ON THE COMPOSITION OF THE DISTRIBUTIONS $x_+^{\lambda} \ln^m x_+$ AND x_+^{μ}

B. Fisher*, S. Orankitjaroen[†], T. Kraiweeradechachai[†], G. Sritanratana[†] and K. Nonlaopon[‡]

 $begin{tabular}{l} *Department of Mathematics \\ University of Leicester, Leicester, LE1~7RH, England \\ e-mail: fbr@mcs.le.ac.uk \\ \\ \end{array}$

†Department of Mathematics Mahidol University, Bangkok, Thailand e-mail: yong.33@hotmail.com, scsok@mahidol.ac.th and scgst@mahidol.ac.th

> †Department of Mathematics, Khonkaen University, Khonkaen, Thailan e-mail: kamsinqn@yahoo.com

Abstract

Let F be a distribution and let f be a locally summable function. The neutrix composition F(f), of F and f, is defined as the neutrix limit of the sequence $\{F_n(f)\}$, where $F_n(x) = F(x) * \delta_n(x)$ and $\{\delta_n(x)\}$ is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$. The neutrix composition of the distributions $x_+^{\lambda} \ln^m x_+$ and x_+^{μ} is evaluated for $-1 < \lambda < 0$, $\mu > 0$, $\lambda \mu \neq -1, -2, \ldots$ and $m = 0, 1, 2, \ldots$

1. Introduction

In the following, we let \mathcal{D} be the space of infinitely differentiable functions with compact support, let $\mathcal{D}[a,b]$ be the space of infinitely differentiable functions with support contained in the interval [a,b] and let \mathcal{D}' be the space of distributions defined on \mathcal{D} .

Key words and phrases: Distribution, delta-function, neutrix composition of distributions, neutrix, neutrix limit.

²⁰⁰⁰ AMS Mathematics Subject Classification: 46F10.

We define the locally summable function $x_+^{\lambda} \ln^m x_+$ for $\lambda > -1$ and m = 0, 1, 2, ... by

$$x_{+}^{\lambda} \ln^{m} x_{+} = \begin{cases} x^{\lambda} \ln^{m} x, & x > 0, \\ 0, & x < 0. \end{cases}$$

The distribution $x_+^{\lambda} \ln^m x_+$ is then defined inductively for $\lambda < -1$, $\lambda \neq -2, -3, \ldots$ and $m = 0, 1, 2, \ldots$ by the equation

$$(x_+^{\lambda} \ln^{m+1} x_+)' = \lambda x_+^{\lambda-1} \ln^{m+1} x_+ + (m+1)x_+^{\lambda-1} \ln^m x_+.$$

The distribution $x_{-}^{\lambda} \ln^{m} x_{-}$ is then defined for $\lambda \neq -1, -2, \ldots$ and $m = 0, 1, 2, \ldots$ by

$$x_{-}^{\lambda} \ln^{m} x_{-} = (-x)_{+}^{\lambda} \ln^{m} (-x)_{+},$$

and the distribution $|x|^{\lambda} \ln^m |x|$ is defined for $\lambda \neq -1, -2, \ldots$ and $m = 0, 1, 2, \ldots$ by

$$|x|^{\lambda} \ln^{m} |x| = x_{+}^{\lambda} \ln^{m} x_{+} + x_{-}^{\lambda} \ln^{m} x_{-}.$$

It follows that if r is a positive integer and $-r-1 < \lambda < -r$, then

$$\langle x_+^{\lambda} \ln^m x_+, \varphi(x) \rangle = \int_0^{\infty} x^{\lambda} \ln^m x \Big[\varphi(x) - \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} x^k \Big] dx$$

for arbitrary φ in \mathcal{D} .

In particular, if φ has its support contained in the interval [-1,1], then

$$\langle x_{+}^{\lambda} \ln^{m} x_{+}, \varphi(x) \rangle = \int_{0}^{1} x^{\lambda} \ln^{m} x \Big[\varphi(x) - \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} x^{k} \Big] dx + \sum_{k=0}^{r-1} \frac{(-1)^{m} m! \varphi^{(k)}(0)}{k! (\lambda + k + 1)^{m+1}}$$
(1)

for $-r-1 < \lambda < -r$, and

$$\langle |x|^{\lambda} \ln^{m} |x|, \varphi(x) \rangle = \int_{-1}^{1} |x|^{\lambda} \ln^{m} |x| \Big[\varphi(x) - \sum_{k=0}^{r-1} \frac{\varphi^{(2k)}(0)}{(2k)!} x^{2k} \Big] dx + \sum_{k=0}^{r-1} \frac{2(-1)^{m} m! \varphi^{(2k)}(0)}{(2k)! (\lambda + 2k + 1)^{m+1}}$$
(2)

for
$$-2r - 1 < \lambda < -2r + 1$$
 and $\lambda \neq -2r$.

