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Abstract

In this paper, we introduce the notion of filter coregular sequence to
study a class of Artinian modules called co-filter modules.

1 Introduction

Throughout this paper, let (R, m) be Noetherian local ring and A an Artinian
R-module. The notion of coregular sequence introduced by Ooshi [12] is an
useful tool to study the structure of Artinian modules. Note that, for any
Artinian R-module A, any coregular sequence of A in m can be extended to a
maximal one and all the coregular sequences of A in m have the same length.
This common length is called the width of A and denoted by WidthA. In general
we have N-dim A ≥ WidthA, where N-dimA is the Noetherian dimension
of A introduced by R.N. Roberts [13]. An Artinian R-module A is called
co-Cohen-Macaulay if N-dimA = WidthA. The class of co-Cohen-Macaulay
modules plays a center role in the category of Artinian modules which is some
sense the same as that of the class of Cohen-Macaulay modules in the category
of Noetherian modules. Co-Cohen-Macaulayness can be characterized by the
equality between the length and the multiplicities with respect to a system of
parameters (cf. [4]), by the coregularness of systems of paramaters (cf. [16]),
and by the vanishing of local homology modules Hm

r (A) (cf. [3]).
The purpose of this paper is to introduce the notion of filter coregular

sequence for Artinian modules as a generalization of the notion of coregular
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sequence, in order to study a class of Artinian modules called “co-filter mod-
ules” satisfying the condition that any system of parameters is a filter coregular
sequence. In some sense, the notions of filter coregular sequences and co-filter
modules for the category of Artinian modules are respectively dual to that of
filter regular sequences and filter modules introduced by Cuong-Schenzel-Trung
[6] for the category of Noetherian modules.

This paper is devided into 3 sections. In section 2, we introduce the no-
tion of filter coregular sequence and give characterizations of filter coregular
sequences (Theorem 2.3). Some characterizations of co-filter modules via sys-
tems of parameters (Propositon 3.2), reduced systems of parameters (Theorem
3.7) and generalized co-Cohen-Macaulay modules (Proposition 3.8) are shown.

2 Filter coregular sequence

We always assume that (R, m) is Noetherian local ring and A is an Artinian R-
module. Before introducing the notion of filter coregular sequence for Artinian
modules, we recall the notion of coregular sequence was defined by Ooishi [12].
A sequence x1, . . . , xr of elements in m is said to be coregular sequence of A
(or A-coregular sequence) if

xi(0 :A (x1, . . . , xi−1)R) = 0 :A (x1, . . . , xi−1)R,

for all i = 1, . . . , r. An element x ∈ m is called A-coregular element if xA = A. It
should be noted that 0 :A (x1, . . . , xr)R) �= 0. Therefore the notion of coregular
sequence is defined in some sense dual to the known notion of regular sequence.

Definition 2.1. A sequence of elements x1, . . . , xr in m is called a filter coreg-
ular (or f-coregular) sequence with respect to A if for all i = 1, . . . r

xi(0 :A (x1, . . . , xi−1)R) ⊇ ∩
n≥0

mn(0 :A (x1, . . . , xi−1)R).

An element x ∈ m is called an f-coregular element if xA ⊇ ∩
n≥0

mnA.

Remark 2.2. It is clear that every coregular sequence is a filter coregular
sequence. The converse is not true in general. For example, let k be a field,
S = k[x1, . . . , xd] - the polynomial ring and R = k[[x1, . . . , xd]] - the ring of
formal power series of d variables over k. Set m = (x1, . . . , xd)R - the unique
maximal ideal of R. Let B = k[x−1

1 , . . . , x−1
d ] be the S−module of inverse

polynomials. Then B is an Artinian S−module, (cf.[9]), and hence B has a
natural structure as an Artinian R−module. Let n > 1 be an integer, set
C = R/(xn

