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Abstract

Using graph theory, this paper presents two ways to produce inde-
pendence spaces. Simultaneously, it deals with some applications of the
two new independence spaces.

1 Introduction and Preliminaries

J. Oxley points out in [4,p.73] that there is no single class of structures that one
calls infinite matroids. There have been three main approaches to the study
of infinite matroids, one is the independent set approach, another the closure
operator approach, and the third approach is via lattices.

This paper is to use graph theory to deal with independence space which is
one of the most fruitfully infinite matroids. It will concretely indicate how to
produce independence spaces for a graph and use graph theory to obtain some
properties of independence spaces.

The following in this section is devoted to a short summary of background
knowledge we will need later on.

Definition 1 (1) Let {A,B, C, · · ·} be a set of “points”. If certain pairs of
these points are connected by one or more “lines”, the resulting configuration is
called a graph[1,p.55]. Those points of {A,B, C, · · ·} which are connected with
at least one point are called vertices of the graph. The lines involved are called
edges of the graph. An edge which connects A and B, i.e. whose endpoints are

Key words: independence space, graph, cycle, matching, bipartite graph.
2000 AMS Mathematics Subject Classification: 05B35, 05C70
This research is supported by Research Foundation of the Education Department of Hebei
Province, China (2006105)

63



64 Independence spaces generated by a graph

A and B, and which goes to A (and B), we shall designate by AB. If A is an
endpoint of edge k, we shall say that A and k are incident to each other. If
the set of vertices and the set of edges of a graph are both finite, the graph is
called finite, otherwise infinite.

(2) If the vertices of the graph G′ are at the same time vertices of G and
the edges of G′ are also edges of G, then G′ is called a subgraph of G[1,p.57].

If all the edges of a graph can be listed in the form AB,BC, CD, · · · ,
KL, LM , where each vertex and each edge can occur arbitrarily often, then
the graph is characterized as a walk [1,p.61] . The walk is called open or closed
depending on whether A �= M , or A = M . If A = M , but A,B, · · · , L are
distinct from one another, the closed walk is called a cycle.

A graph without a cycle is called acyclic[1, p.116]. If an acyclic graph is
finite and connected(cf.[1,p.67]), then it is called a tree.

A graph is called bipartite[1, p.285] if each of its cycles contains an even
number of edges.

An edge with identical ends is called a loop[2,p.3].
(3) For a given graph G, let π denote the set of vertices of G, and let k

denote the set of edges. Let π′ and k′ have corresponding meanings for a graph
G′. If there is a one-to-one correspondence between the sets π and π′, on the
one hand, and between k and k′, on the other hand, in such a way that incident
elements correspond to incident element, then graphs G and G′ are said to be
isomorphic[1,p.59].

Definition 2 ([3,pp.385-387& 4,p.74]) An independence space M is a set S
together with a collection I of subsets of S (called independent sets) such that
(i1) I �= ∅;
(i2) A subset of an independent set is independent.
(i3) If I1 and I2 are finite members of I with |I1| < |I2|, then there exists x in
I2 \ I1 such that I1 ∪ x ∈ I;
(i4) If X ⊆ S and every finite subset of X is in I, then X is in I.

A basis of M is a maximal independent set.

Lemma 1 ([1,p.285] and [4,pp.75-76])
(1) A graph is a bipartite graph iff its vertices can be divided into two classes

in such a way that only vertices of different classes are joined by an edge.
(2) Suppose M is an independence space on S having I as its collection of

independent sets. For X ⊆ S, let I|X be defined by I|X = {Y ⊆ X : Y ∈ I}.
Clearly I|X is the collection of independent sets of an independence space M |X
on X.

Let I ·X = {Y ⊆ X : Y ∪B ∈ I} where B is a basis of M |(E \X). Then
I ·X is the set of independent sets of an independence space M ·X on X.

Remark 1 (1) In this paper, G = (V (G), E(G)) is a graph and V (G), E(G) al-
ways denotes its family of vertices, edges respectively. Except a special express,
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a graph in this paper always means an infinite one.
(2) Following [2] and [3], an acyclic graph is also called a forest. In addition,

two edges in a graph are parallel if they have common endpoints and are not
loops. A graph is simple if it has no loops or parallel edges.

