk−1) + 〈xk−1, yk−1〉

(3.20)

and

min{h∗(y) − (g∗(yk−1) + 〈xk, y − yk−1〉) | y ∈ Rn}
= min{h∗(y) − 〈xk, y〉 | y ∈ Rn} − g∗(yk−1) + 〈xk, yk−1〉.

(3.21)

Thus, from Step 1 of basidca g(x) − 〈x, yk−1〉 ≥ g(xk) − 〈xk, yk−1〉 for all x,
and h∗(y) − 〈xk, y〉 ≥ h∗(yk) − 〈xk, yk〉 for all y. It yields yk−1 ∈ ∂g(xk) and
xk ∈ ∂h∗(yk). �

Lemma 9. The values g(xk) − h(xk) and h∗(yk) − g∗(yk) in basidca are
decreasing as iteration k increasing. If g−h is bounded below and basidca does
not terminate within finitely many iterations, then the sequence {xk}k=1,2,···
converges to a point x� such that ∂h(x�) ∩ ∂g(x�) �= ∅.

Proof By yk−1 ∈ ∂g(xk) in Lemma 8, we have g(xk)+ g∗(yk−1) = 〈xk, yk−1〉.
Then

g(xk) − h(xk) = 〈xk, yk−1〉 − g∗(yk−1) − h(xk) ≤ h∗(yk−1) − g∗(yk−1)
≤h∗(yk−1) + g(xk−1) −〈xk−1, yk−1〉≤g(xk−1) − h∗∗(xk−1)≤ g(xk−1)− h(xk−1).
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The statement that any cluster point x� of the sequence {xk} is a stationary
point, i.e., ∂h(x�) ∩ ∂g(x�) �= ∅, follows from (iii) of Theorem 3 in [9]. �

We recall that a point x� for which ∂h(x�) ∩ ∂g(x�) �= ∅ is called a stationary
point of f = g − h. Clearly, every local minimum of f is a stationary point.
Generally, when we have y0 ∈ ∂h(x�) and y0 /∈ ∂g(x�), then

h(x) ≥ h(x�) + 〈x − x�, y0〉 (3.22)

and 〈x�, y0〉 < g(x�) + g∗(y0). Let x0 := x�, by Step 1 of basidca we obtain
x1 such that y0 ∈ ∂g(x1). Then 〈x1, y0〉 = g(x1)+g∗(y0). From (3.22) we have
〈x0, y0〉 ≥ h(x0)−h(x1)+〈x1, y0〉. From the above inequalities and expressions
we see that

h(x0) − h(x1) + g(x1) + g∗(y0)
= h(x0) − h(x1) + 〈x1, y0〉
≤ 〈x0, y0〉
< g(x0) + g∗(y0).

It yields, ultimately, g(x1) − h(x1) < g(x0) − g(x0). It means that when
∂h(x0) �⊆ ∂g(x0) then we can find a smaller value at point x1.

4 Description of the Algorithm

Now we go back to problem (P ). In this section, we propose two algorithms for
solving the problem. The first algorithm is based upon the following general
framework of branch-and-bound strategy.

algorithm GF

step 0: initial setting and calculating,
step 1: branching operation,
step 2: local search for a smaller upper bound,
step 3: find a larger lower bound,
step 4: remove some regions, go to Step 1.

We describe the Step 1-3 following in detail.

branching operation (Step 1) A simplex-based division is usually exploited
in branch-and-bound method. At some step, a contemporary simplex S is di-
vided into two smaller ones S1 and S2 such that

int(S1) ∩ int(S2) = ∅, S1 ∪ S2 = S.

Taking into account the convergence of the algorithms we need the division to
be exhaustive, i.e., any nested sequence of simpleces generated by this bisection
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tends to a singleton, that is limk→∞∩∞
k=1Sk = x0 for some x0. To obtain an

exhaustive simplex-bisection, at each step k, we can devide a simplex Sk into
two smaller ones by bisecting, for example, the longest edge of Sk via its mid-
dpoint. The sequence {Sk}k=1,2,··· generated by this way is exhaustive (see eg.
[5]).

local search for a smaller upper bound (Step 2) There are many meth-
ods to do local search. Here we exploit basidca in this step. Even basidca

is not going to find a global optimum theoretically, but in many numerical
experiments, it finds a global optimum practically.

As shown in (2.10) problem (P ) can be rewritten as a d.c. programming
min{g − h}, then we can use basidca to approximate a stationary point that
will be used to improve the upper bound in the branch and bound algorithm.

find a larger lower bound (Step 3) Assume that li(x) is an affine function
such that li(vj) = h(vj) for all vertices vj ∈ V (Si). From the convexity of h(x),
we have li(x) ≥ h(x) for all x ∈ Si. Then
L(X ∩ Si) := min{dx + δX∩Si

(x) − li(x) | x ∈ Rn} ≤ min{dx + δX∩Si
(x) − h(x) | x ∈ Rn}.

Moreover, if V (Si) := {v1, · · · , vpi} is in hand, then it is easy to calculate
L(X ∩ Si) because

min{dx + δX∩Si
(x) − li(x) | x ∈ Rn}

= min

⎧⎨⎩ d

⎛⎝ pi∑
j=1

λjvj

⎞⎠ + t∗

⎛⎝ pi∑
j=1

λjr(vj)

⎞⎠ ∣∣∣∣∣∣
∑

j λj = 1, λj ≥ 0,

A(
∑pi

j=1 λjvj) = 0,0 ≤ ∑pi
j=1 λjvj) ≤ c

⎫⎬⎭ .

