ON FILTER COREGULAR SEQUENCES AND CO-FILTER MODULES

Nguyen Thi Dung

Thai Nguyen University, Thai Nguyen, Vietnam xsdung0507@yahoo.com

Abstract

In this paper, we introduce the notion of filter coregular sequence to study a class of Artinian modules called co-filter modules.

1 Introduction

Throughout this paper, let (R, m) be Noetherian local ring and A an Artinian R-module. The notion of coregular sequence introduced by Ooshi [12] is an useful tool to study the structure of Artinian modules. Note that, for any Artinian R-module A, any coregular sequence of A in m can be extended to a maximal one and all the coregular sequences of A in m have the same length. This common length is called the width of A and denoted by Width A. In general we have N-dim $A \ge$ Width A, where N-dim A is the Noetherian dimension of A introduced by R.N. Roberts [13]. An Artinian R-module A is called co-Cohen-Macaulay if N-dim A = Width A. The class of co-Cohen-Macaulay modules plays a center role in the category of Artinian modules which is some sense the same as that of the class of Cohen-Macaulay modules in the category of Noetherian modules. Co-Cohen-Macaulay modules in the category of parameters (cf. [4]), by the coregularness of systems of parameters (cf. [16]), and by the vanishing of local homology modules $H_r^m(A)$ (cf. [3]).

The purpose of this paper is to introduce the notion of filter coregular sequence for Artinian modules as a generalization of the notion of coregular

Key words: Filter coregular sequence, co-filter modules, Noetherian dimension. (2000) AMS Mathematics Subject Classification: 13D45.

sequence, in order to study a class of Artinian modules called "co-filter modules" satisfying the condition that any system of parameters is a filter coregular sequence. In some sense, the notions of filter coregular sequences and co-filter modules for the category of Artinian modules are respectively dual to that of filter regular sequences and filter modules introduced by Cuong-Schenzel-Trung [6] for the category of Noetherian modules.

This paper is devided into 3 sections. In section 2, we introduce the notion of filter coregular sequence and give characterizations of filter coregular sequences (Theorem 2.3). Some characterizations of co-filter modules via systems of parameters (Propositon 3.2), reduced systems of parameters (Theorem 3.7) and generalized co-Cohen-Macaulay modules (Proposition 3.8) are shown.

2 Filter coregular sequence

We always assume that (R, m) is Noetherian local ring and A is an Artinian Rmodule. Before introducing the notion of filter coregular sequence for Artinian modules, we recall the notion of coregular sequence was defined by Ooishi [12]. A sequence x_1, \ldots, x_r of elements in m is said to be *coregular sequence* of A(or A-coregular sequence) if

$$x_i(0:_A (x_1,\ldots,x_{i-1})R) = 0:_A (x_1,\ldots,x_{i-1})R,$$

for all i = 1, ..., r. An element $x \in m$ is called A-coregular element if xA = A. It should be noted that $0:_A (x_1, ..., x_r)R \neq 0$. Therefore the notion of coregular sequence is defined in some sense dual to the known notion of regular sequence.

Definition 2.1. A sequence of elements x_1, \ldots, x_r in *m* is called a *filter coregular* (or *f*-coregular) sequence with respect to *A* if for all $i = 1, \ldots r$

$$x_i(0:_A (x_1, \dots, x_{i-1})R) \supseteq \bigcap_{n \ge 0} m^n(0:_A (x_1, \dots, x_{i-1})R).$$

An element $x \in m$ is called an *f*-coregular element if $xA \supseteq \bigcap_{n \ge 0} m^n A$.

Remark 2.2. It is clear that every coregular sequence is a filter coregular sequence. The converse is not true in general. For example, let k be a field, $S = k[x_1, \ldots, x_d]$ - the polynomial ring and $R = k[[x_1, \ldots, x_d]]$ - the ring of formal power series of d variables over k. Set $m = (x_1, \ldots, x_d)R$ - the unique maximal ideal of R. Let $B = k[x_1^{-1}, \ldots, x_d^{-1}]$ be the S-module of inverse polynomials. Then B is an Artinian S-module, (cf.[9]), and hence B has a natural structure as an Artinian R-module. Let n > 1 be an integer, set $C = R/(x_1^n, x_2, \ldots, x_d)R$ and $A = B \oplus C$. Note that B is co-Cohen-Macaulay and $\ell_R(C) < \infty$. Hence $m^n C = 0$ for $n \gg 0$. Let an element $0 \neq y \in m$. We can check that y is an f-coregular element, but it is not an A-coregular element.