We now let N be the neutrix, see [1], having domain N' the positive integers and range N'' the real numbers, with negligible functions which are finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n, \ln^r n : \lambda > 0, r = 1, 2, \dots,$$

and all functions which converge to zero in the usual sense as n tends to infinity.

Now let $\rho(x)$ be an infinitely differentiable function having the following properties:

- (i) $\rho(x) = 0 \text{ for } |x| \ge 1,$
- (ii) $\rho(x) \ge 0$,
- (iii) $\rho(x) = \rho(-x)$,

(iv)
$$\int_{-1}^{1} \rho(x) dx = 1.$$

Putting $\delta_n(x) = n\rho(nx)$ for n = 1, 2, ..., it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac delta-function $\delta(x)$.

If now f is an arbitrary distribution in \mathcal{D}' , we define

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle$$

for n = 1, 2, ... It follows that $\{f_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the distribution f(x).

The following definition was given in [2], and was originally called the composition of distributions.

Definition 1. Let F be a distribution in \mathcal{D}' and let f be a locally summable function. We say that the neutrix composition F(f(x)) exists and is equal to h on the open interval (a, b), with $-\infty < a < b < \infty$, if

$$\operatorname{N-\lim}_{n\to\infty} \int_{-\infty}^{\infty} F_n(f(x))\varphi(x)dx = \langle h(x), \varphi(x) \rangle$$

for all φ in $\mathcal{D}[a,b]$ where $F_n(x) = F(x) * \delta_n(x)$ for $n = 1, 2, \ldots$

In particular, we say that the composition F(f(x)) exists and is equal to h on the open interval (a,b) if

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} F_n(f(x))\varphi(x)dx = \langle h(x), \varphi(x) \rangle$$

for all φ in $\mathcal{D}[a,b]$.

The following two theorems were proved in [2] and [3] respectively:

Theorem 1 The neutrix compositions $(x_{-}^{\mu})^{\lambda}_{-}$ and $(x_{+}^{\mu})^{\lambda}_{-}$ exist and

$$(x_{-}^{\mu})_{-}^{\lambda} = (x_{+}^{\mu})_{-}^{\lambda} = 0$$

for $\mu > 0$ and $\lambda \mu \neq -1, -2, \dots$ and

$$(x_{-}^{\mu})_{-}^{\lambda} = (-1)^{\lambda\mu} (x_{+}^{\mu})_{-}^{\lambda} = \frac{\pi \operatorname{cosec}(\pi\lambda)}{2\mu(-\lambda\mu - 1)!} \delta^{(-\lambda\mu - 1)}(x)$$

for $\mu > 0$, $\lambda \neq -1, -2, \dots$ and $\lambda \mu = -1, -2, \dots$

Theorem 2 The neutrix composition $(x_{+}^{r})_{-}^{-s}$ exists and

$$(x_{+}^{r})_{-}^{-s} = \frac{(-1)^{rs+s}c(\rho)}{r(rs-1)!}\delta^{(rs-1)}(x)$$

for $r, s = 1, 2, \ldots$, where $c(\rho) = \int_0^1 \ln t \rho(t) dt$.

In the previous theorem, the distribution x_{-}^{-s} is defined by

$$x_{-}^{-s} = -\frac{(\ln x_{-})^{(s)}}{(s-1)!}$$

for s = 1, 2, ..., and not as in Gel'fand and Shilov [6].

The next two theorems were proved in [4] and [5] respectively.

