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Abstract

Let F' be a distribution and let f be a locally summable function.
The neutrix composition F(f), of F and f, is defined as the neutrix limit
of the sequence {F,(f)}, where F,(z) = F(x) % dn(z) and {d,(z)} is a
certain sequence of infinitely differentiable functions converging to the
Dirac delta-function §(z). The neutrix composition of the distributions
) In™ 2y and z¥ is evaluated for —1 < X <0, p >0, Ap # —1,-2,...
and m=0,1,2,....

1. Introduction

In the following, we let D be the space of infinitely differentiable functions
with compact support, let D[a, b] be the space of infinitely differentiable func-
tions with support contained in the interval [a,b] and let D’ be the space of
distributions defined on D.
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We define the locally summable function xi In"zy for A > —1 and m =
0,1,2,...by
A ™ o — { 22 In™z, x>0,
+ + 0, x < 0.

The distribution xi In" zy is then defined inductively for A < —1, X #
—2,-3,...and m=0,1,2,...by the equation

(3 ™) = ey ™y + (m+ D2y T In™ g

The distribution z* In™ x_ is then defined for A # —1,-2,... and m =
0,1,2,...by
2"z = (—x)} In™(~)4,
and the distribution || In™ |z|is defined for A # —1,—2,...andm = 0,1,2,...
by
lz[*In™ |z| = 2} In™ 2y + 22 In™a_.
It follows that if r is a positive integer and —r — 1 < A\ < —r, then

r—

m < apm ®)(0)
(y ™2y, () = /0 2 n x[go(x)—kz_ogok! xk}dx

for arbitrary ¢ in D.
In particular, if ¢ has its support contained in the interval [—1, 1], then

" oA 5 2V
(X" xp, p(x)) = /Ox)‘ln x[go(x)—kZ_Owak]dx

(=1)™mlp®)(0)
T2 RO Rt 1) (1)

for —r—1< A< —r, and

1 r—1  (2k)
(ol ol o)) = [ 1P el [ola) - 3 St da
-1 k=0 :

«—  2(=1)"mlgR(0)
2 DT ok

k=0
for —2r —1 < A< =2r+1 and \ # —2r.

We now let N be the neutrix, see [1], having domain N’ the positive integers
and range N’ the real numbers, with negligible functions which are finite linear
sums of the functions

)\1 r—1

nMn"" " n, In"n: A>0,r=1,2,...,
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and all functions which converge to zero in the usual sense as n tends to infinity.
Now let p(x) be an infinitely differentiable function having the following
properties:
(i) plx) =0 for |z| =1,
(i) pla) >0,
(iii) p(z) = p(—2),
(

iv) /1 p(z)dz = 1.

—1

Putting 6, (x) = np(nz) for n = 1,2,..., it follows that {J,(x)} is a regular
sequence of infinitely differentiable functions converging to the Dirac delta-
function 6(x).

If now f is an arbitrary distribution in D/, we define

fo(@) = (f % 6n) (@) = (f(t), 0n(z — 1))

for n = 1,2,.... Tt follows that {f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(x).

The following definition was given in [2], and was originally called the com-
position of distributions.

Definition 1. Let F be a distribution in D’ and let f be a locally summable
function. We say that the neutrix composition F(f(x)) exists and is equal to
h on the open interval (a,b), with —oo < a <b < o0, if

o0

N—lim [ Fu(f(z))p(z)de = (h(z), p(x))

n—oo

for all ¢ in Da,b] where F,,(x) = F(z) * d,(z) forn=1,2,....

In particular, we say that the composition F(f(x)) exists and is equal to h
on the open interval (a,b) if

o0

lim o (f(2))p(@)dz = (h(z), o(z))

for all ¢ in DJa, b].
The following two theorems were proved in [2] and [3] respectively:

Theorem 1 The neutriz compositions (z)* and (2',)* exist and

for u>0 and A\p # —1,-2,... and

m cosec(m\)

@2 = GO = Ty

5(—/\u—1)(x)
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foru>0, N#£—-1,-2,...and \u=—1,-2,....

S

Theorem 2 The neutriz composition (x.)_° exists and

_1\rs+s
(33:_):9 _ %5(7’9 1)( )
forr,s=1,2,..., where c¢(p) = fol Intp(t) dt.

In the previous theorem, the distribution x~° is defined by

—S

()
. (Inz_)
(s —1)!
for s =1,2,..., and not as in Gel’fand and Shilov [6].
The next two theorems were proved in [4] and [5] respectively.

—1

Theorem 3 The neutriz composition ()~ " exists and

2(3(,0) — T¢(T — 1)5(r—1)(x)

r!

(@)™t =23+ (-1)"

forr=1,2,... where
! r ior >
c(p) :/ Intp(t)dt, ¢(r)= { 21:01 Ve :; (1)’
0 ; :

Theorem 4 The neutriz composition (x’fr)Jr exists and

A
(ah)} =

for A< 0, p>0 and A\, A\ # —1, =2,

To prove the next theorem, we need the following lemma which can easily
be proved by induction.