The theory of secondary representation was introduced by Macdonald in [10] is in some sense dual to the more known theory of primary decomposition of Noetherian modules. Note that every Artinian R-module A has a secondary representation $A = B_1 + \ldots + B_n$ of p_i -secondary submodules B_i . The set $\{p_1, \ldots, p_n\}$ is independent of the minimal secondary representation of A and denoted by Att_R A. Note that $A \neq 0$ if and only if Att_R $A \neq \emptyset$. In this case, the minimal elements in Att_R A are exactly the minimal prime ideals containing Ann_R A. Moreover, if $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ is an exact sequence of Artinian R- modules, then Att $A'' \subseteq$ Att $A \subseteq$ Att $A' \cup$ Att A''. Denote by \hat{R} the *m*-adic completion of R. Then A has a natural struture as an \hat{R} -module and with this struture, each subset of A is an R-submodule of A if and only if it is an \hat{R} -submodule of A. Therefore A is an Artinian \hat{R} -module. Moreover, cf. [14],

$$\operatorname{Att}_{R} A = \{ \widehat{p} \cap R | \ \widehat{p} \in \operatorname{Att}_{\widehat{R}} A \}.$$

The following theorem is the main result of this section which gives us some characterizations of f-coregular sequences.

Theorem 2.3. Let $x_1, \ldots, x_r \in m$. The following conditions are equivalent: (i) x_1, \ldots, x_r is f-coregular with respect to A considering as an R-module. (ii) $x_i \notin p$ for all $p \in \operatorname{Att}_R(0:_A(x_1, \ldots, x_{i-1})R) \setminus \{m\}$, for all $i = 1, \ldots, r$. (iii) $\ell_R(0:_A(x_1, \ldots, x_{i-1})R)/x_i(0:_A(x_1, \ldots, x_{i-1})R) < \infty$. (iv) x_1, \ldots, x_r is an f-coregular sequence with respect to $\bigcap_{n \geq 0} m^n A$.

(v) x_1, \ldots, x_r is f-coregular with respect to A considering as an R-module.

Proof (i) \Leftrightarrow (ii) is obvious.

(i) \Leftrightarrow (iii). It is sufficient to prove for the case r = 1. Assume that x is an f-coregular element with respect to A. As (i) \Leftrightarrow (ii), we have $x \notin p$ for all $p \in \operatorname{Att}_R A \setminus \{m\}$. If $m \notin \operatorname{Att}_R A$, then x is a A-coregular element, i.e. xA = Aand hence $\ell_R(A/xA) = 0 < \infty$. If $m \in \operatorname{Att}_R A$, then $xA \supseteq m^n A$ for $n \gg 0$. Hence

$$\ell_R(A/xA) \leq \ell_R(A/m^nA) < \infty.$$

Convesely, assume that $\ell_R(A/xA) < \infty$. Then $m^t A \subseteq xA$ for some $t \in \mathbb{N}$. Hence x is an f-coregular element with respect to A.

(i) \Leftrightarrow (iv). Let $A = B_0 + B_1 + \ldots + B_k$ be a minimal secondary representation of A, where $B_0 = 0$ or m-secondary. Note that $m^t B_0 = 0$ for some $t \in \mathbb{N}$. Therefore

$$\bigcap_{n\geq 0} m^n A = B_1 + \ldots + B_k = m^t A_k$$

It follows that

$$0:_{B_1+\ldots+B_k} (x_1^t,\ldots,x_{i-1}^t)R + B_0 = 0:_A (x_1^t,\ldots,x_{i-1}^t)R.$$

It implies the two following equalities

$$x_i^t(0:_A(x_1^t,\ldots,x_{i-1}^t)R) = x_i^t(0:_{B_1+\ldots+B_k}(x_1^t,\ldots,x_{i-1}^t)R),$$

$$\bigcap_{n\geq 0} m^n(0:_A(x_1^t,\ldots,x_{i-1}^t)R) = \bigcap_{n\geq 0} m^n(0:_{B_1+\ldots+B_k}(x_1^t,\ldots,x_{i-1}^t)R).$$

Hence x_1^t, \ldots, x_r^t is an f-coregular sequence with respect to A if and only if x_1^t, \ldots, x_r^t is an f-coregular sequence with respect to $\bigcap_{n\geq 0} m^n A$, if and only if x_1, \ldots, x_r is an f-coregular sequence with respect to $\bigcap_{n\geq 0} m^n A$, if and only if x_1, \ldots, x_r is an f-coregular sequence with respect to A.

