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Abstract

This paper presents an outcome-space outer approximation algorithm
for globally solving the linear multiplicative programming problem. We
prove that the proposed algorithm is finite. To illustrate the new algo-
rithm, we apply it to solve some sample problems.

1 Introduction

Consider the linear multiplicative programming problem

min{
p∏

j=1

〈cj , x〉 : x ∈ M}. (LMP )
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Assume throughout this paper that M is a nonempty polyhedral convex set
defined by

M = {x ∈ R
n : 〈ai, x〉 ≥ bi , i = 1, · · · , m; x ≥ 0} (1)

or in matrix form:

M = {x ∈ R
n : Ax ≥ b, x ≥ 0}, (2)

where A is the m × n matrix of rows ai and b ∈ R
m, p ≥ 2 is an integer, and

for each j = 1, ..., p, vector cj ∈ R
n satisfies

〈cj, x〉 > 0 for all x ∈ M. (3)

It is well known that Problem (LMP ) is a global optimization problem, i.e.,
Problem (LMP ) generally possesses multiple local optimal solutions that are
not globally optimal [4]. Furthermore, Problem (LMP ) is known to be NP-
hard, even when p = 2 [13].

Problem (LMP ) has a variety of important applications in engineering, fi-
nance, bond portfolio optimization, VLSI chip design and other fields. In recent
years, a growing interest in Problems (LMP ) has been evident among both re-
searchers and practitioners. Many algorithms have been proposed for globally
solving this problem; see, e.g, [1],[4],[7],[11],[15],... and references therein. For
a survey of these and related results see [4].

Let C denote the p×n matrix whose jth row equals cj , j = 1, 2, · · ·, p. The
outcome set N for problem (LMP ) is

N = {y ∈ R
p : y = Cx, for some x ∈ M}.

From [14], N is also a nonempty, polyhedral convex set. One of the most com-
mon outcome space reformulations of problem (LMP ) is given by the problem

min{
p∏

j=1

yj : y ∈ N}. (OLMP )

It is easily seen that optimal values of Problems (LMP ) and (OLMP ) are
the same. In this paper, we present an outcome-space outer approximation
algorithm for globally solving the linear multiplicative programming problem
(LMP ). Because p is almost smaller than n, we expect potentially that con-
siderable computational savings could be obtained.

2 Theoretical Prerequisites

First, the existence of global optimal solution of Problem (OLMP ) is showed
by the next proposition. This fact can be obtained from Proposition 5.1 of [9],
however we give here a full proof for the reader’s convenience.



N. T. Bach Kim N. T. Le Trang and Tang T. Ha Yen 83

Proposition 2.1. The problem (OLMP ) always has global optimal solution.

Proof. As usual, R
p
+ denotes the nonnegative orthant of R

p and intRp
+ is its

interior. It is easily seen that the objective function g(y) =
∏p

j=1 yj of problem
(OLMP ) is increasing on intRp

+, i.e., if

y1 ≥ y2 � 0 implies that g(y1) ≥ g(y2). (4)

Denote the set extreme points of N by Nex and the set of extreme directions
of N by Ned. It is well known [14] that

N = convNex + coneNed, (5)

where convNex is the convex hull of Nex and coneNed is the cone generated by
Ned. Since convNex is a compact set and the function g(y) is continuous on
N , there is y0 ∈ convNex such that

g(ŷ) ≥ g(y0), for all ŷ ∈ convNex. (6)

It is obviously that y0 ∈ N . We claim that y0 must be a global optimal
solution for problem (OLMP ). Indeed, notice under the assumption (3) that

coneNed ⊂ (intRp
+ ∪ {0}). (7)

For any y ∈ N , it follows from (5) and (7) that

y = ȳ + v ≥ ȳ, (8)

where ȳ ∈ convNex and v ∈ coneNed. Combining (4), (6) and (8) gives

g(y) ≥ g(ȳ) ≥ g(y0).

In other words, y0 is a global optimal solution of problem (OLPM). The proof
is completed. �

Let vm and vn denote the optimal values of problem (LMP ) and (OLMP ),
respectively. The following proposition tells us the relationship between two
problems (LMP ) and (OLMP ).

