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Abstract

In this paper we give some unique range sets for p-adic meromorphic
functions sharing four values in several variables.

1. Introduction.

In 1926, Nevanlinna proved that two nonconstant meromorphic functions of
one complex variable which attain same five distinct values at the same points,
must be identical.

It is observed that p-adic entire functions of one variable behave in many
ways more like polynomials than like entire functions of one complex variable.
In 1971, Adams and Straus [1] proved the following theorem.

Theorem A. Let f, g be two nonconstant p-adic entire functions such that for
two distinct (finite) values a,b we have f(x) = a < g(x) = a and f(z) =b &
g(x) =b. Then f =g.

For p-adic meromorphic functions, Adams and Straus [1] obtained the fol-
lowing result similar to Nevanlinna’s.

Theorem B. Let f, g be two nonconstant p-adic meromorphic functions such
that for four distinct values a1, as,as,as we have f(x) = a; < g(x) = a;,1 =
1,2,3,4. Then f =g.
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100 Unique range sets for p-adic meromorphic functions in several variables

Ru [9] and Hu and Yang [4] extended Theorem B to p-adic holomorphic
curves.

The main tool in the cited above papers is the Nevanlinna theory in one
variable for the non-Archimedean case. The aim of this paper is to extend
Theorem B to the case of p-adic meromorphic functions in several variables .

In this paper by using the p-adic Nevanlinna theory in high dimension,
developed in [2], [3], [5], [7],[8] , we givesome range sets for p-adic meromorphic
functions in several variables .

2. Height of p—adic holomorphic functions of sev-
eral variables

Let p be a prime number, @, the field of p-adic numbers and C, the p-adic com-
pletion of the algebraic closure of Q. The absolute value in Q, is normalized
so that |p| = p~!. We further use the notion v(z) for the additive valuation on
C, which extends ord,. We use the notations b,y = (b1,...,bm), bi(b) =

(b1, ey bim1, b, 0541, o )y bemyiy = bi(bi,), (i) = (b1s e biz1,big1, oy bin),
DT:{ZGC,,:|Z| Sr,r>0},D<r>:{ZGC,,:|Z|=7',7“>O},D =

T(m)
Dy, XX Dy, where 1) = (11, ..., 1) forr; € RY, Dy 5 = Dy s X0 00X
Derpsy =+ +ym, 27 =2 a0p, 7 =rltoade gy = (1,0 Ym),
where 7; €N, | . [ = . [, log = log, . Notice that the set of (r1,...,7m) € R}

such that there exist x1,...,zm, € C, with |z;| = 7,4 = 1,...,m, is dense in
R7™. Therefore, without loss of generality one may assume that D, > # 0.

Let f be a non-zero holomorphic function in D, = and

f= Z avz?, |z <rifori=1,...,m.

[v1=0
Then we have
lim |a,|r? = 0.
[v|—o0
Hence, there exists an (71, ..., vm) € N™ such that |a,|r" is maximum.
Define
= max |a,|r”.

vy =y max_ o

Lemma 2.1 ([7]) For eachi=1,...,m, letr;,...,r;, be positive real numbers

such that v, > -+ > r;,. Let fs(zmy),s = 1,2,...,q, be q non-zero holomor-
phic functions on D Then there exist Uiy ;) € D such that

T(m,ig) "

[fs(uim i)l = fslrgniys 8= 12,54

T(m,is)
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Definition 2.2. The height of the function f(z(y,)) is defined by
Hy(r(m)) = log | flr,,-
If f(2(m)) =0, then set Hy(r(y)) = —oo.
Let f be a non-zero holomorphic function in D, = and
f= Z avz?, |z <rfori=1,...,m.
|v1=0
Write
Z(m) Zfl Zl f, i=1,2,...,m

Set

I(rom) = { (s 9m) € N 2y 17 = [flr,, -

Tluyf(’/’(m)) max {’71 E| ’yl, ey Yiy - .,’)/m) S If(’/‘(m))},
N2i,f("(m)) = min {’yl F (Y1 Yis e osYm) € If(r(m))},
n; r(0,0) = mln{ }
vi(rem) = D (nif(rmy) = n2ip (r(m))-
1=1
Call 7(,) a critical point if vy (7 () # 0.
For a fixedi (i=1,...,m) we set for simplicity
n,£(0,0) = €, k1 = n1i f(1(m))s k2 = 125, ¢ (r(m))-

Then there exist multi-indices v = (v1,...,%---sm) € If(rom))

and pr = (f1, ...y iy - -+ fim) € Lr(r(m)) such that v; = k1, pu; = ko.