Theorem 3 The neutrix composition $(x_+^r)^{-1}$ exists and

$$(x_{+}^{r})^{-1} = x_{+}^{-r} + (-1)^{r} \frac{2c(\rho) - r\phi(r-1)}{r!} \delta^{(r-1)}(x)$$

for $r = 1, 2, \dots$ where

$$c(\rho) = \int_0^1 \ln t \rho(t) dt, \quad \phi(r) = \begin{cases} \sum_{i=1}^r 1/i, & r \ge 1, \\ 0, & r = 0. \end{cases}$$

Theorem 4 The neutrix composition $(x_{+}^{\mu})_{+}^{\lambda}$ exists and

$$(x_+^\mu)_+^\lambda = x_+^{\lambda\mu}$$

for $\lambda < 0$, $\mu > 0$ and λ , $\lambda \mu \neq -1, -2, \ldots$

To prove the next theorem, we need the following lemma which can easily be proved by induction.

Lemma

$$\int_{1}^{n} v^{\alpha} \ln^{r} v \, dv = \frac{(-1)^{r} r! (n^{\alpha+1} - 1)}{(\alpha + 1)^{r+1}} + \sum_{i=0}^{r-1} \frac{(-1)^{i} r! n^{\alpha+1} \ln^{r-i} n}{(r-i)! (\alpha + 1)^{i+1}}$$

for $r = 1, 2, \dots$ and $-1 < \alpha < 0$.

We now prove

Theorem 5 If $F_{m,\lambda}(x)$ denotes the distribution $x_+^{\lambda} \ln^m x_+$, then the neutrix composition $F_{m,\lambda}(x_+^{\mu})$ exists and

$$F_{m,\lambda}(x_+^{\mu}) = \mu^m x_+^{\lambda\mu} \ln^m x_+ \tag{3}$$

for
$$-1 < \lambda < 0$$
, $\mu > 0$, $\lambda \mu \neq -1, -2, \dots$ and $m = 0, 1, 2, \dots$

Proof For m=0, this is just theorem 4. We then assume that $m\geq 1$. We put

$$[F_{m,\lambda}(x)]_n = (x_+^{\lambda} \ln^m x_+) * \delta_n(x)$$

and so

$$[F_{m,\lambda}(x)]_n = \begin{cases} \int_{-1/n}^{1/n} (x-t)^{\lambda} \ln^m(x-t) \delta_n(t) dt, & 1/n < x, \\ \int_{-1/n}^{x} (x-t)^{\lambda} \ln^m(x-t) \delta_n(t) dt, & -1/n \le x \le 1/n, \\ 0, & x < -1/n. \end{cases}$$

Then

$$[F_{m,\lambda}(x_{+}^{\mu})]_{n} = \begin{cases} \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt, & 1/n < x^{\mu}, \\ \int_{-1/n}^{x^{\mu}} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt, & 0 \le x^{\mu} \le 1/n, (4) \\ \int_{-1/n}^{0} (-t)^{\lambda} \ln^{m}(-t) \delta_{n}(t) dt, & x < 0. \end{cases}$$

It follows that

$$\int_{-1}^{1} x^{k} [F_{m,\lambda}(x_{+}^{\mu})]_{n} dx = \int_{0}^{n^{-1/\mu}} x^{k} \int_{-1/n}^{x^{\mu}} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt dx
+ \int_{n^{-1/\mu}}^{1} x^{k} \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt dx
+ \int_{-1}^{0} x^{k} \int_{-1/n}^{0} (-t)^{\lambda} \ln^{m}(-t) \delta_{n}(t) dt dx
= \frac{n^{-(\lambda\mu + k + 1)/\mu}}{\mu} \int_{0}^{1} v^{(k+1)/\mu - 1} \int_{-1}^{v} (v - u)^{\lambda} [\ln(v - u) - \ln n]^{m} \rho(u) du dv
+ \frac{n^{-(\lambda\mu + k + 1)/\mu}}{\mu} \int_{-1}^{1} \rho(u) \int_{1}^{n} v^{(k+1)/\mu - 1} (v - u)^{\lambda} [\ln(v - u) - \ln n]^{m} dv du
+ n^{-\lambda} \int_{-1}^{0} x^{k} \int_{-1}^{0} (-u)^{\lambda} \ln^{m}(-u) \rho(u) du dx
= I_{1} + I_{2} + I_{3}$$
(5)

where the substitutions u = nt and $v = nx^{\mu}$ have been made. It follows immediately that

$$N-\lim_{n\to\infty} I_1 = N-\lim_{n\to\infty} I_3 = 0$$
(6)