Proposition 2.2. If y∗ is a global optimal solution to problem (OLMP ), then
any x∗ ∈ M such that Cx∗ = y∗ is a global optimal solution to problem (LMP ).
Furthermore, vn = vm.

Proof. This follows directly from the definition. �

By Proposition 2.2, instead of solving problem (LMP ) we solve problem
(OLMP ). In many applications, p is much smaller than n. It leads that N
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has both smaller dimension and simpler structure than M , so computational
savings could be obtained.

For a given nonempty set Q ⊂ R
p, a point q0 ∈ Q is an efficient point (or

Pareto point) of Q if there is no q ∈ Q satisfying q0 > q, i.e. Q ∩ (q0 − R
p
+) =

{q0}. Similarly, a point q0 ∈ Q is a weakly efficient point if there is no q ∈ Q
satisfying q0 � q, i.e. Q ∩ (q0 − intRp

+) = ∅. We denote MinQ and WMinQ
the set of all efficient points of Q and the set of all weakly efficient points of Q,
respectively. By the definition,

MinQ ⊆ WMinQ.

Let us recall that the orders in R
p are defined as follows: y1 = (y1

1 , ..., y1
p),

y2 = (y2
1 , ..., y2

p) ∈ R
p,

y1 ≥ y2 if y1
i ≥ y2

i for all i = 1, ..., p;
y1 > y2 if y1 ≥ y2 and y1 �= y2;
y1 � y2 if y1

i > y2
i for all i = 1, ..., p.

The following result (Theorem 2.5, Chapter 4 [12]) will be used (see also
Theorem 2.1.5 [17])

Proposition 2.3. Let the set Q ⊂ R
p. A point y0 ∈ Q is a weakly efficient of

Q if and only if there is a nonzero vector p ∈ R
p and p ≥ 0 such that y0 is an

optimal solution to the linear programming problem

min{〈p, y〉 : y ∈ Q}.

Remark 2.1. Invoking the assumption (3), it is easily seen that MinN is
nonempty.

It is well known that the objective function g(y) =
∏p

j=1 yj of problem
(OLMP ) is a quasiconcave on N and attains its minimum at an extreme point
of N (see [4]). Combining this fact and the definition of an efficient point gives
the following result which will be needed.

Proposition 2.4. Any global optimal solution to problem (OLMP ) must be-
long to the efficient extreme point set MinN ∩ Nex.

By Proposition 2.4, one can find global optimal solutions for problem (OLMP )
by determining the set of all efficient extreme points of N and comparing
the values of the objective function at these efficient extreme points. Some
algorithms for generating MinN ∩ Nex have been proposed, see, for exam-
ple,[2],[3],[5],[10].

Here, it is worth noticing that the new algorithm allows us to find a global
optimal solution to problem (OLMP ) without determining the whole set MinN∩
Nex (see Remark 3.1 in Section 3).
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Denote by ylo = (ylo
1 , ..., ylo

p ), where for each j = 1, 2, ..., p, ylo
j equals to the

minimum value of the linear programming

min{yj : y ∈ N}. (Llo
j )

Notice that ylo generally do not belong to N . If ylo ∈ N then MinN = {ylo} and
ylo is the global solution to problem (OLMP ). We therefore assume henceforth
that ylo �∈ N .

Denote the optimal solution of the problem (Llo
j ) by vj = (vj

1, ..., v
j
p), j =

1, ..., p. Let
vM = max{vj

i , j = 1, ..., p; , i = 1, ..., p}
and

yup = (yup
1 , ..., yup

p ), with yup
j = α > vM for all j = 1, ..., p.

Consider the set N co defined by

N co = (N + R
p
+) ∩ (yup − R

p
+).

It is clear that N co is a nonempty, full-dimension compact polyhedron in R
p
+.

Proposition 2.5. MinN = MinN co.