1 , x2, . . . , xd)R and A = B ⊕ C. Note that B is co-Cohen-Macaulay
and �R(C) < ∞. Hence mnC = 0 for n 	 0. Let an element 0 �= y ∈ m. We
can check that y is an f-coregular element, but it is not an A-coregular element.
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The theory of secondary representation was introduced by Macdonald in [10]
is in some sense dual to the more known theory of primary decomposition of
Noetherian modules. Note that every Artinian R−module A has a secondary
representation A = B1 + . . . + Bn of pi−secondary submodules Bi. The set
{p1, . . . , pn} is independent of the minimal secondary representation of A and
denoted by AttR A. Note that A �= 0 if and only if AttR A �= ∅. In this case, the
minimal elements in AttR A are exactly the minimal prime ideals containing
AnnR A. Moreover, if 0 −→ A′ −→ A −→ A′′ −→ 0 is an exact sequence of
Artinian R- modules, then AttA′′ ⊆ AttA ⊆ AttA′ ∪ AttA′′. Denote by R̂
the m-adic completion of R. Then A has a natural struture as an R̂-module
and with this struture, each subset of A is an R-submodule of A if and only if
it is an R̂-submodule of A. Therefore A is an Artinian R̂-module. Moreover,
cf. [14],

AttR A = {p̂ ∩ R| p̂ ∈ AttR̂ A}.
The following theorem is the main result of this section which gives us some

characterizations of f-coregular sequences.

Theorem 2.3. Let x1, . . . , xr ∈ m. The following conditions are equivalent:

(i) x1, . . . , xr is f-coregular with respect to A considering as an R-module.

(ii) xi /∈ p for all p ∈ AttR(0 :A (x1, . . . , xi−1)R) \ {m}, for all i = 1, . . . , r.

(iii) �R

(
0 :A (x1, . . . , xi−1)R)/xi(0 :A (x1, . . . , xi−1)R

)
< ∞.

(iv) x1, . . . , xr is an f-coregular sequence with respect to ∩
n≥0

mnA.

(v) x1, . . . , xr is f-coregular with respect to A considering as an R̂-module.

Proof (i)⇔(ii) is obvious.
(i)⇔(iii). It is sufficient to prove for the case r = 1. Assume that x is

an f-coregular element with respect to A. As (i)⇔(ii), we have x /∈ p for all
p ∈ AttR A\ {m}. If m /∈ AttR A, then x is a A-coregular element, i.e. xA = A
and hence �R(A/xA) = 0 < ∞. If m ∈ AttR A, then xA ⊇ mnA for n 	 0.
Hence

�R(A/xA) � �R(A/mnA) < ∞.

Convesely, assume that �R(A/xA) < ∞. Then mtA ⊆ xA for some t ∈ N.
Hence x is an f-coregular element with respect to A.

(i)⇔(iv). Let A = B0 +B1+. . .+Bk be a minimal secondary representation
of A, where B0 = 0 or m−secondary. Note that mtB0 = 0 for some t ∈ N.
Therefore

∩
n≥0

mnA = B1 + . . . + Bk = mtA.

It follows that

0 :B1+...+Bk (xt
1, . . . , x

t
i−1)R + B0 = 0 :A (xt

1, . . . , x
t
i−1)R.
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It implies the two following equalities

xt
i(0 :A (xt

1, . . . , x
t
i−1)R) = xt

i(0 :B1+...+Bk (xt
1, . . . , x

t
i−1)R),

∩
n≥0

mn(0 :A (xt
1, . . . , x

t
i−1)R) = ∩

n≥0
mn(0 :B1+...+Bk (xt

1, . . . , x
t
i−1)R).

