East-West J. of Mathematics: Vol. 9, No 2 (2007) pp. 113-123

ON FILTER COREGULAR SEQUENCES
AND CO-FILTER MODULES

Nguyen Thi Dung

Thai Nguyen University,
Thai Nguyen, Vietnam
zsdung0507@Qyahoo.com

Abstract

In this paper, we introduce the notion of filter coregular sequence to
study a class of Artinian modules called co-filter modules.

1 Introduction

Throughout this paper, let (R, m) be Noetherian local ring and A an Artinian
R-module. The notion of coregular sequence introduced by Ooshi [12] is an
useful tool to study the structure of Artinian modules. Note that, for any
Artinian R-module A, any coregular sequence of A in m can be extended to a
maximal one and all the coregular sequences of A in m have the same length.
This common length is called the width of A and denoted by Width A. In general
we have N-dim A > Width A, where N-dim A is the Noetherian dimension
of A introduced by R.N. Roberts [13]. An Artinian R-module A is called
co-Cohen-Macaulay if N-dim A = Width A. The class of co-Cohen-Macaulay
modules plays a center role in the category of Artinian modules which is some
sense the same as that of the class of Cohen-Macaulay modules in the category
of Noetherian modules. Co-Cohen-Macaulayness can be characterized by the
equality between the length and the multiplicities with respect to a system of
parameters (cf. [4]), by the coregularness of systems of paramaters (cf. [16]),
and by the vanishing of local homology modules H™(A) (cf. [3]).

The purpose of this paper is to introduce the notion of filter coregular
sequence for Artinian modules as a generalization of the notion of coregular
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sequence, in order to study a class of Artinian modules called “co-filter mod-
ules” satisfying the condition that any system of parameters is a filter coregular
sequence. In some sense, the notions of filter coregular sequences and co-filter
modules for the category of Artinian modules are respectively dual to that of
filter regular sequences and filter modules introduced by Cuong-Schenzel-Trung
[6] for the category of Noetherian modules.

This paper is devided into 3 sections. In section 2, we introduce the no-
tion of filter coregular sequence and give characterizations of filter coregular
sequences (Theorem 2.3). Some characterizations of co-filter modules via sys-
tems of parameters (Propositon 3.2), reduced systems of parameters (Theorem
3.7) and generalized co-Cohen-Macaulay modules (Proposition 3.8) are shown.

2 Filter coregular sequence

We always assume that (R, m) is Noetherian local ring and A is an Artinian R-
module. Before introducing the notion of filter coregular sequence for Artinian
modules, we recall the notion of coregular sequence was defined by Ooishi [12].
A sequence x1,...,x, of elements in m is said to be coregular sequence of A
(or A-coregular sequence) if

xl(o ‘A (xla .. '7'1:1'—1)R) =0 ‘A (xla .. '7'1:1'—1)Ra

foralli=1,...,7. Anelement x € m is called A-coregular elementif xtA = A. Tt
should be noted that 0 :4 (z1,...,z,)R) # 0. Therefore the notion of coregular
sequence is defined in some sense dual to the known notion of regular sequence.

Definition 2.1. A sequence of elements z1, ..., x, in m is called a filter coreg-
ular (or f-coregular) sequence with respect to A if forall i =1,...r

2i(0:4 (x1,...,2i—1)R) D ngom"(o A (z1,...,2i-1)R).