Proof. (⇒) We will begin with showing that MinN ⊆ MinN co. Let y∗ ∈ MinN .
By definitions, we have y∗ ∈ N ⊂ N + R

p
+ and y∗ < yup. This implies that

y∗ ∈ N co. If y∗ �∈ MinN co then there exists ȳ ∈ N co such that y∗ > ȳ. Since
N co ⊂ N + R

p
+, we have ȳ = y0 + u where y0 ∈ N and u ≥ 0. Therefore,

y∗ > y0 which contradicts the fact y∗ ∈ MinN . It implies that y∗ ∈ MinN co.
(⇐) We now prove that MinN ⊇ MinN co. Let y∗ ∈ MinN co. First, we

show that y∗ ∈ N . Indeed, since y∗ ∈ N co, by definition of N co we have
y∗ = y0 + u = yup − v where y0 ∈ N , u ≥ 0 and v ≥ 0. If u > 0 then
y0 = yup − (v + u) ∈ (yup − R

P
+). Hence, y0 ∈ N co and y∗ > y0 . Since

y∗ ∈ MinN co, we have y∗ = y0 ∈ N . To complete the proof it remains to show
that y∗ ∈ MinN . Assume the contrary that y∗ �∈ MinN . By definitions, there
is ȳ �= y∗, ȳ ∈ N such that ȳ > y∗, i.e., ȳ = y∗ − v with v > 0. As y∗ ∈ N co,
we have y∗ = yup − t and t ≤ 0. Thus ȳ = y∗ − v = yup − t− v = yup − (t + v),
where (t + v) > 0. That means ȳ ∈ N co and y∗ > ȳ. This contradict to that
y∗ ∈ MinN co. This proof is completed. �

Let

B0 = (ylo + R
p
+) ∩ (yup − R

p
+)

= {y ∈ R
p : ylo ≤ y ≤ yup}.

We have N co ⊂ B0 and MinB0 = {ylo}. It is clear that the set of all extreme
points of B0 can be easily determined.
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Starting with the box B0 , the outer approximation algorithm will iteratively
generate a finite number of nonempty, compact, polyhedra Bk, k = 0, 1, 2, · · ·
such that

B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ N co.

In a typical iteration k, the polyhedra Bk+1 is defined by

Bk+1 = Bk ∩ {y ∈ R
p : 〈p∗, y〉 ≥ 〈p∗, yk〉},

where yk is the intersection between the line segment [vk, yup] and the boundary
of N co, vk is a vector belonging to the set Bk \ N co and p∗ ∈ R

p is a nonzero
nonnegative vector. Furthermore,

i) The following Proposition 2.6 shows that the point yk is a weakly efficient
point of the set N co (i.e, yk ∈ WMinN co).

ii) The separation hyperplane

{y ∈ Rp : 〈p∗, y〉 = 〈p∗, yk〉},

which is analogous to Benson’s the separation hyperplane (see Theorem 2.5
[3]), can be determined by the Proposition 2.7.

Remark 2.2. In a typical iteration k, we have N co ⊂ Bk. The definition leads
to the relation

WMinBk ∩ N co ⊂ WMinN co.

Remark 2.3. Since the vector p∗ is nonzero nonnegative, by Proposition 2.3,
the set

Bk+1 ∩ {y ∈ Rp : 〈p∗, y〉 = 〈p∗, yk〉} ⊂ WMinBk+1.

Therefore
V Bk+1

new := Bk+1
ex \ Bk

ex ⊂ WMinBk+1,

where Bk
ex denotes the set of all extreme points of Bk.

Proposition 2.6. For any v̄ ∈ Bk \N co, the line segment [v̄, yup] contains a
unique point yw ∈ WMinN co.

Proof. By the convexity of the line segment [v̄, yup] and the set N co we have the
unique point yw belongs to [v̄, yup] ∩ ∂N co. Now we show that yw ∈ WMinN .
Since N co is a compact polyhedron and yw belongs to the boundary of N co, the
set A = N co − yw is also a compact polyhedron containing the origin 0 of the
space R

p and 0 belongs to the boundary of A. It is well known (see Separation
Theorems [14]) that there is a nonzero vector p such that

〈p, u〉 ≥ 0 for all u ∈ A. (9)
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Then, it is easy to show that

〈p, v〉 ≥ 0 for all v ∈ coneA, (10)

where
coneA = {v = tu : u ∈ A, t ≥ 0} (11)

is the cone generated by A. From (10) and (11), since ū = yup − yw ∈ A, we
have

〈p, tū〉 = t〈p, ū〉 ≥ 0 for all t ≥ 0. (12)

Notice that by definition, we have ū � 0. Therefore (12) is only true when

p ≥ 0. (13)