(i) \Leftrightarrow (v). It is sufficient to prove for the case r = 1. By using the equivalence of (i) and (ii) with note that

$$\operatorname{Att}_R A = \{ \widehat{p} \cap R | \ \widehat{p} \in \ \operatorname{Att}_{\widehat{R}} A \}$$

we get the result.

R. N. Roberts [13] introduced the notion of Krull dimension for Artinian modules. Later Kirby [9] changed the terminology of Roberts and referred to Noetherian dimension to avoid any confusion with Krull dimension for finitely generated modules. The *Noetherian dimension* N-dim_R A of A is defined as follows: if A = 0 we put N-dim A = -1. Then by induction, for an integer $d \ge 0$, we put N-dim_R A = d if N-dim_R A < d is false and for every ascending sequence $A_0 \subseteq A_1 \subseteq \ldots$ of submodules of A, there exists n_0 such that N-dim_R(A_{n+1}/A_n) < d for all $n > n_0$.

Note that if $0\longrightarrow A'\longrightarrow A\longrightarrow A''\longrightarrow 0$ is an exact sequence of Artinian $R-{\rm modules}$ then

$$\operatorname{N-dim}_{R} A = \max\{\operatorname{N-dim}_{R} A', \operatorname{N-dim}_{R} A''\}.$$

Moreover, N-dim_R A =N-dim_{\hat{R}} A. Therefore, without any confusion, we can write N-dim A replaced by N-dim_R A or N-dim_{\hat{R}} A. There are many nice properties of Noetherian dimension for Artinian modules which are in some sense dual to that of Krull dimension for finitely generated modules. For example, $\ell(0:_A m^n)$ is a polynomial for $n \gg 0$ and

N-dim_R
$$A = \deg \ell(0:_A m^n) = \min\{t: \exists x_1, ..., x_t \in m, \ell(0:_A (x_1, ..., x_t)R) < \infty\},\$$

(cf.[9], [13]). Let N-dim A = d. By the above fact, there exists a system (x_1, \ldots, x_d) of d elements in m such that $\ell(0 :_A (x_1, \ldots, x_d)R) < \infty$. Such a system is called a system of parameters of A. A system (x_1, \ldots, x_t) , where $t \leq d$, is called a part of a system of parameters of A if there exist elements x_{t+1}, \ldots, x_d such that (x_1, \ldots, x_d) is a system of parameters of A.

The following facts will be often used in the sequel.

Lemma 2.4. ([5]) The following statements are true.

(i) N-dim A = 0 if and only if $A \neq 0$ and $\ell(A) < \infty$. In this case Att_R $A = \{m\}$.

(ii) N-dim $A \leq \dim (R/\operatorname{Ann}_R A) = \max\{\dim R/p : p \in \operatorname{Att}_R A\}$ and there exists an Artinian module A such that N-dim $A < \dim (R/\operatorname{Ann}_R A)$.

(*iii*) N-dim $A = \dim \left(\widehat{R} / \operatorname{Ann}_{\widehat{R}} A\right) = \max\{\dim \widehat{R} / \widehat{p} : \widehat{p} \in \operatorname{Att}_{\widehat{R}} A\}.$

It follows by Lemma 2.4, (i) and Theorem 2.3, (i) \Leftrightarrow (iii) that x_1, \ldots, x_r is an f-coregular sequence with respect to A if and only if

N-dim
$$(0:_A (x_1, \ldots, x_{i-1})R)/x_i(0:_A (x_1, \ldots, x_{i-1})R) \leq 0$$

for all $i = 1, \ldots, r$.

Here are some properties of f-coregular sequences.

Proposition 2.5. let N-dim A = d. The following statements are true.

(i) If x_1, \ldots, x_r is an f-coregular sequence with respect to A then there exists an element $y \in m^n$ such that x_1, \ldots, x_r, y is an f-coregular sequence with respect to A. In particular, for any integer n > 0, there exists an f-coregular sequence with respect to A of length n.

(ii) If x_1, \ldots, x_r is an f-coregular sequence with respect to A then

N-dim_R(0:_A ($x_1, ..., x_r$)R) = sup{N-dim A - r, 0}.

Therefore, any f-coregular sequence of length at most d is a part of system of parameters of A.