Hence xt
1, . . . , x

t
r is an f-coregular sequence with respect to A if and only if

xt
1, . . . , x

t
r is an f-coregular sequence with respect to ∩

n≥0
mnA, if and only if

x1, . . . , xr is an f-coregular sequence with respect to ∩
n≥0

mnA, if and only if

x1, . . . , xr is an f-coregular sequence with respect to A.
(i)⇔(v). It is sufficient to prove for the case r = 1. By using the equivalence

of (i) and (ii) with note that

AttR A = {p̂ ∩ R| p̂ ∈ AttR̂ A}
we get the result. �

R. N. Roberts [13] introduced the notion of Krull dimension for Artinian
modules. Later Kirby [9] changed the terminology of Roberts and referred to
Noetherian dimension to avoid any confusion with Krull dimension for finitely
generated modules. The Noetherian dimension N-dimR A of A is defined as
follows: if A = 0 we put N-dimA = −1. Then by induction, for an integer
d ≥ 0, we put N-dimR A = d if N-dimR A < d is false and for every ascend-
ing sequence A0 ⊆ A1 ⊆ . . . of submodules of A, there exists n0 such that
N-dimR(An+1/An) < d for all n > n0.

Note that if 0 −→ A′ −→ A −→ A′′ −→ 0 is an exact sequence of Artinian
R−modules then

N-dimR A = max{N-dimR A′, N-dimR A′′}.
Moreover, N-dimR A = N-dimR̂ A. Therefore, without any confusion, we can
write N-dimA replaced by N-dimR A or N-dimR̂ A. There are many nice prop-
erties of Noetherian dimension for Artinian modules which are in some sense
dual to that of Krull dimension for finitely generated modules. For example,
�(0 :A mn) is a polynomial for n 	 0 and

N-dimR A = deg �(0 :A mn) = min{t : ∃x1, ..., xt ∈ m, �(0 :A (x1, ..., xt)R) < ∞},

(cf.[9], [13]). Let N-dimA = d. By the above fact, there exists a system
(x1, . . . , xd) of d elements in m such that �(0 :A (x1, . . . , xd)R) < ∞. Such
a system is called a system of parameters of A. A system (x1, . . . , xt), where
t � d, is called a part of a system of parameters of A if there exist elements
xt+1, . . . , xd such that (x1, . . . , xd) is a system of parameters of A.

The following facts will be often used in the sequel.
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Lemma 2.4. ([5]) The following statements are true.

(i) N-dimA = 0 if and only if A �= 0 and �(A) < ∞. In this case AttR A = {m}.
(ii) N-dimA � dim

(
R/ AnnR A

)
= max{dimR/p : p ∈ AttR A} and there

exists an Artinian module A such that N-dimA < dim
(
R/ AnnR A

)
.

(iii) N-dimA = dim
(
R̂/ AnnR̂ A

)
= max{dim R̂/p̂ : p̂ ∈ AttR̂ A}.

It follows by Lemma 2.4, (i) and Theorem 2.3, (i)⇔(iii) that x1, . . . , xr is
an f-coregular sequence with respect to A if and only if

N-dim
(
0 :A (x1, . . . , xi−1)R)/xi(0 :A (x1, . . . , xi−1)R

)
� 0

for all i = 1, . . . , r.

Here are some properties of f-coregular sequences.

Proposition 2.5. let N-dimA = d. The following statements are true.

(i) If x1, . . . , xr is an f-coregular sequence with respect to A then there exists an
element y ∈ mn such that x1, . . . , xr, y is an f-coregular sequence with respect
to A. In particular, for any integer n > 0, there exists an f-coregular sequence
with respect to A of length n.

(ii) If x1, . . . , xr is an f-coregular sequence with respect to A then

N-dimR(0 :A (x1, . . . , xr)R) = sup{N-dimA − r, 0}.

Therefore, any f-coregular sequence of length at most d is a part of system of
parameters of A.

Proof
(i) It is easily derived from the Prime Avoidance Theorem.
(ii) The case r = 0 is trivial. Let r > 0. If N-dimA = 0, then there is

nothing to prove. Assume that N-dimA = d > 0. Since x1 is f-coregular, we
have by Theorem 2.3, (i) ⇔ (ii) that x1 /∈ p for all p ∈ AttR A \ {m}. Set
A′ = 0 :A x1. Then by induction and by [4, Theorem 2.6], we have

N-dim(0 :A (x1, . . . , xr)R) = N-dim(0 :A′ (x2, . . . , xr)R)
= sup{N-dimA′ − (r − 1), 0}
= sup{N-dimA − r, 0}.