Lemma

" —1)"rl(nott — T_l Lirln®tIn™ " n
v*In" vdv = —|— Z
1 (oz—|—17’+1 — (r—i)(a+ 1)+t

forr=1,2,...and -1 < a < 0.
We now prove
Theorem 5 If F,, z(x) denotes the distribution xi In™ zy, then the neutriz

composition Fm)\(x’_:) ezists and

Fa(ah) = pmait In™ z (3)
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for =1 < A<0, u>0, \u#—-1,-2,...and m=0,1,2,....

Proof For m = 0, this is just theorem 4. We then assume that m > 1. We put

[Fpa ()]0 = (3 In" 21) * 6, ()

and so
= DN ™ (= )5, (t) dt, 1/n <z,
[Fraa(@)]n = ffl/n(x — )M n"™(x — )0, (t) dt, —1/n<xz<1/n,
0, x < —1/n.
Then
S @t = M ™ (@ = )8, (1) e, 1/n < 2t
[Fraa(z))]n = ff;/n(x“ — )M In™(x" — )5, (t) dt, 0<at <1/n,(4)
O (=) I (=1)5,, (t) dt, z < 0.
1/n
It follows that
1 n= /K xH
/ [ Fpr (/)] dit = / 2 / (@ — D ™ (2" — 1)6, (1) dt da
1 0 —1/n

1 1/n
+ / 2k / (@ — DM ™ (2 — 1), (£) dt da
n—1/n

—1/n

0 0
zF —H)M In"™(=1)6,, (1) dt dz
+/_1 /_W() (—0)80 (1)

—(Aptk+1)/p pl v
- / plk1/u=t / (v —u)MIn(v — u) — Inn]™p(u) du dv
12 0 —1

—(Aptk+1)/p pl n
FRCE / p(u) / p*HFD/B=1 (4 — )M In(v — u) — Inn]™ dv du
1

1% -1
0 0
—|—n_)‘/ xk/ (—u)M In™(—u)p(u) du dx
—1 —1
=L+L+1I3 (5)

where the substitutions © = nt and v = na* have been made.
It follows immediately that

N—limI; = N—limI3 = 0 (6)

n—oo n—oo

for k=0,1,2,....
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Further,

[ o = o — ) — ) d

= Z (m) (=)™ *In™m"® n/ pFFD/E=1 (4 )M (v — w) dw
S 1

m—1 s n
= (T) (j) (=)™ *In™"® n/l v(k“)/’”r)‘_l(l —u/v)?
s=0 i=1

x In"(1 — u/v) In* " vdv

m—1 n
+ (m) (=)™ *In™m"® n/ FFD/BHA=1 () gy f)M In® v d
s=0

1
(m)/ DA gy /)M Int (1 — w/v) In™ o do
1

+ [ WEFD/ERAT G /) In™ v d

m—1 s "
= (—1)m-st (m> (S> In™"* n/ k1) /=1
s=0 i=1 S/ \? 1
i ; i4+1 , ,
)[4 (5 =N + O ) I v do
m—1 .
+ Z (m> (—l)m‘slnm‘sn/ D) /ntA—1
s=0 § 1
A\u 5 <
X[l—T—FO(v )]1n vdv
i n i ; i+1
—i(™ (1) /pr—1[® b U —imon] om—i
+;( ! (l>/1 ! g [vi+(2 )‘)U¢+1+O(U )| I vdo
_|_/ U(k+1)/#+)\—1(1 _ ’U,/’U))\ 1nm v du. (7)
1

Using the lemma, it follows that

u1+1

n—(k+1)/u—/\1nm—sn/n U(k+1)/u+,\_1[;t_z 4 (%' Y
1

= O~ ™ n) + enFFD/E=A M8 ()

s—1
Y + .../ In""odv
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for some constant ¢, fori=1,...,sand s =0,1,...,m — 1,
n~ (/=X ym=s n/ PR D/ A1 [1 _ +...|In®vdv
1 v

— O(n~ "™ n) + P(lnn) + dn®+D/E=2 15 9)

for some constant d, for s = 0,...,m — 1 where P(lnn) denotes a polynomial
in Inn with positive powers,

k+1 N Ao [ [ u't! )
n~ (k1) p= / o)/ itA= [—, F(==N——+... I Tvdv
1 vl 2 pitl
=0~ In"™ " n) 4 en*F+D/n=2 (10)
for some constant e, with ¢ =1,..., m, and

B N B —1)mml(1 = n- D/
(k—‘rl)/p, A (k—‘rl)/p,—i-)\ 1 1 _ )\1 m, d :(
! / R () e

+P(Inn) +O(n 21n"n) (11)

where P(Inn), once again, denotes a polynomial in Inn with positive powers.
It now follows from equations (5) and (8) to (11) that

. (=1)™mlp™
N-lmly = & rymn (12)
for k=0,1,2,....
It now follows from equations (5), (6) and (12) that
1
. —1)™mmly™
N-1 F[Fya (2] d = —
o [ e s @l de = e e (13)

for k=0,1,2,....
We now consider the case k = r, where 7 is chosen so that 0 < Ap+r+1 < 1,
and let 1) be an arbitrary continuous function. When 0 < z# < 1/n, we have

n-1/n
/0 27 () Fo p (27

n—Antr+1)/

_n 1 v/n)i /-1 vv—u)‘nv—u—nnm u) du dv
= (e [ o in(e = ) = )" ) du

and it follows that
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When x < 0, we have