for $k = 0, 1, 2, \dots$

Further,

$$\begin{split} & \int_{1}^{n} v^{(k+1)/\mu - 1} (v - u)^{\lambda} [\ln(v - u) - \ln n]^{m} \, dv \\ & = \sum_{s=0}^{m} \binom{m}{s} (-1)^{m-s} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu - 1} (v - u)^{\lambda} \ln^{s} (v - u) \, dv \\ & = \sum_{s=0}^{m-1} \sum_{i=1}^{s} \binom{m}{s} \binom{s}{i} (-1)^{m-s} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} (1 - u/v)^{\lambda} \\ & \qquad \qquad \times \ln^{i} (1 - u/v) \ln^{s-i} v \, dv \\ & + \sum_{s=0}^{m-1} \binom{m}{s} (-1)^{m-s} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} (1 - u/v)^{\lambda} \ln^{s} v \, dv \\ & + \sum_{i=1}^{m} \binom{m}{i} \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} (1 - u/v)^{\lambda} \ln^{i} (1 - u/v) \ln^{m-i} v \, dv \\ & + \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} (1 - u/v)^{\lambda} \ln^{m} v \, dv \\ & = \sum_{s=0}^{m-1} \sum_{i=1}^{s} (-1)^{m-s+i} \binom{m}{s} \binom{s}{i} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} \\ & \qquad \qquad \times \left[\frac{u^{i}}{v^{i}} + (\frac{i}{2} - \lambda) \frac{u^{i+1}}{v^{i+1}} + O(v^{-i-2}) \right] \ln^{s-i} v \, dv \\ & + \sum_{s=0}^{m-1} \binom{m}{s} (-1)^{m-s} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} \\ & \qquad \qquad \times \left[1 - \frac{\lambda u}{v} + O(v^{-2}) \right] \ln^{s} v \, dv \\ & + \sum_{i=1}^{m} (-1)^{i} \binom{m}{i} \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} \left[\frac{u^{i}}{v^{i}} + (\frac{i}{2} - \lambda) \frac{u^{i+1}}{v^{i+1}} + O(v^{-i-2}) \right] \ln^{m-i} v \, dv \\ & + \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} (1 - u/v)^{\lambda} \ln^{m} v \, dv. \end{split}$$

Using the lemma, it follows that

$$n^{-(k+1)/\mu-\lambda} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu+\lambda-1} \left[\frac{u^{i}}{v^{i}} + (\frac{i}{2} - \lambda) \frac{u^{i+1}}{v^{i+1}} + \ldots \right] \ln^{s-i} v \, dv$$

$$= O(n^{-i} \ln^{m-i} n) + cn^{(k+1)/\mu-\lambda} \ln^{m-s} n \, (8)$$

for some constant c, for i = 1, ..., s and s = 0, 1, ..., m - 1,

$$n^{-(k+1)/\mu-\lambda} \ln^{m-s} n \int_{1}^{n} v^{(k+1)/\mu+\lambda-1} \left[1 - \frac{\lambda u}{v} + \ldots \right] \ln^{s} v \, dv$$
$$= O(n^{-1} \ln^{m} n) + P(\ln n) + dn^{(k+1)/\mu-\lambda} \ln^{m-s} n(9)$$

for some constant d, for s = 0, ..., m-1 where $P(\ln n)$ denotes a polynomial in $\ln n$ with positive powers,

$$n^{-(k+1)/\mu-\lambda} \int_{1}^{n} v^{(k+1)/\mu+\lambda-1} \left[\frac{u^{i}}{v^{i}} + (\frac{i}{2} - \lambda) \frac{u^{i+1}}{v^{i+1}} + \ldots \right] \ln^{m-i} v \, dv$$

$$= O(n^{-i} \ln^{m-i} n) + en^{(k+1)/\mu-\lambda}$$
(10)

for some constant e, with i = 1, ..., m, and

$$n^{-(k+1)/\mu - \lambda} \int_{1}^{n} v^{(k+1)/\mu + \lambda - 1} (1 - u/v)^{\lambda} \ln^{m} v dv = \frac{(-1)^{m} m! (1 - n^{-(k+1)/\mu + \lambda})}{[(k+1)/\mu + \lambda]^{m+1}} + P(\ln n) + O(n^{-2} \ln^{m} n)$$
(11)

where $P(\ln n)$, once again, denotes a polynomial in $\ln n$ with positive powers. It now follows from equations (5) and (8) to (11) that

$$N-\lim_{n\to\infty} I_2 = \frac{(-1)^m m! \mu^m}{(\lambda \mu + k + 1)^{m+1}}$$
 (12)

for k = 0, 1, 2, ...