From the definition of A and (9) we deduce

〈p, y − yw〉 ≥ 0 for all y ∈ N co,

i.e.,
〈p, y〉 ≥ 〈p, yw〉 for all y ∈ N co. (14)

Combining Proposition 2.3, (13) and (14), the proof is straight-forward. �

Proposition 2.7. Assume that yw ∈ WMinN co. Denote by (p∗T , u∗T ) an
optimal solution to the following linear programming problem

max −〈yw , p〉 + 〈b, u〉, (DT )
subject to −pT C + uT A ≤ 0,

〈e, p〉 ≥ 1,
p, u ≥ 0,

where e ∈ R
p is the vector in which each entry equal to 1.0, p ∈ R

p and u ∈ R
m.

Then p∗ ≥ 0, p∗ �= 0 and yw belongs to a weakly efficient face of N co given by

{y ∈ N co : 〈p∗, y〉 = 〈b, u∗〉}.
Proof. Consider the following linear programming problem

max t
subject to Cx + et ≤ yw,

Ax ≥ b,
x ≥ 0, t ≥ 0.

Since yw ∈ WMinN co, it can easily be seen that the optimal value of this
problem equals to zero. For convenience, we restate this problem in an equiv-
alent form

min −t (T )
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subject to Cx + et ≤ yw,
Ax ≥ b,
x ≥ 0, t ≥ 0.

Let voT be the optimal value of problem (T ). It is clear that voT = 0. The
dual linear programming problem of problem (T ) is given by

max 〈yw , p̄〉 + 〈b, u〉, (DT0)
subject to p̄T C + uT A ≤ 0,

〈e, p̄〉 ≤ −1,
p̄ ≤ 0, u ≥ 0.

Let p = −p̄. It is easy to see that problem (DT0) becomes problem (DT ).
That means problem (DT ) and problem (T ) are dual each other. Denote
by voDT the optimal value of problem (DT ). By the dual theory of linear
programming, voT = voDT . Hence, we have voDT = 0, i.e.

〈yw , p∗〉 = 〈b, u∗〉, (15)

where (p∗T , u∗T ) is an optimal solution to problem (DT ). Because (p∗T , u∗T )
is a feasible solution to problem (DT ), we have p∗ ≥ 0 and p∗ �= 0.

Therefore, in view of Proposition 2.3, the optimal solution set of the linear
programming

min〈{p∗, y〉 : y ∈ N co} (W )

is an weakly efficient face of N co. To complete the proof it remains to show
that yw belongs to this weakly efficient face.

The explicit form to problem (W ) is
min 〈p∗, y〉 (PW )

subject to y ≤ yup,
−y + Cx ≤ 0,

Ax ≥ b,
x ≥ 0.

The dual linear programming problem of (PW ) is given
max 〈yup, s〉 + 〈b, q〉, (DPW )

subject to sT − rT = p∗T ,
rT C + qT A ≤ 0,
r, s ≤ 0, q ≥ 0.

Checking directly shows that
(i) (sT , rT , qT ) = (0T ,−p∗T , u∗) is a feasible solution to problem (DPW )

and the respective objective function value is 〈b, u∗〉;
(ii) (yT , xT ) = (ywT , x∗T ) is a feasible solution to problem (PW ) and the

respective objective function value is 〈p∗, yw〉;
Furthermore, from (15) we have
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(iii) 〈b, u∗〉 = 〈p∗, yw〉.
Combining (i), (ii) and (iii) by duality theory of linear programming leads

the fact that yw is an optimal solution to problem (PW ). This concludes the
proof. �

3 The Algorithm

By virtue of Proposition 2.2, the solution of Problem (LMP ) will be carried
out in two stages:

i) Determining a global optimal solution to Problem (OLMP );
ii) For each global optimal solution y∗ ∈ N to problem (OLMP ), finding

a global optimal solution x∗ ∈ M to problem (LMP ) that satisfies Cx∗ = y∗.
To accomplish this, we can solve the following linear system{

Cx = y∗

Ax ≥ b
x ≥ 0.