Proof

(i) It is easily derived from the Prime Avoidance Theorem.

(ii) The case r = 0 is trivial. Let r > 0. If N-dim A = 0, then there is nothing to prove. Assume that N-dim A = d > 0. Since x_1 is f-coregular, we have by Theorem 2.3, (i) \Leftrightarrow (ii) that $x_1 \notin p$ for all $p \in \operatorname{Att}_R A \setminus \{m\}$. Set $A' = 0 :_A x_1$. Then by induction and by [4, Theorem 2.6], we have

$$N-\dim(0:_A (x_1, ..., x_r)R) = N-\dim(0:_{A'} (x_2, ..., x_r)R)$$

= sup{N-dim A' - (r - 1), 0}
= sup{N-dim A - r, 0}.

3 Co-filter modules

Definition 3.1. A is called a *co-filter module* if every system of parameters of A is an f-coregular sequence.

The following result is a characterization of co-filter module via system of parameters.

Proposition 3.2. The following conditions are equivalent:

(i) A is a co-filter module.

(ii) For any part of system of parameters x_1, \ldots, x_r of A and any minimal secondary representation $0:_A (x_1, \ldots, x_r)R = B_1 + \ldots + B_k$ of $0:_A (x_1, \ldots, x_r)R$ with $B_i \ p_i$ -secondary, N-dim $B_i = d - r$ for all i satisfying $p_i \neq m$.

Proof (i) \Rightarrow (ii) Let x_1, \ldots, x_r be a part of system of parameters of A and set $B = 0 :_A (x_1, \ldots, x_r)R$. Assume that there exists $p_i \in \operatorname{Att}_R B \setminus \{m\}$ such that N-dim $B_i < d - r$. So we can choose an element $y \in p_i$ such that x_1, \ldots, x_r, y is a part of system of parameters of A. By [4, Lemma 2.10, (i)], x_1, \ldots, x_r, y^t is also a part of system of parameters of A for all $t \ge 1$, and therefore it is an f-coregular sequence of A by the hypothesis. Thus, for $n \gg 0$, $y^t B \supseteq m^n B$. So we get from the surjection $B/m^n B \longrightarrow B/y^t B$ that

$$\operatorname{Att}_R B/y^t B \subseteq \operatorname{Att}_R B/m^n B \subseteq \{m\}.$$

On the other hand, since $y \in p_i$, it follows that $y^t B_i = 0$ for $t \gg 0$. Therefore $p_i \notin \operatorname{Att}_B(y^t B)$. From the exact sequence

$$0 \longrightarrow y^t B \longrightarrow B \longrightarrow B/y^t B \longrightarrow 0$$

we have the inclusion $\operatorname{Att}_R B \subseteq \operatorname{Att}_R(y^t B) \cup \{m\}$. Therefore $p_i \notin \operatorname{Att}_R B$. This gives a contradiction.

(ii) \Rightarrow (i) follows easily from Theorem 2.3, (i) \Leftrightarrow (ii) and [16, Lemma 2.14]. \Box

Let M be a Noetherian R-module. It should be noted that if the m-adic completion \widehat{M} of M is an f-module then M is an f-module. The converse is true when R is a quotient of a Cohen-Macaulay ring (cf. [15, Appendix, Lemma 8]). For Artinian modules, from Theorem 2.3, (i) \Leftrightarrow (v), we have immediately the following result.

Proposition 3.3. If A is a co-filter \widehat{R} -module then A is a co-filter R-module.

Note that in general the converse of the above result is not true. Here is an example.

Example 3.4. There exists an Artinian module A over local ring (R, m) such that A is a co-filter R-module but A is not a co-filter \hat{R} -module.

Proof Let (R, m) be the Noetherian local domain of dimension 2 constructed by D. Ferrand and M. Raynaud [7] for which the *m*-adic completion \hat{R} of R has an associated prime ideal \hat{q} of dimension 1. Set $B = H_m^1(R)$, $C = H_m^2(R)$ and $A = B \oplus C$. We get by [5, Example 4.1] that B is a co-Cohen-Macaulay module of Noetherian dimension 1, Att_R $B = \{0\}$. Moreover, we have by [5, Theorem 3.5] that N-dim C = 2 and by [1, Theorem 7.3.2] that Att_R $C = \text{Assh } R = \{0\}$. Then we have

(i) $A = B \oplus C$ is an Artinian *R*-module of Noetherian dimension 2, the Krull dimension $\dim_R A = \dim R / \operatorname{Ann} A = \dim R = 2$ and $\operatorname{Att}_R A = \{0\}$.