Based on the above discussion, we give a whole algorithm as follows.

algorithm mmfDCA

step 0: let ε > 0 and S0 be a simplex such that X ⊆ S0. let x0 := 0, y0 := (−1, · · · ,−1),
bU := basiDCA(X), bL := min{dx |Ax = 0,0 ≤ x ≤ c}, M := {S0}

step 1: select S0 ∈ M such that bL = L(X ∩ S0) and divide S0 into two
simpleces S1 and S2,

step 2: ui := basiDCA(X ∩ Si) for all i = 1, 2, if ui < bU then bU := ui,
step 3: if L(X ∩ Si) > bL then bL := L(X ∩ Si), if bU − bL ≤ ε then Stop, bU is an

ε−global optimal value.
step 4: M := {S ∈ M |L(X ∩ S) < bU}, if M = ∅ then Stop, bU = ui is an ε−global

optimal value, and xi, for which ui = basiDCA(X ∩ Si) is an ε−global optimal
solution. Otherwise go to Step 1.

The convergence of the above algorithm follows from the exhaustive parti-
tion. Here we omit the detailed proof. A general proof under such exhaustive-
ness can be found in many books, such as [5].

DCA for mmf problem It is well known that (see, e.g. [5, 4] and the
references therein) global optimization methods can solve only problems with
moderate sizes. Unfortunately, practical minimum maximal flow problems of-
ten are large-scale. For this case, a local optimization method should be used.
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In the rest part of this section we will use DCA for solving the minimum max-
imal flow problem by using its primal d.c. formulation described in Section 2.
Note that, in contrast to general case, for the minimum maximal flow problem
the exact penalty parameter t∗ can be easy to compute by (2.9) for integral
flow and by (2.8) for general case.

Now fixed t > t∗ and consider the unconstrained d.c. problem

min{dx + δX(x) + tr(x) | x ∈ X}

Let
g(x) := dx + δX(x), h(x) = −tr(x)

as before. Since −r(x) is the optimal value of the linear program∣∣∣∣∣∣∣∣∣∣
ex + min −ey

s.t.

⎛⎝ A 0 0
I I 0
I 0 −I

⎞⎠ ⎛⎝ y
u
v

⎞⎠ =

⎛⎝ 0
c
x

⎞⎠ ,

y ≥ 0, u ≥ 0, v ≥ 0,

(4.23)

the convex function −r(x) is subdifferentiable at every point x ∈ X. From
the duality of linear programming, by taking the dual problem of the linear
program defining −r(x), we have

(LP (x))

∣∣∣∣∣∣∣
−r(x) = ex + max

(
cη + xγ

)
s.t. A�ξ + η + γ ≤ −e,

η ≤ 0,−γ ≤ 0.

Let s(x) = (ξ(x), η(x), γ(x)) be an optimal solution of this linear program, and
s(z) = (ξ(z), η(z), γ(z)) be an optimal solution to LP (z). Then for any x ∈ X
and z ∈ X, we have cη(z) + zγ(z) ≥ cη(x) + zγ(x) and

−r(z) + r(x) = 〈z − x, e〉 + 〈η(z) − η(x), c〉 − xγ(x) + zγ(z)
≥ 〈z − x, e〉 + zγ(x) − zγ(z) − xγ(x) + zγ(z)
= 〈z − x, e + γ(x)〉.

It implies that e + γ(x) ∈ ∂(−r(x)). Hence t(e + γ(x)) ∈ ∂h(x). This vector
t(e+γ(x)) can serve as yk in Step 1 of basidca. We rewrite Algorithm basidca

with employing the character of mmf problem as follows.

algorithm dca4mmf

step 0: choose t > t∗, pick x0 ∈ X and solve Linear program (LP(x0)) to obtain an
optimal solution s(x0) = (ξ(x0), η(x0), γ(x0). Take y0 = t(e + γ(x0)), k = 1;

step 1: solve min{dx + tr(xk−1) − 〈yk−1, x − xk−1〉 |x ∈ X} to obtain an optimal
solution xk.
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solve (LP (xk)) to obtain an optimal solution s(xk) = (ξ(xk), η(xk), γ(xk));
take yk = t(e + γ(xk)).

step 2: if 〈d− yk, xk〉 = min{〈d− yk , x〉 | x ∈ X}, then terminate;
xk is a stationary point to the problem;
otherwise, k := k + 1 goto step 1.

Convergence
Since r is piecewise linear, by Theorem 7 and Lemma 9 we have the following

convergence result.

Theorem 10. If Algorithm dca4mmf terminates at some iteration k, then xk

is a stationary point. If the algorithm does not terminate in finitely many iter-
ations, it genetates an infinite sequence {xk} such that its every accumulation
point is a stationary point of Problem (P).

Proof If the algorithm terminate at some iteration k, we have 〈d − yk , x〉 ≥
〈d − yk , xk〉 for all x ∈ X. It yields dx ≥ dxk + 〈x − xk, yk〉 for all x ∈ X.
Thus yk ∈ ∂g(xk). Since yk = t(e + γ(xk)), we have yk ∈ ∂h(xk). Hence
yk ∈ ∂h(xk) ∩ ∂g(xk) which means that xk is a stationary point.

If the algorithm does not terminate in finitely many iterations, it generates
an infinite sequence {xk}. By Lemma 9 we see that every accumulation point
of the sequence is a stationary point of Problem (P). �

5 Conclusion

We have formulated the minimum maximal flow problem as a piecewise d.c.
optimization problem by using an exact penalty function technique. We have
proposed two solution-approaches to the latter problem. The first one is a
global optimization method based upon a branch-and-bound strategy. The
second one is a local search using a d.c. optimization method. The both
methods strongly employ special structure of the minimum maximal network
flow.
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