3.1 Outcome-Space Outer Approximation Algorithm

The algorithm for solving Problem (LMP ) can be described as follows

Phase 1. (Finding a global optimal solution to problem (OLMP ))

Initialization step. Determine the points ylo and yup. Start with the box

B0 = {y ∈ R
p : ylo

i ≤ yi ≤ yup
i , i = 1, ..., p}.

The vertex set V (B0) of B0 can easily be determined.

Set V B0
new = {ylo} (we have MinB0 = V B0

new) and k = 0.

Iteration k, k = 0, 1, 2, ... See Steps k1 through k5 below

Step k1. Determine the optimal solution set

Bopt = argmin{g(v), v ∈ V Bk
new}.

Set B̄ = Bopt ∩ MinN .

If B̄ �= ∅ (every y∗ ∈ B̄ is a solution to Problem (OLMP )) Then
Goto Phase 2 Else Go to Step k2.

Step k2. Choose an arbitrary vk ∈ Bopt \ N co. Determine

yk ∈ [vk, yup] ∩ ∂N co,
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where ∂N co denotes the boundary of N co.

Step k3. Find an optimal solution (p∗T , u∗T ) to the linear programming prob-
lem (DT ) with yw = yk.

Step k4. Set
Bk+1 = {y ∈ Bk : 〈p∗, y〉 ≥ 〈b, u∗〉},

and determine the set V Bk+1
new = Bk+1

ex \Bk
ex. (By Remark 2.3, we have V Bk+1

new ⊂
WMinBk+1)

Step k5. Set k := k + 1 and go to Iteration k.

Phase 2. (Finding a global optimal solution to problem (LMP ))
For each y∗ ∈ B̄, find a point x∗ ∈ M such that Cx∗ = y∗. Then x∗ is a

global solution to problem (LMP ).

Below, we will show the finiteness of the above algorithm.

Proposition 3.1. The outcome-space outer approximation algorithm is finite.

Proof. The algorithm start from the box B0. In every Step k4 of the iteration
k, we have the box

Bk+1 = {y ∈ Bk : 〈p∗, y〉 ≥ 〈b, u∗〉},

where, by Proposition 2.7, {y ∈ R
n : 〈p∗, y〉 = 〈b, u∗〉} is a weakly efficient

face of N co. The algorithm systematically generates distinct polyhedra Bk,
k=0,1,2,... such that

B0 ⊃ B1 ⊃ · · · ⊃ N co.

Since N co is a nonempty compact polyhedra, the algorithm must be finite. �.

Let us conclude this section with some remarks on the implementation of
the computational modules in the above algorithm.

Remark 3.1. (about checking whether y∗ ∈ MinN in Step k1)
The following multiobjective linear programming problem associated the

multiplicative linear programming (LMP )

MIN{Cx : x ∈ M}. (MOP )

A point x0 ∈ M is an efficient solution of (MOP ) if y0 = Cx0 is an
efficient point of the set N . The following fact can be easily deduced from the
definitions.
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Proposition 3.2. Let y∗ ∈ N . If x∗ ∈ X satisfies Cx∗ = y∗ and x∗ is an
efficient solution to problem (MOP ) then y∗ is an efficient point of N .

Now, we rewrite (1) as follows

M = {x ∈ R
n : 〈āi, x〉 ≥ b̄i, i = 1, · · · , m + n},

where āi = ai, b̄i = bi for all i = 1, · · · , m and āi = ei, b̄i = 0 for all i =
m + 1, · · · , m + n with ei is unit vector ith. Then, let us recall from [8] the
condition for a point to be an efficient solution to problem (MOP ).

Proposition 3.3. (see Corollary 5.4 [8]) A point x∗ ∈ M is an efficient
solution for problem (MOP ) if and only if the following system is consistent
(has a solution) ⎧⎨

⎩
∑p

j=1 λjc
j +

∑
i∈I(x∗) μiā

i = 0,
λj > 0, ∀i = 1, · · · , p,
μi ≥ 0, ∀i ∈ I(x∗),

(16)

where
I(x∗) = {i ∈ {1, · · · , n + m} : 〈āi, x∗〉 = b̄i}.

Proposition 3.2 and Proposition 3.3 allow us to check whether a point y∗ ∈
R

p is an efficient point of N . It can be executed by the following procedure.