We consider the following holomorphic functions on D, -

fé(z(m)) Jie (Zl) ;s fin (Z(m)) fi,kl(/zi\)zflafb (Z(m)) = fl'ka(/Z—i\)ZfQ'

The functions are not identically zero.
Set

Uif7/r(m,) = {’U, =Umm) € DT’(m) |f€(u)| = |f€|7’(m)a |f(u)| = |f|f’(m)a
|fk1(u)| = |fk1|f’(m)a|fk2(u)| = |.fk2|f’(m)}a
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where ¢ = 1,...,m. By Lemma 2.1, Uss,, 1s a non-empty set. For each
u € Uif,r,,» set

flyu(z) = f(ul, ey U1, 2y U1y - - .,’U,m), S Dri-

Theorem 2.3. Let f(2(m)) be a holomorphic function on D, . Assume
that f(z(m)) is not identically zero. Then for each i = 1,...,m, and for all
u € Uif,r(m); we have

1) Hy(r(my) = Hy, , (r3),

2) 1 f(rm)) is equal to the number of zeros of fi in Dy,,

8) n1i, £ (7 (m)) —N2i, £ (T(m)) is equal to the number of zeros of fi . on Dey,>.

For the proof, see [7, Theorem 3.1].
From Theorem 2.3 we see that f(z(m)) has zeros on D, > if and only if r(m)
is a critical point.

For a an element of C, and f a holomorphic function on D, , which is
not identically equal to a, define
n;f(a, T(m)) = Tlu,f—a(r(m)), i=1,...,m.
Fix real numbers py,...,pm with 0 < p; <74, i =1,...,m.
For each € R, set A;(x) = (p1, -3 Pic1, Ty Tit1y e+, Tm)y 4= 1,...,m,

Bl(x): (pla'"7pi—1axapi+1a"'7pm)ai: 1)"'7m'

Define the counting function Ny(a,r(m)) by

1 &N g, Aiz))
Nf(a,r(m)) = @Z/ix dz.
i:lp,

If a=0, then set Nf(T(m)) = Nf(O, T(m)).
Then

T4

O e

For each i = 1,2, ...,m, set
kl,i = nli,f(Ai(Ti)); kQ,i = nQi,f(Ai(Ti));

Ult asr) = 10" = Uy € Dayiry) : [ fe(u®)| = | f2

|f(ul)| = |f Ai(ri)s |fk1,i(ul)| = |fk51,i

|fk21(ul)| = |fk52,i Ai(ﬁ‘)}a
Ty ={Ai(z) : A;(z) is a critical point, 0 < z < 7;}.

Ai(f’i))

Ai(f’i))
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By Lemma 2.1 and Theorem 2.3, I'; is a finite set. Suppose that I';, i =
1,...,m, contains n elements A;(z7), 7 = 1,...,n. From this and Lemma 2.1
it follows that

Wi,y = {0 = Uy € Uiy ) - (@) € Ujp a,(oiys = 1,...,n} # 0,

i=1,...,m.
Lemma 2.4.

1) Let f be a non-zero holomorphic function on D
i=1,2,...,m, and for all v’ € u;IfyAi(m, we have

rmy - LheEN for each

ny, (@) =n; 5o Ai(x), pi <x <1y
2)  Let fs(2m)),s = 1,2,...,q, be q non-zero Vholomvorphic functions on
Dy, . Then for each i = 1 2 soe M, there exists u' € Wiy ) for all s =
1,...,q. '
The result can be proved easily by using Lemma 2.1 and Theorem 2.3.

Theorem 2.5. Let f be a non-zero holomorphic function on D Then

Hy(r(my) — Hy(pm)) = Ns(rm))-

T(m) "

The proof of Theorem 2.5 follows immediately from [7, Theorem 3.2].

Let f be a non-zero holomorphic function on Dy, a = (a1,...,am) €

D and

T’(.m,) ?

f= Z ay(z1 —a1)" ... (2m — am)™™,  Z(m) € Dy,
|71=0

Set
vp(a) =min {|]7]:a, #0}.
For each : = 1,2, ..., m, write

Z(m) Z f’L - a"L Zi — ai)k-

Set

—_—
gi,k(zla ceey Zi—1y Zip1y ooy Zm) = f’Lk(Z’L - CM),

bi,k = giyk(al, ey Ag—1y A1y ooy am).