An element x € m is called an f-coregular element if zA D Qom"A.
n_

Remark 2.2. It is clear that every coregular sequence is a filter coregular
sequence. The converse is not true in general. For example, let k be a field,
S = k[z1,...,x4) - the polynomial ring and R = k[[x1,...,24]] - the ring of
formal power series of d variables over k. Set m = (z1,...,zq4)R - the unique
maximal ideal of R. Let B = k[z;",...,z;'] be the S—module of inverse
polynomials. Then B is an Artinian S—module, (cf.[9]), and hence B has a
natural structure as an Artinian R—module. Let n > 1 be an integer, set
C =R/(x},xa,...,24)R and A = B @ C. Note that B is co-Cohen-Macaulay
and (p(C) < oo. Hence m™C = 0 for n > 0. Let an element 0 # y € m. We
can check that y is an f-coregular element, but it is not an A-coregular element.
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The theory of secondary representation was introduced by Macdonald in [10]
is in some sense dual to the more known theory of primary decomposition of
Noetherian modules. Note that every Artinian R—module A has a secondary
representation A = By + ...+ B, of p;—secondary submodules B;. The set
{p1,...,pn} is independent of the minimal secondary representation of A and
denoted by Attr A. Note that A # 0 if and only if Attg A # (). In this case, the
minimal elements in Attg A are exactly the minimal prime ideals containing
Anng A. Moreover, if 0 — A" — A — A” — 0 is an exact sequence of
Artinian R- modules, then Att A” C Att A C Att A" U Att A”. Denote by R
the m-adic completion of R. Then A has a natural struture as an R-module
and with this struture, each subset of A is an R-submodule of A if and only if
it is an R-submodule of A. Therefore A is an Artinian R-module. Moreover,
cf. [14],

Attr A= {pNR|pec Atty A}.

The following theorem is the main result of this section which gives us some
characterizations of f-coregular sequences.

Theorem 2.3. Let x1,...,x, € m. The following conditions are equivalent:
(i) x1,...,2. is f-coreqular with respect to A considering as an R-module.
(ii) x; ¢ p for allp € Attg(0:4 (z1,...,2,—1)R) \ {m}, for alli=1,...r.
(i) Lr(0:a (1,...,2i-1)R)/2:i(0:a (21,...,25-1)R) < oc.

() x1, ..., 2, is an f-coregqular sequence with respect to Qom"A.
n_
(v) x1, ...,z is f-coreqular with respect to A considering as an R-module.

Proof (i)« (ii) is obvious.

(i)e(ill). It is sufficient to prove for the case r = 1. Assume that z is
an f-coregular element with respect to A. As (i)<(ii), we have z ¢ p for all
p € Attg A\ {m}. If m ¢ Attgr A, then x is a A-coregular element, i.e. zA = A
and hence {r(A/zA) =0 < co. If m € Attgr A, then zA DO m™A for n > 0.
Hence

lr(A/zA) < Lr(A/m"A) < co.

Convesely, assume that £r(A/xA) < oco. Then m*A C zA for some t € N.
Hence x is an f-coregular element with respect to A.
(i)<(iv). Let A = By+ By +. ..+ By, be a minimal secondary representation
of A, where By = 0 or m—secondary. Note that m!By = 0 for some ¢ € N.
Therefore
N mltA=DB,+...4+ B, =m'A.
n>0

It follows that

03,448, (T ..., 2t )R+ By=0:4 (2%, ..., 2¢ )R
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It implies the two following equalities

xf(o ‘A (xfia .- '7'1:5—1)]%) = xf(o ‘Bi+...+Bxk (xfia .- -7335—1)]?))
ngomn(o ‘A (xfia R xf—l)R) = ngomn(o ‘Bi+...+Bxk (xfia s xf—l)R)

Hence zt,..., 2l is an f-coregular sequence with respect to A if and only if

2t ... at is an f-coregular sequence with respect to Qom"A, if and only if
n_

T1,...,%, is an f-coregular sequence with respect to Qom"A, if and only if
n_

Z1,..., %, is an f-coregular sequence with respect to A.

(i) (v). Tt is sufficient to prove for the case r = 1. By using the equivalence
of (i) and (ii) with note that

Attr A= {ﬁﬂ R| ]/9\6 AttRA}

we get the result. O

R. N. Roberts [13] introduced the notion of Krull dimension for Artinian
modules. Later Kirby [9] changed the terminology of Roberts and referred to
Noetherian dimension to avoid any confusion with Krull dimension for finitely
generated modules. The Noetherian dimension N-dimp A of A is defined as
follows: if A = 0 we put N-dim A = —1. Then by induction, for an integer
d > 0, we put N-dimgp A = d if N-dimg A < d is false and for every ascend-
ing sequence Ay C A; C ... of submodules of A, there exists ng such that
N-dimp(Ant1/A4n) < d for all n > ng.