It now follows from equations (5), (6) and (12) that

$$N-\lim_{n\to\infty} \int_{-1}^{1} x^{k} [F_{m,\lambda}(x_{+}^{\mu})]_{n} dx = \frac{(-1)^{m} m! \mu^{m}}{(\lambda \mu + k + 1)^{m+1}}$$
(13)

for $k = 0, 1, 2, \dots$

We now consider the case k=r, where r is chosen so that $0 < \lambda \mu + r + 1 < 1$, and let ψ be an arbitrary continuous function. When $0 \le x^{\mu} \le 1/n$, we have

$$\int_0^{n^{-1/\mu}} x^r \psi(x) [F_{m,\lambda}(x_+^{\mu})]_n dx$$

$$= \frac{n^{-(\lambda\mu + r + 1)/\mu}}{\mu} \int_0^1 \psi((v/n)^{\frac{1}{\mu}}) v^{(r+1)/\mu - 1} \int_{-1}^v (v - u)^{\lambda} [\ln(v - u) - \ln n]^m \rho(u) du dv$$

and it follows that

$$\lim_{n \to \infty} \int_0^{n^{-1/\mu}} x^r \psi(x) [F_{m,\lambda}(x_+^{\mu})]_n \, dx = 0.$$
 (14)

When x < 0, we have

$$\int_{-1}^{0} x^{r} \psi(x) [F_{m,\lambda}(x_{+}^{\mu})]_{n} dx = n^{-\lambda} \int_{-1}^{0} x^{r} \psi(x) \int_{-1}^{0} (-u)^{\lambda} \ln^{m}(-u) \rho(u) du dx$$

and it follows that

$$N-\lim_{n\to\infty} \int_{-1}^{0} x^{r} \psi(x) [F_{m,\lambda}(x_{+}^{\mu})]_{n} dx = 0.$$
 (15)

When $x^{\mu} > 1/n$, we have

$$[F_{m,\lambda}(x_{+}^{\mu})]_{n} = \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt$$

$$= \int_{-1}^{1} (x^{\mu} - u/n)^{\lambda} \ln^{m}(x^{\mu} - u/n) \rho(u) du$$

$$= x^{\lambda \mu} \int_{-1}^{1} \left[\ln^{m} x^{\mu} - \frac{\lambda u \ln^{m} x^{\mu}}{nx^{\mu}} - \frac{mu \ln^{m-1} x^{\mu}}{nx^{\mu}} + O(n^{-2}) \right] \rho(u) du$$

$$= \mu^{m} x^{\lambda \mu} \ln^{m} x + O(n^{-2}). \tag{16}$$

Now let $\varphi(x)$ be an arbitrary function in \mathcal{D} with support contained in the interval [-1,1]. By Taylor's Theorem, we have

$$\varphi(x) = \sum_{k=0}^{r-1} \frac{x^k}{k!} \varphi^{(k)}(0) + \frac{x^r}{r!} \varphi^{(r)}(\xi x)$$

where $0 < \xi < 1$. Then

$$\langle [F_{m,\lambda}(x_{+}^{\mu})]_{n}, \varphi(x) \rangle = \int_{-1}^{1} [F_{m,\lambda}(x_{+}^{\mu})]_{n} \varphi(x) dx$$

$$= \sum_{k=0}^{r-1} \frac{\varphi^{(k)}(0)}{k!} \int_{-1}^{1} x^{k} [F_{m,\lambda}(x_{+}^{\mu})]_{n} dx + \int_{n^{-1/\mu}}^{1} \frac{x^{r}}{r!} [F_{m,\lambda}(x_{+}^{\mu})]_{n} \varphi^{(r)}(\xi x) dx$$

$$+ \int_{0}^{n^{-1/\mu}} \frac{x^{r}}{r!} [F_{m,\lambda}(x_{+}^{\mu})]_{n} \varphi^{(r)}(\xi x) dx + \int_{-1}^{0} \frac{x^{r}}{r!} [F_{m,\lambda}(x_{+}^{\mu})]_{n} \varphi^{(r)}(\xi x) dx.$$