�
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3 Co-filter modules

Definition 3.1. A is called a co-filter module if every system of parameters of
A is an f-coregular sequence.

The following result is a characterization of co-filter module via system of
parameters.

Proposition 3.2. The following conditions are equivalent:

(i) A is a co-filter module.

(ii) For any part of system of parameters x1, . . . , xr of A and any minimal sec-
ondary representation 0 :A (x1, . . . , xr)R = B1 + . . .+ Bk of 0 :A (x1, . . . , xr)R
with Bi pi−secondary, N-dimBi = d− r for all i satisfying pi �= m.

Proof (i)⇒(ii) Let x1, . . . , xr be a part of system of parameters of A and set
B = 0 :A (x1, . . . , xr)R. Assume that there exists pi ∈ AttR B \ {m} such that
N-dimBi < d − r. So we can choose an element y ∈ pi such that x1, . . . , xr, y
is a part of system of parameters of A. By [4, Lemma 2.10, (i)], x1, . . . , xr, y

t

is also a part of system of parameters of A for all t ≥ 1, and therefore it is an
f-coregular sequence of A by the hypothesis. Thus, for n 	 0, ytB ⊇ mnB. So
we get from the surjection B/mnB −→ B/ytB that

AttR B/ytB ⊆ AttR B/mnB ⊆ {m}.

On the other hand, since y ∈ pi, it follows that ytBi = 0 for t 	 0. Therefore
pi /∈ AttR(ytB). From the exact sequence

0 −→ ytB −→ B −→ B/ytB −→ 0

we have the inclusion AttR B ⊆ AttR(ytB)∪{m}. Therefore pi /∈ AttR B. This
gives a contradiction.

(ii)⇒(i) follows easily from Theorem 2.3, (i)⇔(ii) and [16, Lemma 2.14]. �

Let M be a Noetherian R-module. It should be noted that if the m-adic
completion M̂ of M is an f-module then M is an f-module. The converse is true
when R is a quotient of a Cohen-Macaulay ring (cf. [15, Appendix, Lemma
8]). For Artinian modules, from Theorem 2.3, (i)⇔(v), we have immediately
the following result.

Proposition 3.3. If A is a co-filter R̂-module then A is a co-filter R-module.

Note that in general the converse of the above result is not true. Here is an
example.

Example 3.4. There exists an Artinian module A over local ring (R, m) such
that A is a co-filter R-module but A is not a co-filter R̂-module.
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Proof Let (R, m) be the Noetherian local domain of dimension 2 constructed
by D. Ferrand and M. Raynaud [7] for which the m-adic completion R̂ of R has
an associated prime ideal q̂ of dimension 1. Set B = H1

m(R), C = H2
m(R) and

A = B⊕C. We get by [5, Example 4.1] that B is a co-Cohen-Macaulay module
of Noetherian dimension 1, AttR B = {0}. Moreover, we have by [5, Theorem
3.5] that N-dimC = 2 and by [1, Theorem 7.3.2] that AttR C = Assh R = {0}.
Then we have

(i) A = B ⊕ C is an Artinian R-module of Noetherian dimension 2, the
Krull dimension dimR A = dimR/ Ann A = dimR = 2 and AttR A = {0}.

(ii) Let (x, y) be a system of parameters of A. Then x is an f-coregular
element with respect to A since AttR A = {0}. Moreover, since N-dim(0 :A
x) = 1 and y is a parameter element of (0 :A x), we have by [16, Lemma 2.14]
that y /∈ p, for all p ∈ AttR(0 :A x) such that the secondary component with
respect to p has Noetherian dimension 1. Therefore, y is an f-coregular element
with respect to (0 :A x) and hence (x, y) is an f-coregular sequence with respect
to A, it means that A is a co-filter R-module.