Note that if 0 — A’ — A — A” — 0 is an exact sequence of Artinian
R—modules then

N-dimg A = max{N-dimg A’, N-dimg A"}

Moreover, N-dimg A = N-dimp A. Therefore, without any confusion, we can
write N-dim A replaced by N-dimpg A or N-dimp A. There are many nice prop-
erties of Noetherian dimension for Artinian modules which are in some sense
dual to that of Krull dimension for finitely generated modules. For example,
£(0 : 4 m™) is a polynomial for n > 0 and

N-dimp A = deg (0 : 4 m") = min{t : Jz1,..., 2t € m, (0 :4 (21, ..., 21)R) < 00},

(cf.[9], [13]). Let N-dimA = d. By the above fact, there exists a system
(z1,...,2q) of d elements in m such that £(0 :4 (x1,...,24)R) < o0o. Such
a system is called a system of parameters of A. A system (x1,...,x:), where
t < d, is called a part of a system of parameters of A if there exist elements
ZTt1,---,xq such that (z1,...,24) is a system of parameters of A.

The following facts will be often used in the sequel.
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Lemma 2.4. ([5]) The following statements are true.

(i) N-dim A = 0 if and only if A # 0 and £(A) < co. In this case Attg A = {m}.
(i) N-dim A < dim (R/ Anng A) = max{dimR/p : p € Attg A} and there
exists an Artinian module A such that N-dim A < dim (R/ Anng A).

(iii) N-dim A = dim (R/ Anny A) = max{dim R/p : p € Atty A}.

It follows by Lemma 2.4, (i) and Theorem 2.3, (i)<(iii) that xq,..., 2, is
an f-coregular sequence with respect to A if and only if

N—d1m(0 ‘A (xl, .. ,xl_l)R)/xl(O ‘A (5[31, .. .,xi_l)R)S 0
foralli=1,...,7.

Here are some properties of f-coregular sequences.

Proposition 2.5. let N-dim A = d. The following statements are true.

(i) If x4, ..., @, is an f-coregular sequence with respect to A then there exists an
element y € m™ such that x1,..., T,y is an f-coreqular sequence with respect
to A. In particular, for any integer n > 0, there exists an f-coregular sequence
with respect to A of length n.

(i) If x1, ..., 2, is an f-coregular sequence with respect to A then
N-dimpg(0 :4 (21,...,7,)R) = sup{N-dim A — r, 0}.

Therefore, any f-coregular sequence of length at most d is a part of system of
parameters of A.

Proof

(i) It is easily derived from the Prime Avoidance Theorem.

(ii) The case r = 0 is trivial. Let r > 0. If N-dim A = 0, then there is
nothing to prove. Assume that N-dim A = d > 0. Since z; is f-coregular, we
have by Theorem 2.3, (i) < (ii) that x; ¢ p for all p € Attg A\ {m}. Set
A’ =0:4 z1. Then by induction and by [4, Theorem 2.6], we have

N-dim(0 : 4 (x1,...,2-)R) = N-dim(0 : 4+ (22,...,z,)R)
= sup{N-dim A" — (r — 1),0}
= sup{N-dim A — r, 0}.
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3 Co-filter modules

Definition 3.1. A is called a co-filter module if every system of parameters of
A is an f-coregular sequence.

The following result is a characterization of co-filter module via system of
parameters.

Proposition 3.2. The following conditions are equivalent:
(i) A is a co-filter module.

(i) For any part of system of parameters x1, ..., x, of A and any minimal sec-
ondary representation 0:4 (x1,...,2,)R=B1+ ...+ Bg of 0:4 (x1,...,2,)R
with B; p;—secondary, N-dim B; = d — r for all i satisfying p; # m.

Proof (i)=-(ii) Let z1,...,z, be a part of system of parameters of A and set
B=0:4 (x1,...,2,)R. Assume that there exists p; € Attg B\ {m} such that
N-dim B; < d — r. So we can choose an element y € p; such that z1,...,x,.,y
is a part of system of parameters of A. By [4, Lemma 2.10, ()], z1, ..., %, ¥’
is also a part of system of parameters of A for all ¢ > 1, and therefore it is an
f-coregular sequence of A by the hypothesis. Thus, for n > 0, 4B D m™B. So
we get from the surjection B/m™B — B/y' B that

Attg B/y'B C Attg B/m™B C {m}.