Using equations (13) to (16), it follows that

$$\begin{split} \mathbf{N}-&\lim_{n\to\infty}\langle [F_{m,\lambda}(x_{+}^{\mu})]_{n},\varphi(x)\rangle \; = \; \sum_{k=0}^{r-1} \frac{(-1)^{m}m!\mu^{m}\varphi^{(k)}(0)}{k!(\lambda\mu+k+1)^{m+1}} \\ & + \mu^{m} \int_{0}^{1} \frac{x^{\lambda\mu+r} \ln^{m}x}{r!} \varphi^{(r)}(\xi x) \, dx \\ & = \; \mu^{m} \int_{0}^{1} x^{\lambda\mu} \ln^{m}x \Big[\varphi(x) - \sum_{k=0}^{r-1} \frac{x^{k}}{k!} \varphi^{(k)}(0)\Big] dx \\ & + \mu^{m} \sum_{k=0}^{r-1} \frac{(-1)^{m}m!\varphi^{(k)}(0)}{k!(\lambda\mu+k+1)^{m+1}} \\ & = \; \mu^{m} \langle x_{+}^{\lambda\mu} \ln^{m}x_{+}, \varphi(x) \rangle, \end{split}$$

on using equation (1). This proves equation (3) on the interval [-1, 1]. However, equation (3) clearly holds on any interval not containing the origin, and the proof is complete.

Theorem 6. The neutrix composition $F_{m,\lambda}(|x|^{\mu})$ exists and

$$F_{m,\lambda}(|x|^{\mu}) = \mu^m |x|^{\lambda \mu} \ln^m |x| \tag{17}$$

for
$$-1 < \lambda < 0, \ \mu > 0, \ \lambda \mu \neq -1, -2, \dots$$
 and $m = 0, 1, 2, \dots$

Proof It follows from equation (4) that

$$[F_{m,\lambda}(|x|^{\mu})]_n = \begin{cases} \int_{-1/n}^{1/n} (|x|^{\mu} - t)^{\lambda} \ln^m(|x|^{\mu} - t) \delta_n(t) dt, & 1/n < |x|^{\mu}, \\ \int_{-1/n}^{|x|^{\mu}} (|x|^{\mu} - t)^{\lambda} \ln^m(|x|^{\mu} - t) \delta_n(t) dt, & 0 \le |x|^{\mu} \le 1/n. \end{cases}$$

Since $[F_{m,\lambda}(|x|^{\mu})]_n$ is an even function, it follows that

$$\int_{-1}^{1} x^{k} [F_{m,\lambda}(|x|^{\mu})]_{n} dx = 0$$
 (19)

for k = 1, 3,

In general, we have

$$\int_{0}^{1} x^{k} [F_{m,\lambda}(|x|^{\mu})]_{n} dx = \int_{0}^{n^{-1/\mu}} x^{k} \int_{-1/n}^{x^{\mu}} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt dx$$
$$+ \int_{n^{-1/\mu}}^{1} x^{k} \int_{-1/n}^{1/n} (x^{\mu} - t)^{\lambda} \ln^{m}(x^{\mu} - t) \delta_{n}(t) dt dx$$
$$= I_{1} + I_{2}$$

and it follows as above that

$$N-\lim_{n\to\infty} \int_{-1}^{1} x^{k} [F_{m,\lambda}(|x|^{\mu})]_{n} dx = \frac{2(-1)^{m} m! \mu^{m}}{(\lambda \mu + k + 1)^{m+1}}$$
 (20)

for $k = 0, 2, 4, \dots$ since the integrand is even.

We now consider the case k=2r, where r is chosen so that $0<\lambda\mu+2r+1<2$, and let ψ be an arbitrary continuous function. Then it follows as above that

$$\lim_{n \to \infty} \int_0^{n^{-1/\mu}} x^{2r} \psi(x) [F_{m,\lambda}(|x|^{\mu})]_n dx = \lim_{n \to \infty} \int_{-n^{-1/\mu}}^0 x^{2r} \psi(x) [F_{m,\lambda}(|x|^{\mu})]_n dx$$

$$= 0$$
(21)

and

$$[F_{m,\lambda}(|x|^{\mu})]_n = \mu^m |x|^{\lambda \mu} \ln^m |x| + O(n^{-2})$$
(22)

if $|x|^{\mu} > 1/n$.