However, A is not a co-filter R̂-module. In fact, according to the hypothesis
and [1, 11.3.3], the associated prime ideal q̂ of dimension 1 belongs to AttR̂ B.
Therefore,

AttR̂ A = AttR̂(B ⊕ C) = AttR̂ B ∪AttR̂ C ⊇ {q̂} ∪AttR̂ C.

Note that AttR̂ C �= ∅ and dim R̂/p̂ = 2 for all p̂ ∈ AttR̂ C, while dim R̂/q̂ = 1
with q̂ ∈ AttR̂ B. So, A is not a co-filter R̂-module by Propositon 3.2. �

Definition 3.5. A system of parameters x = (x1, . . . , xd) of A is called reducing
if xi /∈ p, for all p ∈ AttR(0 :A (x1, . . . , xi−1)R) such that the secondary
component with respect to p has Noetherian dimension more or equal d− i, for
all i = 1, . . . , d − 1.

Next we will show the technical result which will be useful to prove a relation
between f-coregular sequences and reduced systems of parameters.

Lemma 3.6. (i) Let x = (x1, . . . , xd) ∈ m be a system of parameters of A.

Then x is reducing w.r.t R−module A if and only if it is reducing w.r.t R̂-
module A.

(ii) Let x ∈ m be an f-coregular element of A, q̂ ∈ AttR̂ A \ {m} and p̂ a
minimal prime of R̂ containing (q, x). Then p̂ ∈ AttR̂(0 :A x).

(iii) Let p ∈ AttR A and x ∈ p. Then p ∈ AttR(0 :A xn) for n 	 0.

Proof (i) For all i = 1, . . . , d − 1, we set B = 0 :A (x1, . . . , xi−1)R and let
B = B1 + . . .+Bk be a minimal secondary representation of R-module B, with
Bj pj-secondary, j = 1, . . . , k. Then by the similarly aguments in [2, Lemma
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3.2], we have B =
∑

j�k,u�nj
Cu,j is a minimal secondary representation of

R̂-module B with Cu,j p̂u,j-secondary.
Suppose that x is reducing of R−module A but it is not reducing of R̂−module

A. Then there exists an integer i ∈ {1, . . . , d− 1} and p̂u,j ∈ AttR̂ B, such that
N-dimCu,j � d − i and xi ∈ p̂u,j. Then xi ∈ q = p̂u,j ∩ R ∈ AttR B. Set
C =

∑
p̂u,j∩R=q Cu,j. Then N-dimC � d − i. It gives a contradiction. Con-

versely, suppose that x is reducing of R̂−module A but it is not reducing of
R-module A. Then there exists an integer i ∈ {1, . . . , d − 1} and pj ∈ AttR B
such that N-dimBj � d− i and xi ∈ pj, j = 1, . . . , k. Therefore there is at least
one of secondary component Cu,j of R̂-module B with respect to all the at-
tached primes p̂u,j ∈ AttR̂ B sastisfying p̂u,j∩R = pj. Since N-dimCu,j � d−i,
it gives a contradiction.

(ii) Note by Theorem 2.3, (i)⇔(v) that x is also an f-coregular element of
R̂-module A. Let A = A0+A1+. . .+Ak be a minimal secondary representation
of R̂-module A, where A0 = 0 or mR̂-secondary, and Ai p̂i-secondary, for all
i = 1, . . . , k. Let A′ = A1 + . . . + Ak. Then x is a coregular element of A′ and
q̂ is an element in AttR̂ A′. Therefore p̂ ∈ AttR̂(0 :A′ x) by [12, Lemma 3.18].
Let 0 :A′ x = B0 + B1 + . . . + Bt be a minimal secondary representation of
R̂-module 0 :A′ x, where B0 = 0 or mR̂-secondary, Bj q̂j-secondary, for all
j = 1, . . . , t. Let C = A0 +B0 +B1 + . . .+Bt. It is easily seen that p̂ ∈ AttR̂ C.
Note that for n 	 0, we have 0 :A x ⊆ 0 :A xn = C. Therefore we get the exact
sequence 0 −→ 0 :A x −→ C −→ C/(0 :A x) −→ 0. Since C/(0 :A x) is zero or
mR̂-secondary and p̂ ∈ AttR̂ C, we get p̂ ∈ AttR̂(0 :A x).