Then -
f’L a Z b’L k - a"L
k=0
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Set
, _Jmin {k:bip#0} if fia(z) #
vig(a) = {—|— 00 if fia(2) =

ord; s(a) = min {k : gi’k@ # 0}
! + 00 if gix(z:) =0 for all k.

0
0,

If f(a) =0, then a (resp.,a; ) is a zero of f(z(m)) (resp., fi,a(2) ). Then the
numbers vy (a), v; r(a), ord; (a) are called multiplicity, i — th partial multiplic-
ity, © — th partial order, respectively, of a.

Set

v=(u

e u™)ut € u;IfyAi(m,
Ny, (r(m)) = Ny, o (1) + -+ Ny (Tm),
Vo= A{v: Ny, (romy) = Ny (rom) s
where 7y, (r;) be the number of distinct zeros of f; ;. By Lemma 2.4 and
[4], V is a non-empty set,

Ny, (7(m)) = Zl (v(a) +logri) + ny, 41(0, p1)(logry —log pr)

p1<l|a|<ry
I Zm (v(a) +logrm) + 1y, um (0, pm)(logrm —logpm), (2.1)
pm<]a|<rm
where
Z, (v(a) +logr;)
pi<la|<r;

is taken on all of zeros a of f;,: (counting multiplicity) with p; < |a|] < 7y,
1 =1,2,...,m. Notice that, the sums in (2.1) are finite sums.

Denote by Ny, (r(;,)) the sum (2.1), where every zero a of the functions f; ,,
i =1,...,m, is counted ignoring multiplicity. Set

N = N i
#(Tamy) = max Ny, (r(m))

From Lemma 2.4 it follows that one can find v’ € U! FAsry and v =

(U,l, cey um) such that Wf(r(m)) = va (T(m)).
If v is a multi-index and f is a meromorphic function of m variables, then
we denote by 9} the partial derivative

ol f

0z ... 0z
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Theorem 2.6. Let f be a non-zero entire function on CJ' and v a multi-index
with | v |> 0. Then

Hoj(Be(re)) — Hy(Be(re)) < — [ v | logre + O(1).

The proof of Theorem 2.6 follows immediately from [3, Lemma 4.1].

3.Unique range sets for p-adic meromorphic func-
tions in several variables

Let f = IL be a meromorphic function on Dy, (resp., C;'), where fi, fa be

f2
two holomorphic functions on Dy, (resp., C}'), have no common zeros, and
a € C,.
We set
Hy(rm) = max Hy,(r(m)),
and

Ni(a;7(m)) = Npi—afs (7(m))-
For a point d € C, we define the function v§ : Cp* — (N U {+oo})™
by v?(a(m)) = U(;l—dfz (a(m)) and write v?(a(m)) = (vff(a(m)), cee, vi%f(a(m))),
and v (a(m)) = v(}g (a(m)) and write v (a(m)) = (V2% (A@m)); - - - Vg £ (Aam)))-

For a subset S of C, we set

= U {(@ss apm) € (VU {00} x €3 f(agm) = d =0, v (aem) = @i}
des

= Bi(£,9) |{(¢i» agm) € (NU {+00}) x C" |Ulf(a(m))—ql},

Ef(a)={2€Cy: fi —af, =0 ignoring multiplicities},
f(00) ={2€Cp: fo =0 ignoring multiplicities}.

Lemma 3.1. Let f = % be a non-constant meromorphic function on CJ'.
Then there exists a multi-index v1 = (0,...,0,%1¢,0,...,0) such that y1. = 1
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O fa— 0L fi

72 and the Wronskians
2

o
and 8f =

W) = W(fi, f2) = det (5}1 6{;)

are not identically zero.
For the proof, see [3, Lemma 4.2].

Theorem 3.2. Let f be a non-constant meromorphic function on CJ' and
a; €Cp,i=1,...,q. Then

(¢ — 1)Hf(BE(7"6)) < Zﬁf(aja Be(re)) + Wf(oo, Be(re)) —logre + O(1).

Jj=1

Proof Set G ={Gp,...Gp,_,}, where (f1,...,B,—1) is taken on all different
choices of g—1 numbers in the set {1,...,q+1},and G; = fi—a;f2, i =1,...,4q,

and Ggy1 = fo. Set Hg(Be(re)) = (5 nax )Hgﬁl__ﬂq_l (Be(re)). We need the
1.-.8q—1
following

Lemma 3.3. We have Hg(Be(re)) > (¢ — 1)Hf(Be(re)) + O(1),
where O(1) does not depend on r..