Procedure EF (y∗);
Step 1. (Checking whether y∗ ∈ N)

Solve the following linear system{
Cx = y∗,
Ax ≥ b
x ≥ 0.

(17)

If The system (17) has a solution x∗ (i.e., y∗ ∈ N) Then Go to Step 2.
Else Stop. (y∗ /∈ N , hence y∗ /∈ MinN)

Step 2. Solve the system (16)
If The system has a solution Then Stop (x∗ is an efficient solution to

(MOP ), hence y∗ ∈ MinN)
Else Stop. (y∗ /∈ MinN)

Remark 3.2. (about finding yk ∈ [vk, yup] ∩ ∂N co in Step k2)
To determine yk ∈ [vk, yup] ∩ ∂N co we solve the linear programming prob-

lem
λ∗ = minλ (Pλ)
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subject to

⎧⎪⎨
⎪⎩

Cx + λ(vk − yup) ≤ vk

Ax ≥ b
x ≥ 0,
0 < λ < 1.

Then, we have
yk = (1 − λ∗)vk + λ∗yup.

Remark 3.3. In Step k4, we have to determine the set V Bk+1
new = Bk+1

ex \Bk
ex.

Since Bk+1 is obtained from Bk by adding a new constraint linear inequality,
the set Bk+1

ex can be calculated from those of Bk by using some existing methods
(see, for example,[6],[16]).

3.2 Examples

A test software implementing the algorithm had been constructed in Visual
C++ programming language. This is a self-contain software. The proce-
dures for solving the subsidiary linear programming problems and for checking
whether the system (16) is consistent are based on the well known simplex
method.In a typical iteration k, for determining the extreme point set Bk+1

ex we
used an own code based on the algorithm proposed by T.V. Thieu [16].

Example 1 We begin with the following simple example, which illustrates
the process of the algorithm. Consider the linear multiplicative programming
problem

Example 1.

min{〈c1, x〉〈c2, x〉 | Ax ≥ b, x ≥ 0}, (LMPexam)

where

c1 = (3 1 ), c2 = (0 1 ), A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 −3
−2 1
2 −1
0 1
1 3
5 6
2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−30
−18
−3
1
9
30
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The process of computing is as follows.

Phase 1.

Initialization step: Soling linear programming problems (Llo
1 ) and (Llo

2 ), we
obtain
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v1 = (9.25, 5.5), v2 = (19, 1),
ylo = (9.25, 1) and yup = (19.1, 19.1).

Set B0 = {y ∈ R
2 : 9.25 ≤ y1 ≤ 19.1; 1 ≤ y2 ≤ 19.1};

V B0
new = {ylo} = (9.25, 1); k := 0.

Iteration k = 0;
Step 01 : Solving min{g(v) : v ∈ V B0

new}, we obtain Bopt = {(9.25, 1)}
and B̄ = ∅. Then go to Step 02.

Step 02 : Choose v0 = (9.25, 1). Solving problem (Pλ) with k = 0 we obtain
the optimal value λ∗ = 0.1190 and the optimal solution

(x∗, λ∗) = (2.4226, 3.1547, 0.1190).

Hence,
y0 = (1 − λ∗)v0 + λ∗yup = (10.4226, 3.1547).

Step 03 : Solving linear problem (DT ) with yw = y0, we obtain:

p0 = (0.6667, 0.3333), u0 = (0, 0, 0, 0, 0, 0, 1) and 〈b, u0〉 = 8.

Step 04 : Set B1 = {y ∈ B0 : 0.6667y1 + 0.3333y2 ≥ 8}.
B1 = {y ∈ R

2 : 9.25 ≤ y1 ≤ 19.1; 1 ≤ y2 ≤ 19.1; 0.6667y1 + 0.3333y2 ≥ 8}.
We have V B1

new = {(9.25, 5.5); (11.5, 1)}.
Step 05 : k := 1 and go to iteration 1.

Iteration k = 1;

Step 11 : Solving min{g(v) : v ∈ V B1
new}, we obtain Bopt = {(11.5, 1)}

and B̄ = ∅. Then go to Step 12.

Step 12 : Choose v1 = (11.5, 1). Solving problem (Pλ) with k = 1 we obtain
the optimal value λ∗ = 0.0714 and the optimal solution

(x∗, λ∗) = (3.2503, 2.2914, 0.0714).