(iii) Let A = A0 + A1 + . . . + Ak be a minimal secondary representation
of R-module A, where A0 = 0 or m-secondary, and Ai pi-secondary, for all
i = 1, . . . , k. Without loss of generality, we may assume that A1 is p-secondary.
From the exact sequence

0 −→ 0 :A xn −→ A −→ A/0 :A xn −→ 0,

we get p ∈ AttR(0 :A xn)∪AttR(A/0 :A xn). Since x ∈ p, we have 0 :A xn ⊇ A1

for n 	 0, it follows that

AttR(A/0 :A xn) = AttR

(
(A2 + . . . + Ak)/

(
(0 :A xn) ∩ (A2 + . . . + Ak)

))
⊆ AttR(A2 + . . . + Ak).

Therefore p /∈ AttR(A/0 :A xn). It follows that p ∈ AttR(0 :A xn). �

Remark. The conclusion (ii) in Lemma 3.6 is not true in general if we work
on attached primes of R−module A. It means that there exists an Artinian R-
module A, an element x ∈ m which is an f-coregular element with respect to A,
and q ∈ AttR A\m such that p is a minimal prime of (q, x) but p /∈ AttR(0 :A x).
Indeed, let (R, m) be the Noetherian local domain of dimension 2 constructed
by D. Ferrand and M. Raynaud [7] for which the m-adic completion R̂ of R has
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an associated prime ideal q̂ of dimension 1, let A = H1
m(R) and let 0 �= x ∈ m.

Then AttR A = {0} and �R(0 :A x) < ∞ by [5, Example 4.3]. Take q = 0 and
0 �= p be a minimal prime ideal of R containing x. Clearly we have p ⊃ (q, x)
but p /∈ AttR(0 :A x) = {m}.

Recall that a system x = (x1, . . . , xt) of elements in m is called a multi-
plicative system of A if �R(0 :A xR) < ∞. The multiplicity e(x; A) of A with
respect to the multiplicative system x is defined by the obvious way in [4]. It
has been shown in [4] many properties of the multiplicity for Artinian mod-
ules which are similar to that of multiplicity for Noetherian modules over local
rings. For example, 0 � e(x; A) � �(0 :A xR) and e(x1, . . . , xt; A) > 0 if and
only if t = N-dimA (see [4, Corollary 4.5]). Especially, Lemma 5.4 in [4] gives
us a result dual to that shown by Auslander-Buchsbaum: let x = (x1, . . . , xd)
be a system of parameters of A, then

�(0 :A xR) − e(x; A) =
d∑

i=1

e(xi+1, . . . , xd; Ci/xiCi),

where Ci = 0 :A (x1, . . . , xi−1)R, for i = 1, . . . , d.

The following theorem is a relation between co-filter module and reduced
system of parameters of A.

Theorem 3.7. For an Artinian R-module A with N-dimA = d ≥ 1, the fol-
lowing conditions are equivalent:

(i) A is a co-filter module.

(ii) Each system of parameters of A is reducing.

(iii) For each system of parameters x = (x1, . . . , xd) of A, we have

�R(0 :A xR) − e(x; A) = �R(0 :A (x1, . . . , xd−1)R/xd(0 :A (x1, . . . , xd−1)R).

Proof (i)⇒(ii) It follows easily by Proposition 3.2, (i)⇒(ii) and Theorem 2.3,
(i)⇔(ii).