Proof We have

Hg(Be(re)) = max  Hgy . .a, » (Be(re))
(ﬂlean—l) a

= max Z Hg, (Be(re))-

BB,

Assume that for a fixed r., the following inequalities hold
Hg, (Be(re)) > Hay, (Be(re)) > .00 > Hg,, (Be(re))-
Then
Hg(Be(re)) = Hay, (Be(re)) + Hapg, (Be(re)) + -+ Hay,  (Be(re)). (3.1)
Since a1, ..., aq are distinct numbers in C,,, then
fi=bi,Gg, +b,Gg,,,, i =1,2,

where b;,, b;, are constants, which do not depend on r.. It follows that

x Ha,,  (B.(r0)) +O(1)

ma.
0<5<1

Hy, (BE(TE)) <
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Therefore, we obtain
Hy,(B(r)) < He,, (Be(re)) + O(1),
forj=1,...,q—1and i =1, 2. Hence,

Hf(Be(Te)) = max Hf1 (Be(’/'e)) g HG{-xj (Be(’/'e)) + O(l)a (32)

1<i<2

for j = 1,...,¢ — 1. Summarizing (¢ — 1) inequalities (3.2) and by (3.1), we
have
Hg(Be(re)) = (¢ — 1) Hy(Be(re)) + O(1).

Now we prove Theorem 3.2. Denote by W (g1, g2) the Wronskian of two entire
functions g1, go with respect to the +; as in 3.1.

Since f is non-constant , we have W(fi, fo) # 0. Let (a1, a2) be distinct
two numbers in {1,...,¢+ 1}, and (81,...,8—1) be the rest. Note that the
functions f; can be represented as linear combinations of G4, , Gq,. Then we
have

W(Gozla GOZQ) = C(OZLOZQ)W(fl) fQ)a

where ¢(q, a,) = ¢ is a constant, depending only on (a1, az). We denote

W(Gay, Gay
A = A(O[l,O[Q) = %

1 1
= det o5, oE. |-
Ga, Gay

Hence
Gl---Gq+1 _ CGgl ...Ggq_l' (3 3)
W(flan) A .
Y1
Set L; = 5=+, i=1,2. Then

< : .
log|Alp, (r,) < [nax, log | Li| B, (r.)
By Theorem 2.6
log|Li|p.(r.) < —|m|logre + O(1).

Because |y1| =1

log |Li| g, (r,) < —logre + O(1). (3.4)
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y (3.3), we obtain

q+1

> Ha (B (r) = Hw (B.(r.)

= Hc;{,l...c:ﬁq_1 (Be(re)) —log|Al g, (r,) + O(1).

From this and (3.4), we have

HoBelred) = o, 05 Homnn, -y (Belre)
q+1
ZHG — Hw(Be(re)) — logre + O(1).
By Lemma 3.3
q+1
(¢ —1)Hs(B ZHG — Hy (Be(re)) —logre + O(1).
Thus
q+1
(¢ = 1) H(Be(re)) + Hw (B ZHG —logre +O0(1). (3.5)

By Theorem 2.5

HW(BE(TE)) = NW(BE(TE)) + O(l)a
He,(Be(re)) = N, (Be(re)) + O(1).

Therefore and (3.5) we obtain

q+1
(¢ = 1)Hy(Be(re)) + Nw (B ZNG —logre+0O(1). (3.6)
For a fixed B.(re), we consider non-zero entire functions W,G1,...,Gq on

Dp.(r.)- From Lemma 2.4 it follows that one can find u® € Ug, g (. ) and
ueeua,B(r)jzl .., q, such that '
Nw (Be(re)) = Nw, e (re), Na, (Be(re)) = NG,)., e (Te)-

Now let u¢(x) be a zero of GJ, havmg the e — th partial multiplicity equal

to k, (k # —|—oo) k> 2. Since v1 = (0,...,0,71,0,...,0) with y1. = 1, we have
a“( la)=k—-1ifi=e.
On the other hand
W(Goéla GOZQ) = C(OZLOZQ)W)
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where (aq, ag) are distinct two numbers in {1, ..., ¢+ 1}. Therefore ué(z) is a
zero of W having e — th partial multiplicity at least k — 1.

Now we consider the function F' = H G;.
=1
Because F' is not a constant, F has zeros. Let u¢(z) be a zero of F. By the

hypothesis, a1, ..., aq are distinct numbers, from this it follows that there exists
only one function G; such that G;(u¢(x)) = 0. Therefore

q
ZN<G e (Te) = Nw, e ( ZWG Yo (Te)-

From this and (3.6) we obtain Theorem 3.2.