0 0 0
/ " P(x)[Fnx (28] do = n_)‘/ xrw(x)/ (—u) In™ (—u)p(u) du dz

—1 —1 —1

and it follows that

0
N-lim [ z"(x)[Fm(zh)]n dz = 0. (15)

n—oo 1

When 2t > 1/n, we have

1/n
[Fox(@)]n = / (z" — ) ™ (2" — )5, () dt

—1/n

= / (2" — u/n) In™ (2" — u/n)p(u) du

—1

1 m m—1
1 iz iz
Au/ [1nmx“— AuIn™ zM muln x + 0] p(u) du
_1 nwh nxt
=M In™ z + O(n~2). (16)

Now let ¢(x) be an arbitrary function in D with support contained in the
interval [—1,1]. By Taylor’s Theorem, we have

r—1 o
x ks
o) = 3 T M0) + T €r)
= !
where 0 < £ < 1. Then

1

([FEma(@)]n, o(2) = / [Fma(@)]ne(x) da

—1

r—1 (k) 1 z"
EO [ s+ [ EiFa@ e ) do

— 7!
k=0 1/t
o1/

- 0 ,.r
+/0 %[Fm,x(xi)]nw(” (Ex) dx + /_1 %[Fmﬂ(ﬂf’i)lw(r) (§x) dz
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Using equations (13) to (16), it follows that

3 (D)mmlum e (0)
1\1H1éom<[ Foa(@!)]n, o(x)) = kZ:O kl( )\N+k+1)m+1

m M Iy
- / I 0 ey do
0 T.
m/lx)‘“ln x[g@ ix ]
= 'LC _—
0 = k!
k' )\,u—|—/€—|— 1)ym+t

= 'um<xiﬂ In"™ L <p(x)>,

on using equation (1). This proves equation (3) on the interval [—1, 1]. However,
equation (3) clearly holds on any interval not containing the origin, and the
proof is complete.

Theorem 6. The neutric composition Fp, x(|x|") exists and
F(|z#) = p™ |2 1™ [z| (17)

for =1 < A<0, p>0, \u#—-1,-2,...and m=0,1,2,....
Proof Tt follows from equation (4) that

S et = A ™ (el — 0)8a(t)dt, 1/ <[]

[ et — 0 W — D30, 0 < et < 1)

[Ema(2])ln = {
Since [Fyn a(|x]*)]n is an even function, it follows that

[ Bl do =0 (19)

—1

fork=1,3,....
In general, we have

[ Em el do
0

I
S—
&R‘
\

(@ — D) ™ (¢ — t)3, (1) dt da

—1/n

1/n
/ / W@ — )6, (1) di d
—1/“ 1/n
I + I
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and it follows as above that

1 2(=1)"mlu™
k H =
1\11_}(;{11 133 [Fma(z|")]n dz (A + k + 1)m+t

(20)

for £k =0,2,4,...since the integrand is even.
We now consider the case k = 2r, where r is chosen so that 0 < Au+2r+1 <
2, and let ¢ be an arbitrary continuous function. Then it follows as above that

n-/nm 0
Jm [ @ Ea e de =t [ @) Fa el de
= 0 (21)
and
[Frn(|2)]n = p™ |2M 0™ 2] + O(n™?) (22)
if |z]* > 1/n.

Again let p(z) be an arbitrary function in D with support contained in the
interval [—1,1]. Then

2r—1

=X Pe0) + o)
[ <2 >
where 0 < ¢ < 1. Then

([Ema(|2]")ln, ()

[ sl apto) ds

—1

-1
<p(2k+1)(0)

) kz_om/_lx%+l[Fm,A<|x|ﬂ>]ndx
) 22K [Fa(

r—1 (2k)
(0
N kz;; @2h)!

/ 11 B ([} da

1

+/—1/,L (x2—7‘;![Fmv)‘(|x|#)]n<P(2r) (€x) dx
e o
+/ %[Fm@ﬂﬂ"‘)]n(p(%) (€x) dx

—1/;1.

Foa(J2]")]ne® (2) d

P a(Jz]")]ne® (6z) dz

n—1/n
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Using equations (20) to (22), it follows that

r—1
2(=1)™mlu™ M) (0)
N 1 m.
1m<[ A([2)] Z:) 2k)! )\u+2k‘+1)m+l
|x|)\,u+2r (2r)
+ m/ 7111 X " xr
O 2] (§) da
1 g2
= [l ol [ot) = Y @0 da
1 k:O
m m'w(%) 0
» Z (0)

m—+1
= 0 )\,u+2k;+1)

= u™ (| In"™ 2], ¢(2)),

on using equation (2). This proves equation (17) on the interval [—1, 1]. How-
ever, equation (17) clearly holds on any interval not containing the origin, and
the proof is complete.
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