(ii) Let (x, y) be a system of parameters of A. Then x is an f-coregular element with respect to A since $\operatorname{Att}_R A = \{0\}$. Moreover, since N-dim $(0 :_A x) = 1$ and y is a parameter element of $(0 :_A x)$, we have by [16, Lemma 2.14] that $y \notin p$, for all $p \in \operatorname{Att}_R(0 :_A x)$ such that the secondary component with respect to p has Noetherian dimension 1. Therefore, y is an f-coregular element with respect to $(0 :_A x)$ and hence (x, y) is an f-coregular sequence with respect to A, it means that A is a co-filter R-module.

However, A is not a co-filter \widehat{R} -module. In fact, according to the hypothesis and [1, 11.3.3], the associated prime ideal \widehat{q} of dimension 1 belongs to $\operatorname{Att}_{\widehat{R}} B$. Therefore,

$$\operatorname{Att}_{\widehat{R}} A = \operatorname{Att}_{\widehat{R}}(B \oplus C) = \operatorname{Att}_{\widehat{R}} B \cup \operatorname{Att}_{\widehat{R}} C \supseteq \{\widehat{q}\} \cup \operatorname{Att}_{\widehat{R}} C.$$

Note that $\operatorname{Att}_{\widehat{R}} C \neq \emptyset$ and $\dim \widehat{R}/\widehat{p} = 2$ for all $\widehat{p} \in \operatorname{Att}_{\widehat{R}} C$, while $\dim \widehat{R}/\widehat{q} = 1$ with $\widehat{q} \in \operatorname{Att}_{\widehat{R}} B$. So, A is not a co-filter \widehat{R} -module by Propositon 3.2.

Definition 3.5. A system of parameters $\underline{x} = (x_1, \ldots, x_d)$ of A is called *reducing* if $x_i \notin p$, for all $p \in \operatorname{Att}_R(0 :_A (x_1, \ldots, x_{i-1})R)$ such that the secondary component with respect to p has Noetherian dimension more or equal d-i, for all $i = 1, \ldots, d-1$.

Next we will show the technical result which will be useful to prove a relation between f-coregular sequences and reduced systems of parameters.

Lemma 3.6. (i) Let $\underline{x} = (x_1, \ldots, x_d) \in m$ be a system of parameters of A. Then \underline{x} is reducing w.r.t R-module A if and only if it is reducing w.r.t \widehat{R} -module A.

(ii) Let $x \in m$ be an f-coregular element of A, $\widehat{q} \in \operatorname{Att}_{\widehat{R}} A \setminus \{m\}$ and \widehat{p} a minimal prime of \widehat{R} containing (q, x). Then $\widehat{p} \in \operatorname{Att}_{\widehat{R}}(0:_A x)$.

(iii) Let $p \in \operatorname{Att}_R A$ and $x \in p$. Then $p \in \operatorname{Att}_R(0:_A x^n)$ for $n \gg 0$.

Proof (i) For all i = 1, ..., d - 1, we set $B = 0 :_A (x_1, ..., x_{i-1})R$ and let $B = B_1 + ... + B_k$ be a minimal secondary representation of *R*-module *B*, with $B_j p_j$ -secondary, j = 1, ..., k. Then by the similarly aguments in [2, Lemma

3.2], we have $B = \sum_{j \leq k, u \leq n_j} C_{u,j}$ is a minimal secondary representation of \widehat{R} -module B with $C_{u,j} \ \widehat{p}_{u,j}$ -secondary.

Suppose that \underline{x} is reducing of R-module A but it is not reducing of \widehat{R} -module A. Then there exists an integer $i \in \{1, \ldots, d-1\}$ and $\widehat{p}_{u,j} \in \operatorname{Att}_{\widehat{R}} B$, such that N-dim $C_{u,j} \ge d - i$ and $x_i \in \widehat{p}_{u,j}$. Then $x_i \in q = \widehat{p}_{u,j} \cap R \in \operatorname{Att}_R B$. Set $C = \sum_{\widehat{p}_{u,j} \cap R = q} C_{u,j}$. Then N-dim $C \ge d - i$. It gives a contradiction. Conversely, suppose that \underline{x} is reducing of \widehat{R} -module A but it is not reducing of R-module A. Then there exists an integer $i \in \{1, \ldots, d-1\}$ and $p_j \in \operatorname{Att}_R B$ such that N-dim $B_j \ge d - i$ and $x_i \in p_j, j = 1, \ldots, k$. Therefore there is at least one of secondary component $C_{u,j}$ of \widehat{R} -module B with respect to all the attached primes $\widehat{p}_{u,j} \in \operatorname{Att}_{\widehat{R}} B$ sastisfying $\widehat{p}_{u,j} \cap R = p_j$. Since N-dim $C_{u,j} \ge d - i$, it gives a contradiction.