Theorem 3.4. Let f, g be two nonconstant meromorphic functions on C;* such
that E(f,a;) = E(g,a;),a; € C, U{oo},i=1,2,...,q. If ¢ > 4, then f = g.
Proof Assume, on the contrary, that f Z g. Set

Then, ¢ # 0 and Hy (B. (1)) < Hy(Be(re)) + Hy(B.(ro)).
Therefore, applying Theorem 3.2 to the function f and values ay,...aq we
have

(q _ 2) Hy (Be(re)) < iﬁf (aj, Be(re)) “logre +O(1)

< Ny (Be(re)) —logre +0(1).

Similarly

(q - 2) H, (Be(re)) <N, (Be(re)) “logre + O(1).

Summing up these inequalities and using Theorem 2.5, we obtain

(4=2) (s (Bor) + Hy(B.(r)) <2(H(Be(r.))

+H, (Be(re)) —2logre + O(1).
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Therefore
(q - 4) (Hf (Be(re)) +H, (Be(re)) +2logr. < O(1).

It implies ¢ — 4 < 0, a contradiction. Theorem 3.4 is proved.

Theorem 3.5.Let f, g be two nonconstant meromorphic functions on CJ' such
that Ei(f,a;) = Ei(g,a;j),i=1,2,...,m,a; € C,U{oo},j=1,2,3. Then f = g.
Proof We need the following

0

Lemma 3.6. Let f, g be two non-zero entire funtions on CJ' such that v(; =,

on CJ'. Then f = cg where ¢ s a non-zero constant in Cp.

Proof Take r1,...,7, > 0 such that f,g have no zeros in Dey, \». If f
is a non-zero constant then so is g. Therefore f = cg. Assume that f is
non-constant. Since v} = ), g is non-constant. Let a = (a1,...,am), b =
(b1,-..,bm) be two any elements of Dy, ~. Set

Cl(bl) = (bl,...,bi,ai_‘_l,...,am), 1= 1,...,m.
By v(; = vg, Vi, f(2(m)) = Vi,g(Zm)), i =1,...,m. Thus

f(a) _ F(Ci(bi))
g(a) g(Ci(by))

fi,Ci(bi) = Cii,C;(bi)s with ¢; = ;and ¢; = ¢i41,

i=1,2,...,m— 1. From this we have

fla) _ fb)
a@ ~ o) forall a,be D,_, ..
Set fa)
a
c= g(a)a a € D<T’(m)>a h = f_cg

Asume that h is not identically zero. Consider h, f, g in D, ~. By Lemma
2.2, there exists u € D<T(m)> such that h; y, fiu, giu are not identically zero,

i=1,2,...,m. We have f;, = cgu,c = %. Therefore ¢ = ¢ and h;,, =
fiu — cgi . identically zero. From this we a obtain contradiction. So, f = cg.
Now we prove Theorem 3.5. Write f = }[—;, g = g—;, where fi, fo are two
holomorphic functions on Cj'), having no common zeros, and gi, gs are too.
Applying Lemma 3.6 to fi +a; fo and g1 +a;g2, j = 1,2,3 we have fi +a;fo =

¢i(g1+a;92),¢; #0,5 =1,2,3. From this we obtain ¢; = c; = c3 and f =g.

Theorem 3.7. Let f,g be two nonconstant meromorphic functions on C'
such that E(f,a;) C E(g,a;),a; € C, U {oo},i = 1,2,...,q, and E;(f,b;) =
Ei(g,b;),b; € C,U{o0},i=1,2, and a; # b; for alli,j. If ¢ > 4, then f = g.
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Proof Similarly as in the proof of Theorem 3.5, we have f = cg, ¢ # 0. Assume,
on the contrary, that f #Z g. Set

Then, ¢ # 0 and H, (Be (7‘6)) < Hy (Be (7‘6)) +H, (Be(re)).
Applying Theorem 3.2 to the function f and values aq,...aq, we have

(q _ 2) Hy (Be(re)) < iﬁf (aj, Be(re)) “logre +O(1)

< N (Be(re)) —logre +0(1).

Using Theorem 2.5, we obtain

(q _ 2) (Hf (Be(re))) < (Hf (Be (7‘6)) +H, (Be(re)) ~2logre + O(1).
By Hy(Be(re)) = Hy(Be(re))

(q - 4)Hf(Be(7’e) +2logr. < O(1).

It implies ¢ — 4 < 0, a contradiction. Theorem 3.7 is proved.
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