An edge e of G is said to be contracted if it is deleted and its ends are
identified, the resulting graph is denoted by G · e. Let T ⊆ X ⊆ E(G). Then
write X · T for the resulted configuration obtained from G[X] by contracting
the edges of T . Write G · T for the graph obtained from G by contracting the
edges of T .

Suppose that V ′ is a nonempty subset of V (G). The subgraph of G whose
vertex set is V ′ and whose edge set is the set of those edges of G that have
both ends in V ′ is called the subgraph of G induced by V ′ and is denoted by
G[V ′]; we say that G[V ′] is an induced subgraph of G. Now suppose that E′ is
a nonempty subset of E(G). The subgraph of G whose vertex set is the set of
ends of edges in E′ and whose edge is E′ is called the subgraph of G induced
by E′ and is denoted by G[E′]; it is an edge-induced subgraph of G.

(3) Following [2,p.70] and [3,p.104], a matching of a graph G is a set X of
edges such that no two members of X have a common endpoint. A matching
M saturates a vertex v and v is said to be M -saturated, if some edge of M is
incident with v. If every vertex of X ⊆ V (G) is M -saturated, then we say that
X is saturated by M .

(4) The knowledge about tree of a graph is seen [1,chapter IV, V& 2];
connectivity of a graph is seen [1,§3 in chapter I, chapter II and III].

(5) Let X ⊆ E(G) and |X| <∞. Then obviously, G[X] is a finite subgraph
of G.

(6) Similar to the definition in [3] and [4,p.46], we give definitions as follows:
let S be a set, T is a transversal of (Aj : j ∈ J), Aj ⊆ S, if there is a bijection
ψ : J → T such that ψ(j) ∈ Aj for all j in J . If X ⊆ S, then X is a partial
transversal of (Aj : j ∈ J), if for some subset K of J , X is a transversal of
(Aj : j ∈ K).

2 Generated by edges

Here, we will know how to use the set of edges of a graph to produce an
independence space. Besides, it is to obtain some properties about minors of
the new independence space.
Lemma 2 Let T ⊆ X ⊆ E(G). Then

(1) X · T = G[X] · T . Say, G[X · T ] = G[X] · T .
(2) X · T contains a cycle CT of G[X · T ] if and only if X contains a cycle

C of G, where CT = C · TC with TC ⊆ T .
Especially, X is a cycle of G if and only if X · T is a cycle of G[X · T ].
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Proof By a routine verification.

Theorem 1 Let G be a graph. I = {X : X ⊆ E(G), X does not contain a
cycle of G}. Then I is the collection of independent sets of an independence
space on E(G). Denote this independence space by M < G >.

Proof It is easy to see that I satisfies (i1) and (i2).
We prove that I satisfies (i3). If not, then there exist A,B ∈ I with

|A| < |B| < ∞, such that for any b ∈ B \ A,A ∪ b contains a cycle. Since A
does not contain a cycle of G, it follows that the edge-induced subgraph G[A] of
G is a forest. In light of remark 1, G[A] is finite. Similarly,G[B] is also a finite
forest. Suppose all the components of G[A] is G1, · · · , Gt, then by definition 1,
Gj is a tree (j = 1, · · · , t).

Let Aj , Vj be the set of edges, vertices of Gj respectively (j = 1, · · · , t). By
[1,p.120,theorem 9&2,p.25,theorem 2.2], we have |Aj| = |Vj| − 1. Evidently,

Ai ∩Aj = ∅, (i �= j, i, j = 1, · · · , t) and
t⋃

j=1

Aj = A.

According to the property of A,B, we know that for any b ∈ B \ A,A ∪ b
contains a cycle. Let a1, a2 be the two endpoints of b, i.e. b = a1a2 . We
know that it has a1, a2 ∈ Vj , j ∈ {1, · · · , t}. Put Bj = {x : x = uv, x ∈
B, u, v ∈ Vj} (j = 1, · · · , t). It is easy to get

t⋃

j=1
Bj = B and Bi ∩ Bj = ∅

for i �= j, i, j = 1, · · · , t. Since Bj ⊆ B,Bj and (i2) follows that Bj does not
contain a cycle, besides, any endpoint of an edge of Bj belongs to Vj . Therefore,

|Bj | ≤ |Vj| − 1 = |Aj |, and so |B| =
t∑

j=1
|Bj | ≤

t∑

j=1
|Aj| = |A|, a contradiction.