(ii) Note by Theorem 2.3, (i) \Leftrightarrow (v) that x is also an f-coregular element of \widehat{R} -module A. Let $A = A_0 + A_1 + \ldots + A_k$ be a minimal secondary representation of \widehat{R} -module A, where $A_0 = 0$ or \widehat{mR} -secondary, and A_i \widehat{p}_i -secondary, for all $i = 1, \ldots, k$. Let $A' = A_1 + \ldots + A_k$. Then x is a coregular element of A' and \widehat{q} is an element in $\operatorname{Att}_{\widehat{R}} A'$. Therefore $\widehat{p} \in \operatorname{Att}_{\widehat{R}}(0 :_{A'} x)$ by [12, Lemma 3.18]. Let $0 :_{A'} x = B_0 + B_1 + \ldots + B_t$ be a minimal secondary representation of \widehat{R} -module $0 :_{A'} x$, where $B_0 = 0$ or \widehat{mR} -secondary, B_j \widehat{q}_j -secondary, for all $j = 1, \ldots, t$. Let $C = A_0 + B_0 + B_1 + \ldots + B_t$. It is easily seen that $\widehat{p} \in \operatorname{Att}_{\widehat{R}} C$. Note that for $n \gg 0$, we have $0 :_A x \subseteq 0 :_A x^n = C$. Therefore we get the exact sequence $0 \longrightarrow 0 :_A x \longrightarrow C \longrightarrow C/(0 :_A x) \longrightarrow 0$. Since $C/(0 :_A x)$ is zero or \widehat{mR} -secondary and $\widehat{p} \in \operatorname{Att}_{\widehat{R}} C$, we get $\widehat{p} \in \operatorname{Att}_{\widehat{R}}(0 :_A x)$.

(iii) Let $A = A_0 + A_1 + \ldots + A_k$ be a minimal secondary representation of *R*-module *A*, where $A_0 = 0$ or *m*-secondary, and A_i p_i -secondary, for all $i = 1, \ldots, k$. Without loss of generality, we may assume that A_1 is *p*-secondary. From the exact sequence

$$0 \longrightarrow 0:_A x^n \longrightarrow A \longrightarrow A/0:_A x^n \longrightarrow 0,$$

we get $p \in \operatorname{Att}_R(0:_A x^n) \cup \operatorname{Att}_R(A/0:_A x^n)$. Since $x \in p$, we have $0:_A x^n \supseteq A_1$ for $n \gg 0$, it follows that

$$\operatorname{Att}_R(A/0:_A x^n) = \operatorname{Att}_R\left((A_2 + \ldots + A_k)/((0:_A x^n) \cap (A_2 + \ldots + A_k))\right)$$
$$\subseteq \operatorname{Att}_R(A_2 + \ldots + A_k).$$

Therefore $p \notin \operatorname{Att}_R(A/0:_A x^n)$. It follows that $p \in \operatorname{Att}_R(0:_A x^n)$. \Box **Remark.** The conclusion (ii) in Lemma 3.6 is not true in general if we work on attached primes of R-module A. It means that there exists an Artinian Rmodule A, an element $x \in m$ which is an f-coregular element with respect to A, and $q \in \operatorname{Att}_R A \setminus m$ such that p is a minimal prime of (q, x) but $p \notin \operatorname{Att}_R(0:_A x)$. Indeed, let (R, m) be the Noetherian local domain of dimension 2 constructed by D. Ferrand and M. Raynaud [7] for which the m-adic completion \widehat{R} of R has an associated prime ideal \hat{q} of dimension 1, let $A = H_m^1(R)$ and let $0 \neq x \in m$. Then Att_R $A = \{0\}$ and $\ell_R(0:_A x) < \infty$ by [5, Example 4.3]. Take q = 0 and $0 \neq p$ be a minimal prime ideal of R containing x. Clearly we have $p \supset (q, x)$ but $p \notin \operatorname{Att}_R(0:_A x) = \{m\}$.