Again let $\varphi(x)$ be an arbitrary function in \mathcal{D} with support contained in the interval [-1,1]. Then

$$\varphi(x) = \sum_{k=0}^{2r-1} \frac{x^k}{k!} \varphi^{(k)}(0) + \frac{x^{2r}}{(2r)!} \varphi^{(2r)}(\xi x)$$

where $0 < \xi < 1$. Then

$$\langle [F_{m,\lambda}(|x|^{\mu})]_{n}, \varphi(x) \rangle = \int_{-1}^{1} [F_{m,\lambda}(|x|^{\mu})]_{n} \varphi(x) dx$$

$$= \sum_{k=0}^{r-1} \frac{\varphi^{(2k+1)}(0)}{(2k+1)!} \int_{-1}^{1} x^{2k+1} [F_{m,\lambda}(|x|^{\mu})]_{n} dx$$

$$+ \sum_{k=0}^{r-1} \frac{\varphi^{(2k)}(0)}{(2k)!} \int_{-1}^{1} x^{2k} [F_{m,\lambda}(|x|^{\mu})]_{n} dx$$

$$+ \int_{n^{-1/\mu}}^{1} \frac{x^{2r}}{(2r)!} [F_{m,\lambda}(|x|^{\mu})]_{n} \varphi^{(2r)}(\xi x) dx$$

$$+ \int_{-1}^{n^{-1/\mu}} \frac{x^{2r}}{(2r)!} [F_{m,\lambda}(|x|^{\mu})]_{n} \varphi^{(2r)}(\xi x) dx$$

$$+ \int_{0}^{n^{-1/\mu}} \frac{x^{2r}}{(2r)!} [F_{m,\lambda}(|x|^{\mu})]_{n} \varphi^{(2r)}(\xi x) dx$$

$$+ \int_{-n^{-1/\mu}}^{0} \frac{x^{2r}}{(2r)!} [F_{m,\lambda}(|x|^{\mu})]_{n} \varphi^{(2r)}(\xi x) dx.$$

Using equations (20) to (22), it follows that

$$\begin{split} \mathbf{N}-&\lim_{n\to\infty}\langle [F_{m.\lambda}(|x|^{\mu})]_n,\varphi(x)\rangle &= \sum_{k=0}^{r-1} \frac{2(-1)^m m! \mu^m \varphi^{(2k)}(0)}{(2k)! (\lambda \mu + 2k + 1)^{m+1}} \\ &+ \mu^m \int_{-1}^1 \frac{|x|^{\lambda \mu + 2r}}{(2r)!} \ln^m |x| \varphi^{(2r)}(\xi x) \, dx \\ &= \mu^m \int_{-1}^1 |x|^{\lambda \mu} \ln^m |x| \Big[\varphi(x) - \sum_{k=0}^{r-1} \frac{x^{2k}}{(2k)!} \varphi^{(2k)}(0) \Big] dx \\ &+ \mu^m \sum_{k=0}^{r-1} \frac{2(-1)^m m! \varphi^{(2k)}(0)}{(2k)! (\lambda \mu + 2k + 1)^{m+1}} \\ &= \mu^m \langle |x|^{\lambda \mu} \ln^m |x|, \varphi(x) \rangle, \end{split}$$

on using equation (2). This proves equation (17) on the interval [-1, 1]. However, equation (17) clearly holds on any interval not containing the origin, and the proof is complete.

References

- [1] J.G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math., 7(1959), 291-398.
- [2] B. Fisher, On defining the change of variable in distributions, Rostock. Math. Kolloq., 28(1985), 75-86.
- [3] B. Fisher, On defining the distribution $(x_+^r)_-^{-s}$, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., **15**(1985), 119-129.
- [4] B. Fisher and J. Nicholas, Some results on the composition of distributions, Novi Sad J. Math., **32**(2)(2002), 87-94.
- [5] B. Fisher and K. Taş, On the composition of the distributions x_+^{λ} and x_+^{μ} , J. Math. Anal. Appl., **318**(2006), 102-111.
- [6] I.M. Gel'fand and G.E. Shilov, "Generalized Functions", Vol. I, Acadaemic Press, 1964.