On the other hand, since y € p;, it follows that y*B; = 0 for ¢ > 0. Therefore
pi & Attg(y' B). From the exact sequence

0 —y'B— B— B/y'B—0

we have the inclusion Attg B C Attg(y' B)U{m}. Therefore p; ¢ Attg B. This
gives a contradiction.

(i1)=(i) follows easily from Theorem 2.3, (i)<(ii) and [16, Lemma 2.14]. O

Let M be a Noetherian R-module. It should be noted that if the m-adic
completion M of M is an f-module then M is an f-module. The converse is true
when R is a quotient of a Cohen-Macaulay ring (cf. [15, Appendix, Lemma
8]). For Artinian modules, from Theorem 2.3, ()< (v), we have immediately
the following result.

Proposition 3.3. If A is a co-filter R-module then A is a co-filter R-module.

Note that in general the converse of the above result is not true. Here is an
example.

Example 3.4. There exists an Artinian module A over local ring (R, m) such
that A is a co-filter R-module but A is not a co-filter R-module.
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Proof Let (R, m) be the Noetherian local domain of dimension 2 constructed
by D. Ferrand and M. Raynaud [7] for which the m-adic completion R of R has
an associated prime ideal g of dimension 1. Set B = H} (R), C = H2 (R) and
A = B®C. We get by [5, Example 4.1] that B is a co-Cohen-Macaulay module
of Noetherian dimension 1, Attg B = {0}. Moreover, we have by [5, Theorem
3.5] that N-dim C' = 2 and by [1, Theorem 7.3.2] that Attr C' = Assh R = {0}.
Then we have

(i) A = B @ C is an Artinian R-module of Noetherian dimension 2, the
Krull dimension dimg A = dim R/ Ann A = dim R = 2 and Attg A = {0}.

(ii) Let (z,y) be a system of parameters of A. Then z is an f-coregular
element with respect to A since Attg A = {0}. Moreover, since N-dim(0 : 4
x) =1 and y is a parameter element of (0 :4 x), we have by [16, Lemma 2.14]
that y ¢ p, for all p € Attg(0 :4 x) such that the secondary component with
respect to p has Noetherian dimension 1. Therefore, y is an f-coregular element
with respect to (0 :4 x) and hence (x, y) is an f-coregular sequence with respect
to A, it means that A is a co-filter R-module.

However, A is not a co-filter R-module. In fact, according to the hypothesis
and [1, 11.3.3], the associated prime ideal g of dimension 1 belongs to Attz B.
Therefore,

AttRA = AttR(B eC) = AttRB UAttRC 2 {q} UAttRC.

Note that Atts C # 0 and dim R/p = 2 for all p € Att C, while dim R/g = 1
with ¢ € Attz B. So, A is not a co-filter R-module by Propositon 3.2. O

Definition 3.5. A system of parameters = (z1, .. ., z4) of A is called reducing
if x; ¢ p, for all p € Attg(0 :4 (x1,...,2;-1)R) such that the secondary
component with respect to p has Noetherian dimension more or equal d — i, for
alli=1,...,d—1.

Next we will show the technical result which will be useful to prove a relation
between f-coregular sequences and reduced systems of parameters.

Lemma 3.6. (i) Let x = (x1,...,x24) € m be a system of parameters of A.
Then z is reducing w.r.t R—module A if and only if it is reducing w.r.t R-
module A.

(ii) Let x € m be an f-coregular element of A, § € Attz A\ {m} and p a
minimal prime of R containing (¢, z). Then p € Att (014 ).

(#ii) Let p € Attr A and x € p. Then p € Attg(0:4 2™) for n > 0.

Proof (i) Foralli=1,...,d—1, weset B=0:4 (z1,...,2,—1)R and let
B = B; +...+ By be a minimal secondary representation of R-module B, with
B; pj-secondary, j = 1,...,k. Then by the similarly aguments in [2, Lemma
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3.2], we have B = } . o, Cu; is a minimal secondary representation of

R-module B with C,,; pu.;-secondary.