(ii)⇔(iii) For a system of parameters x = (x1, . . . , xd) of A, for i = 1, . . . , d,
we set Bi = 0 :A (x1, . . . , xi−1)R. By Lemma 3.6, (i), we can assume that
R = R̂. It follows by [4, Corollary 4.5] that e(xi+1, . . . , xd; Bi/xiBi) = 0 if and
only if N-dim(Bi/xiBi) < d− i, for all i = 1, . . . , d− 1. Note that x is reducing
if and only if N-dimR Bi/xiBi < d − i, for all i = 1, . . . , d− 1. Now the result
follows by [4, Lemma 5.4].

(ii)⇒(i) It is clear for the case d � 2. Assume that d � 3 and the claim true
for every Artinian module with Noetherian dimesion less than d. By Theorem
2.3, (i)⇔(v) and Lemma 3.6, (i) we can assume that R = R̂. Then the condition
(ii) remains valid for 0 :A x1. Therefore we only have to prove that x1 /∈ p for



122 On filter coregular sequences and co-filter modules

all p ∈ Att A \ {m}. Assume that x1 ∈ p for some p ∈ AttR A \ {m}. Then
the secondary component B of A with respect to p has Noetherian dimension
strictly less than d− 1 by assumption (ii). By Lemma 3.6, (iii), there exists n0

such that p ∈ Att(0 :A xn
1 ), for all n � n0. Let A′ = 0 :A xn

1 . Since each system
of parameters of A′ is an f-coregular sequence, the secondary component C of
A′ with respect to p has Noetherian dimension d− 1 by Proposition 3.2. Since
R = R̂, it follows by Lemma 2.4, (iii) that

d − 1 > N-dim B = dim B = dim R/p = dimC = N-dim C = d− 1.

This gives a contradiction. �

The class of generalized co-Cohen-Macaulay modules was introduced in [2].
Recall that an Artinian R-module A is called generalized co-Cohen-Macaulay
if I(A) < ∞, where we set I(x; A) = �R(0 :A xR) − e(x; A) and I(A) =
sup

x
I(x; A), for every system of parameters x of A in m. The structure of

these modules is known by the properties of co-standard system of parameters,
multiplicity, local homology modules (cf. [2]). Especially, let q be an m-primary
ideal of R. A sequence (x1, . . . , xr) of elements in m is called a q-weak co-
sequence of A if

xi(0 :A (x1, . . . , xi−1)R) ⊇ q(0 :A (x1, . . . , xi−1)R) for all i = 1, . . . , r,

where we mean x1A ⊇ qA when i = 1. Clearly, a q-weak co-sequence is alway
f-coregular sequence.

Proposition 3.8. If A is a generalized co-Cohen-Macaulay module then A is
a co-filter module.

Proof It follows easily by the characterization of generalized co-Cohen-Macaulay
module via q-weak co-sequence in [2, Theorem 4.4] and above comment. �

Note that the converse of Proposition 3.8 is not true in general. Below we
give a counterexample for this.

Example 3.9. There exists an Artinian module A over local ring (R, m) such
that A is a co-filter R-module but A is not a generalized co-Cohen-Macaulay
module.

Proof We consider the co-filter R-module A = H1
m(R)⊕H2

m(R) as in Example
3.4. Suppose that A is a generalized co-Cohen-Macaulay R-module, then we
have by [2, Corollary 4.9, (iii)] that A is generalized co-Cohen-Macaulay R̂-
module. Denote by D(A) = HomR(A, E) the Matlis dual of A, where E is the
injective envelope of the residue field R/m. Then D(A) is a generalized Cohen-
Macaulay R̂-module, and hence it is a filter R̂-module by [15, Proposition 16,



Nguyen Thi Dung 123

(i)⇔(ii)]. Since AssR̂(D(A)) = AttR̂ A, we have A is also a co-filter R̂-module,
a contradiction (cf. Example 3.4). �
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