Recall that a system $\underline{x} = (x_1, \ldots, x_t)$ of elements in m is called a *multiplicative system* of A if $\ell_R(0 :_A \underline{x}R) < \infty$. The *multiplicity* $e(\underline{x}; A)$ of A with respect to the multiplicative system \underline{x} is defined by the obvious way in [4]. It has been shown in [4] many properties of the multiplicity for Artinian modules which are similar to that of multiplicity for Noetherian modules over local rings. For example, $0 \leq e(\underline{x}; A) \leq \ell(0 :_A \underline{x}R)$ and $e(x_1, \ldots, x_t; A) > 0$ if and only if t = N-dim A (see [4, Corollary 4.5]). Especially, Lemma 5.4 in [4] gives us a result dual to that shown by Auslander-Buchsbaum: let $\underline{x} = (x_1, \ldots, x_d)$ be a system of parameters of A, then

$$\ell(0:_A \underline{x}R) - e(\underline{x}; A) = \sum_{i=1}^d e(x_{i+1}, \dots, x_d; C_i/x_iC_i),$$

where $C_i = 0 :_A (x_1, ..., x_{i-1})R$, for i = 1, ..., d.

The following theorem is a relation between co-filter module and reduced system of parameters of A.

Theorem 3.7. For an Artinian R-module A with N-dim $A = d \ge 1$, the following conditions are equivalent:

(i) A is a co-filter module.

(ii) Each system of parameters of A is reducing.

(iii) For each system of parameters $\underline{x} = (x_1, \ldots, x_d)$ of A, we have

$$\ell_R(0:_A \underline{x}R) - e(\underline{x};A) = \ell_R(0:_A (x_1, \dots, x_{d-1})R/x_d(0:_A (x_1, \dots, x_{d-1})R).$$

Proof (i) \Rightarrow (ii) It follows easily by Proposition 3.2, (i) \Rightarrow (ii) and Theorem 2.3, (i) \Leftrightarrow (ii).

(ii) \Leftrightarrow (iii) For a system of parameters $\underline{x} = (x_1, \ldots, x_d)$ of A, for $i = 1, \ldots, d$, we set $B_i = 0 :_A (x_1, \ldots, x_{i-1})R$. By Lemma 3.6, (i), we can assume that $R = \widehat{R}$. It follows by [4, Corollary 4.5] that $e(x_{i+1}, \ldots, x_d; B_i/x_iB_i) = 0$ if and only if N-dim $(B_i/x_iB_i) < d-i$, for all $i = 1, \ldots, d-1$. Note that \underline{x} is reducing if and only if N-dim_R $B_i/x_iB_i < d-i$, for all $i = 1, \ldots, d-1$. Now the result follows by [4, Lemma 5.4].

(ii) \Rightarrow (i) It is clear for the case $d \leq 2$. Assume that $d \geq 3$ and the claim true for every Artinian module with Noetherian dimesion less than d. By Theorem 2.3, (i) \Leftrightarrow (v) and Lemma 3.6, (i) we can assume that $R = \hat{R}$. Then the condition (ii) remains valid for $0:_A x_1$. Therefore we only have to prove that $x_1 \notin p$ for

all $p \in \operatorname{Att} A \setminus \{m\}$. Assume that $x_1 \in p$ for some $p \in \operatorname{Att}_R A \setminus \{m\}$. Then the secondary component B of A with respect to p has Noetherian dimension strictly less than d-1 by assumption (ii). By Lemma 3.6, (iii), there exists n_0 such that $p \in \operatorname{Att}(0 :_A x_1^n)$, for all $n \ge n_0$. Let $A' = 0 :_A x_1^n$. Since each system of parameters of A' is an f-coregular sequence, the secondary component C of A' with respect to p has Noetherian dimension d-1 by Proposition 3.2. Since $R = \widehat{R}$, it follows by Lemma 2.4, (iii) that

$$d-1 >$$
N-dim $B =$ dim $B =$ dim $R/p =$ dim $C =$ N-dim $C = d-1$.

This gives a contradiction.