Suppose that x is reducing of R—module A but it is not reducing of R—module
A. Then there exists an integer i € {1,...,d —1} and p, ; € Atty B, such that
N—dimCuJ- >d—1iand x; € ﬁ“vj' Then z; € ¢ = ﬁ“J N R € Attg B. Set
C = > 5. ,nr=g Cuj- Then N-dimC > d —i. It gives a contradiction. Con-

versely, suppose that x is reducing of R—module A but it is not reducing of
R-module A. Then there exists an integer ¢ € {1,...,d — 1} and p; € Attg B
such that N-dim B; > d—iand x; € p;,j =1,..., k. Therefore there is at least
one of secondary component C,, ; of R-module B with respect to all the at-
tached primes p, ; € Atty B sastisfying p,, ;N R = p;. Since N-dim C,, ; > d—1,
it gives a contradiction.

(ii) Note by Theorem 2.3, (i)<(v) that x is also an f-coregular element of
R- module A . Let A= Ag+A1+. +Ak be a minimal secondary representation
of R-module A, where Ay = 0 or mR- secondary, and A; p;-secondary, for all
t=1,...,k Let A’ = A; + ...+ Aj. Then z is a coregular element of A’ and
q is an element in Attz A’. Therefore p € Attz(0 :a/ x) by [12, Lemma 3.18].
Let 0:ar 2 = Bo+B1+...+ Bt be a mlmmal secondary representation of
R-module 0 : 4/ x, where Bo =0 or mR- secondary, B; @j-secondary, for all
j=1,...,t.Let C = Ao+ Bo+ B1 +...+ B;. It is easily seen that p € Atty C.
Note that for n > 0, we have 0 : 4 x C 0 :4 2" = C. Therefore we get the exact
sequence 0 — 0:p ¢ — C — C/(0:4 ) — 0. Since C/(0 :4 x) is zero or
mR-secondary and p € Att; O, we get p € Attz(0:4 2).

(iii) Let A = Ao + 41 + ...+ A be a minimal secondary representation
of R-module A, where Ay = 0 or m-secondary, and A; p;-secondary, for all
i =1,..., k. Without loss of generality, we may assume that A; is p-secondary.
From the exact sequence

0—0:g2" —A— A/0:y 2" — 0,

we get p € Attr(0:4 2™)UAttr(A/0 :4 ™). Since x € p, we have 0 : 4 2™ D A
for n > 0, it follows that

Attr(A/0 4 2™) = Attgr (A2 + ...+ Ap)/((0:4 2™) N (A2 + ...+ Ay)))
C Attr(As + ...+ Ay).

Therefore p ¢ Attr(A/0:4 2™). It follows that p € Attr(0 :4 z™). O
Remark. The conclusion (ii) in Lemma 3.6 is not true in general if we work
on attached primes of R—module A. It means that there exists an Artinian R-
module A, an element & € m which is an f-coregular element with respect to A,
and g € Attg A\m such that p is a minimal prime of (¢, z) but p ¢ Attg(0: 4 z).
Indeed, let (R, m) be the Noetherian local domain of dimension 2 constructed
by D. Ferrand and M. Raynaud [7] for which the m-adic completion R of R has
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an associated prime ideal g of dimension 1, let A = H} (R) and let 0 # x € m.
Then Attgp A = {0} and ¢r(0 :4 z) < oo by [5, Example 4.3]. Take ¢ = 0 and
0 # p be a minimal prime ideal of R containing z. Clearly we have p D (¢, x)
but p ¢ Attg(0:4 ) = {m}.

Recall that a system z = (x1,...,2;) of elements in m is called a multi-
plicative system of A if r(0 :a4 zR) < co. The multiplicity e(z; A) of A with
respect to the multiplicative system gz is defined by the obvious way in [4]. It
has been shown in [4] many properties of the multiplicity for Artinian mod-
ules which are similar to that of multiplicity for Noetherian modules over local
rings. For example, 0 < e(z; A) < 4(0 :4 zR) and e(zy,...,24 A) > 0 if and
only if t = N-dim A (see [4, Corollary 4.5]). Especially, Lemma 5.4 in [4] gives
us a result dual to that shown by Auslander-Buchsbaum: let x = (x1,...,xq4)
be a system of parameters of A, then

£0:42R) —e(z; A) = Z e(Tit1, ..., 2a; Cif/7;,Cy),

=1
where Cl =0 ‘A (xl,...,xi_l)R, for i = 1,...,d.

The following theorem is a relation between co-filter module and reduced
system of parameters of A.