Hence,
y1 = (1 − λ∗)v1 + λ∗yup = (12.0423, 2.2914).

Step 13 : Solving linear problem (DT ) with yw = y1, we obtain:

p1 = (0.2778, 0.7222), u1 = (0, 0, 0, 0, 0, 0.1667, 0) and 〈b, u1〉 = 5.

Step 14 : Set
B2 = {y ∈ B1 : 0.2778y1 + 0.7222y2 ≥ 5} =
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= {y ∈ R
2 : 9.25 ≤ y1 ≤ 19.1; 1 ≤ y2 ≤ 19.1;

0.6667y1 + 0.3333y2 ≥ 8; 0.2778y1 + 0.7222y2 ≥ 5}.
We have V B2

new = {(15.4, 1), (10.5714, 2.8571)}.
Step 15 : k := 2 and go to iteration 2.

Iteration k = 2;

Step 21 : Solving min{g(v) : v ∈ V B2
new}, we obtain Bopt = {(15.4, 1)}

and B̄ = ∅. Then go to Step 22.

Step 22 : Choose v2 = (15.4, 1). Solving problem (Pλ) with k = 2 we obtain
the optimal value λ∗ = 0.0242 and the optimal solution

(x∗, λ∗) = (4.6836, 1.4387, 0.0242).

Hence,
y2 = (1 − λ∗)v2 + λ∗yup = (15.4896, 1.4387).

Step 23 : Solving linear problem (DT ) with yw = y2, we obtain:

p2 = (0.1111, 0.8889), u2 = (0, 0, 0, 0, 0.3333, 0, 0) and 〈b, u2〉 = 3.

Step 24 : Set
B3 = {y ∈ B2 : 0.1111y1 + 0.8889y2 ≥ 3} =
= {y ∈ R

2 : 9.25 ≤ y1 ≤ 19.1; 1 ≤ y2 ≤ 19.1; 0.6667y1 + 0.3333y2 ≥ 8;
0.2778y1 + 0.7222y2 ≥ 5; 0.1111y1 + 0.8889y2 ≥ 3}.

We have V B3
new = {(19, 1), (13.667, 1.667)}.

Step 25 : k := 3 and go to iteration 3.

Iteration k = 3;

Step 31 : Solving min{g(v) : v ∈ V B3
new}, we obtain Bopt = {(19, 1)}

and B̄ �= ∅. In particular, take y∗ = (19, 1). Use Procedure EF (y∗) with
y∗ = (19, 1) we confirm that y∗ ∈ MinN . Then B̄ = {(19, 1)}.

Go to Phase 2.

Phase 2. We have yopt = (19, 1) is an optimal solution to problem (OMLP ).
Solving the system (17) with y∗ = yopt = (19, 1), we obtain the optimal

solution xopt = (6, 1) to problem (LMP ).
The algorithm is terminated.

Remark 3.4. In the Example 1, the set of all efficient extreme points of N
consists exactly of four points,

MinN ∩ Nex = {(19, 1); (13.6667, 1.6667); (10.5714, 2.8571); (8, 2.5)}.



N. T. Bach Kim N. T. Le Trang and Tang T. Ha Yen 95

However, in the calculating by the proposed algorithm to obtain the global
optimal solution to the problem (LMPexam), in fact, we need to work with
three efficient extreme points (19, 1), (13.6671, 1.6671) and (10.5714, 2.8571).

Example 2. The following example introduced by H.P. Benson and G.M.
Boger [4], and also considered in [7]. The problem is stated as follows.

min{〈c1, x〉〈c2, x〉 | Ax = b, x ≥ 0},
where

c1 = (1 0 1/9 0 0 0 0 0 0 0 0 0 ), c2 = (0 1 1/9 0 0 0 0 0 0 0 0 0 ),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 9 2 1 0 0 0 0 0 0 0
8 1 8 0 1 0 0 0 0 0 0
1 8 8 0 0 1 0 0 0 0 0
7 1 1 0 0 0 −1 0 0 0 0
1 7 1 0 0 0 0 −1 0 0 0
1 1 7 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

81
72
72
9
9
9
8
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The process of computing is as follows.

Phase 1.