The class of generalized co-Cohen-Macaulay modules was introduced in [2]. Recall that an Artinian *R*-module *A* is called *generalized co-Cohen-Macaulay* if $I(A) < \infty$, where we set $I(\underline{x}; A) = \ell_R(0 :_A \underline{x}R) - e(\underline{x}; A)$ and I(A) = $\sup I(\underline{x}; A)$, for every system of parameters \underline{x} of *A* in *m*. The structure of these modules is known by the properties of co-standard system of parameters, multiplicity, local homology modules (cf. [2]). Especially, let *q* be an *m*-primary ideal of *R*. A sequence (x_1, \ldots, x_r) of elements in *m* is called a *q*-weak cosequence of *A* if

$$x_i(0:_A (x_1,\ldots,x_{i-1})R) \supseteq q(0:_A (x_1,\ldots,x_{i-1})R)$$
 for all $i=1,\ldots,r$,

where we mean $x_1 A \supseteq qA$ when i = 1. Clearly, a q-weak co-sequence is alway f-coregular sequence.

Proposition 3.8. If A is a generalized co-Cohen-Macaulay module then A is a co-filter module.

Proof It follows easily by the characterization of generalized co-Cohen-Macaulay module via q-weak co-sequence in [2, Theorem 4.4] and above comment. \Box

Note that the converse of Proposition 3.8 is not true in general. Below we give a counterexample for this.

Example 3.9. There exists an Artinian module A over local ring (R, m) such that A is a co-filter R-module but A is not a generalized co-Cohen-Macaulay module.

Proof We consider the co-filter R-module $A = H_m^1(R) \oplus H_m^2(R)$ as in Example 3.4. Suppose that A is a generalized co-Cohen-Macaulay R-module, then we have by [2, Corollary 4.9, (iii)] that A is generalized co-Cohen-Macaulay \hat{R} -module. Denote by $D(A) = \operatorname{Hom}_R(A, E)$ the Matlis dual of A, where E is the injective envelope of the residue field R/m. Then D(A) is a generalized Cohen-Macaulay \hat{R} -module, and hence it is a filter \hat{R} -module by [15, Proposition 16,

(i) \Leftrightarrow (ii)]. Since $\operatorname{Ass}_{\widehat{R}}(D(A)) = \operatorname{Att}_{\widehat{R}} A$, we have A is also a co-filter \widehat{R} -module, a contradiction (cf. Example 3.4).

Acknowledgment. The author would like to thank Prof. Le Thanh Nhan for her useful suggestions.

References

- M. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge University Press 1998.
- [2] Cuong N. T., N. T. Dung and L. T. Nhan, Generalized co-Cohen-Macaulay and co-Buchsbaum modules, Algebra Colloquium, (2) 14, (2007), 265-278.
- [3] N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Camb. Phil. Soc. 131(61), (2001), 61-72.
- [4] Cuong N. T. and L. T. Nhan, Dimension, multiplicity and Hilbert function of Artinian modules, East-West J. Math. (2)1, (1999), 179-196.
- [5] N. T. Cuong and L. T. Nhan, On Noetherian dimension of Artinian modules, Vietnam J. Math., 30 (2002), 121-130.
- [6] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr, 5 (1978), 57-73.
- [7] Ferrand, D. and M. Raynaund, Fibres formelles d'un anneau local Noetherian, Ann. Sci. E'cole Norm. Sup. 3(4) (1970), 295-311.
- [8] Kirby, D., Artinian modules and Hilberts polynomials, Quart. J. Math. Oxford, (2)24 (1973), 47-57.
- [9] Kirby, D., Dimension and length of Artinian modules, Quart. J. Math. Oxford, (2)41 (1990), 419-429.
- [10] Macdonald, I. G., Secondary representation of modules over a commutative ring, Symposia Mathematica, 11 (1973), 23-43.
- [11] H. Matsumura, Commutative algebra, Cambridge University Press, 1986.
- [12] Ooishi, A., Matlis duality and the width of a module, Hiroshima Math. J., 6 (1976), 573-587.
- [13] Roberts, R. N., Krull dimension for Artinian modules over quasi-local commutative rings, Quart. J. Math. Oxford, 26 (1975), 269-273.
- [14] R. Y. Sharp, A method for the study of Artinian modules with an application to asymptotic behaviour, In: Commutative Algebra (Math. Sienness Research Inst. Publ. No. 15, Spinger-Verlag 1989), 443-465.
- [15] J. Strückrad and W. Vogel, Buchsbaum rings and Applications, Spinger-Verlag, Berlin-Heidelberg-New York, 1986.
- [16] Tang, Z. and H. Zakeri, Co-Cohen-Macaulay modules and modules of generalized fractions, Comm. Algebra, (6) 22 (1994), 2173-2204.