Theorem 3.7. For an Artinian R-module A with N-dim A = d > 1, the fol-
lowing conditions are equivalent:

(i) A is a co-filter module.
(i) Each system of parameters of A is reducing.

(#ii) For each system of parameters x = (z1,...,xq) of A, we have

lr(0:4 zR) —e(z; A) =Lr(0:4 (x1,.. ., 24-1)R/2q(0 :4 (21,...,24-1)R).

Proof (i)=-(ii) It follows easily by Proposition 3.2, (i)=-(ii) and Theorem 2.3,
()& (ii).

(i)« (iii) For a system of parameters = (x1,...,24) of A, fori=1,...,d,
we set B; = 0 :4 (z1,...,2,—1)R. By Lemma 3.6, (i), we can assume that
R = R. Tt follows by [4, Corollary 4.5] that e(x;11,...,zq; Bi/x;B;) = 0 if and
only if N-dim(B;/xz;B;) < d—1, for alli = 1,...,d — 1. Note that z is reducing
if and only if N-dimg B;/x;B; < d — i, for alli =1,...,d — 1. Now the result
follows by [4, Lemma 5.4].

(i1)=(i) It is clear for the case d < 2. Assume that d > 3 and the claim true
for every Artinian module with Noetherian dimesion less than d. By Theorem
2.3, (i)<(v) and Lemma 3.6, (i) we can assume that R = R. Then the condition
(ii) remains valid for 0 : 4 x1. Therefore we only have to prove that z; ¢ p for
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all p € Att A\ {m}. Assume that x; € p for some p € Attg A\ {m}. Then
the secondary component B of A with respect to p has Noetherian dimension
strictly less than d — 1 by assumption (ii). By Lemma 3.6, (iii), there exists ng
such that p € Att(0:4 1), for all n > ng. Let A’ =0 :4 7. Since each system
of parameters of A’ is an f-coregular sequence, the secondary component C' of
A’ with respect to p has Noetherian dimension d — 1 by Proposition 3.2. Since
R = R, it follows by Lemma 2.4, (iii) that

d—1>N-dimB =dim B =dimR/p =dimC =N-dimC =d — 1.

This gives a contradiction. O

The class of generalized co-Cohen-Macaulay modules was introduced in [2].
Recall that an Artinian R-module A is called generalized co-Cohen-Macaulay
if I(A) < oo, where we set I(z; A) = ¢r(0 :4 zR) — e(z; A) and I(A) =
sup I(z;A), for every system of parameters z of A in m. The structure of

these modules is known by the properties of co-standard system of parameters,
multiplicity, local homology modules (cf. [2]). Especially, let ¢ be an m-primary
ideal of R. A sequence (x1,...,x,) of elements in m is called a g-weak co-
sequence of A if

2i(0:4 (x1,.. ., 2i—1)R) 2 q(0:4 (x1,...,2;—1)R) foralli=1,... 1

where we mean 1A O gA when i = 1. Clearly, a g-weak co-sequence is alway
f-coregular sequence.

Proposition 3.8. If A is a generalized co-Cohen-Macaulay module then A is
a co-filter module.

Proof It follows easily by the characterization of generalized co-Cohen-Macaulay
module via g-weak co-sequence in [2, Theorem 4.4] and above comment. O

Note that the converse of Proposition 3.8 is not true in general. Below we
give a counterexample for this.

Example 3.9. There exists an Artinian module A over local ring (R, m) such
that A is a co-filter R-module but A is not a generalized co-Cohen-Macaulay
module.

Proof We consider the co-filter R-module A = H} (R)® H2,(R) as in Example
3.4. Suppose that A is a generalized co-Cohen-Macaulay R-module, then we
have by [2, Corollary 4.9, (iii)] that A is generalized co-Cohen-Macaulay R-
module. Denote by D(A) = Hompg(A, E) the Matlis dual of A, where E is the
injective envelope of the residue field R/m. Then D(A) is a generalized Cohen-
Macaulay ]?i—module, and hence it is a filter R-module by [15, Proposition 16,
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(i) (ii)]. Since Assp(D(A)) = Attyz A, we have A is also a co-filter R-module,
a contradiction (cf. Example 3.4). O
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