Initialization step: Solving linear programming problems (Llo
1 ) and (Llo

2 ) we
obtain

v1 = (0.1111, 8.1111), v2 = (8.1111, 0.1111)
ylo = (0.1111, 0.1111), and yup = (8.2111, 8.2111).

Set B0 = {y ∈ R
2 : 0.1111 ≤ y1 ≤ 8.2111; 0.1111 ≤ y2 ≤ 8.2111};

V B0
new = {ylo} = (0.1111, 0.1111); k := 0.

Iteration k = 0;
Step 01 : Solve min{g(v) : v ∈ V B0

new}, we obtain Bopt = {((0.1111, 0.1111)}
and B̄ = ∅. Then go to Step 02.

Step 02 : Choose v0 = (0.1111, 0.1111). Solve problem (Pλ) with k = 0 we
obtain the optimal value λ∗ = 0.1097 and the optimal solution

(x∗, λ∗) = (0, 0, 9, 63, 0, 0, 0, 0, 54, 8, 8, 0.1097). Hence,

y0 = (1 − λ∗)v0 + λ∗yup = (0.9999, 0.9999).

Step 03 : Solving linear problem (DT ) with yw = y0, we obtain:

p0 = (0.8889, 0.1111), u0 = (0, 0, 0, 0.1111, 0, 0, 0, 0) and 〈b, u0〉 = 0.9999.
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Step 04 : Set
B1 = {y ∈ B0 : 0.8889y1 + 0.1111y2 ≥ 0.9999}.

= {y ∈ R
2 : 0.1111 ≤ y1 ≤ 8.2111; 0.1111 ≤ y2 ≤ 8.2111;

0.8889y1 + 0.1111y2 ≥ 0.9999}.
We have V B1

new = {(1.1111, 0.1111); (0.1111, 8.2111)}
Step 05 : k := 1 and go to iteration 1.

Iteration k = 1;

Step 11 : Solving min{g(v) : v ∈ V B1
new}, we obtain Bopt = {(1.1111, 0.1111)}

and B̄ = ∅. Then go to Step 12.

Step 12 : Choose v1 = (1.1111, 0.1111). Solving problem (Pλ) with k = 1
we obtain the optimal value λ∗ = 0.0973 and the optimal solution

(x∗, λ∗) = (0.9025, 0, 8.0975, 56.6822, 0, 6.3178, 5.4153, 0, 48.5847, 7.0975, 8, 0.0973).

Hence,
y1 = (1 − λ∗)v1 + λ∗yup = (1.8022, 0.8996).

Step 13 : Solving linear problem (DT ) with yw = y1, we obtain:

p1 = (0.1111, 0.8889), u1 = (0, 0, 0, 0, 0.1111, 0, 0, 0) and 〈b, u1〉 = 0.9999.

Step 14 : Set
B2 = {y ∈ B1 : 0.1111y1 + 0.8889y2 ≥ 0.9999} =

= {y ∈ R
2 : 0.1111 ≤ y1 ≤ 8.2111; 0.1111 ≤ y2 ≤ 8.2111;

0.8889y1 + 0.1111y2 ≥ 0.9999; 0.1111y1 + 0.8889y2 ≥ 0.9999}.
We have V B2

new = {(0.9999, 0.9999), (8.1111, 0.1111)}.
Step 15 : k := 2 go to step iteration 2.

Iteration k = 2;

Step 21 : Solving min{g(v) : v ∈ V B2
new}, we obtain Bopt = {(8.1111, 0.1111)}

and B̄ �= ∅. In particular, Take y∗ = (8.1111, 0.1111). Using Procedure
EF (y∗) with y∗ = (8.1111, 0.1111) we confirm that y∗ ∈ MinN . Then
B̄ = {(8.1111, 0.1111)}.

Go to Phase 2.

Phase 2. We have an optimal solution yopt = (8.1111, 0.1111) to problem
(OMLP ).

Solving the system (11) with y∗ = yopt = (8.1111, 0.1111), we obtain an
optimal solution

xopt = (8, 0, 1, 7, 0, 56, 48, 0, 6, 0, 8)



N. T. Bach Kim N. T. Le Trang and Tang T. Ha Yen 97

to problem (LMP ).
The algorithm is terminated.
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