Next we will prove the hold of (i4) for I.
Let X ⊆ E(G) satisfy that for any finite subset Y, Y ∈ I holds. Suppose X

contains a cycle C, then |X| ≮ ∞. Let T = X \C. Then evidently, X · T ⊆ C
and by lemma 2, X · T is a cycle of G[X · T ], i.e, a cycle of G[X] · T . Let
Z ⊆ X · T, (X · T ) \Z �= ∅ and |(X · T ) \Z| <∞, then by lemma 2, (X · T ) ·Z
is still a cycle of G[(X · T ) · Z].

Since (X ·T )·Z ⊆ X and |X\(T∪Z)| <∞, by the supposition, (X ·T )·Z ∈ I,
and so (X ·T ) ·Z is not a cycle of G[(X ·T ) ·Z], and hence by lemma 2, C is not
a cycle of G, a contradiction. Say, X does not contain a cycle of G. Namely,
(i4) holds for I, and hence, (E(G), I) is an independence space.

We now discuss some properties of minors of M < G >.
Property 1 Let G be a graph and T ⊆ E(G). Then

(1) M < G[T ] >= M < G > |T .
(2) M < G · (E(G) \ T ) >= M < G > ·T .

Proof It is straightforward from theorem 1, definition 1 and remark 1.
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3 Generated by vertices

This section presents a way for producing an independence space by the set of
vertices of a graph and discusses its application in transversal theory.

Lemma 3 Let X ⊆ Z ⊆ V (G). X is saturated by a matching of G if and only
if X is saturated by a matching of G[Z].

Proof Routine verification.

Theorem 2 Let G = (V (G), E(G)) be a graph, mp(G) = {X : X ⊆ V (G), X
is saturated by a matching of G} and m(G) = {X : X ⊆ V (G), |X| < ∞, X
is saturated by a matching of G}. Then mp(G) satisfies (i1)-(i3) and m(G) is
the family of independent sets of an independence space on V (G).

Proof (i1) and (i2) are evidently satisfied by mp(G).
Let X, Y ∈ mp(G), and |X| < |Y | < ∞. Put Z = X ∪ Y . S(G[Z]) is

a graph obtained as follows: the vertices is Z and all the loops of G[Z] are
deleted, besides, for v1, v2 ∈ Z, if there are more than one edges of G[Z] joined
the pair of vertices v1 and v2, then select one and only one edge among them
to join v1 and v2 and denote this edge by v1v2, denoting all the edges gained
in such a way by Es. Therefore, S(G[Z]) = (Z,Es) is a finite simple subgraph
of G[Z] according to the finiteness of G(Z) by remark 1 and the definition of
simple graph. It is not difficult to know that for any A ⊆ Z, up to isomorphism
of graphs, A is saturated by a matching of G[Z] if and only if A is saturated
by a matching of S(G[Z]). By the discussion in [5,p.47,theorem 1.6.2], we get
that for X, Y ∈ mp(G), i.e. X, Y ∈ mp(S(G[Z])), there exists y ∈ Y \X such
that X ∪ y is saturated by a matching of S(G[Z]), and so X ∪ y is saturated by
a matching of G[Z], further, saturated by a matching of G in view of lemma 3.
Namely, (i3) holds for mp(G).

(i4) holds evidently for m(G). Besides, m(G) ⊆ mp(G) and the above dis-
cussion show us that m(G) is the family of independent sets of an independence
space on V (G).

We notice that for A ⊆ V (G), m(G,A) is defined as m(G,A) = {X : X ⊆
A, |X| < ∞, the vertices in X are saturated by a matching of G}. Obviously,
m(G,A) = m(G)|A. By lemma 1, m(G,A) is the family of independent sets of
an independence space.

Suppose A is the family (A1, A2, · · ·) of subsets of a set S. Construct an
associated bipartite graph Δ = Δ(A) as follows: the vertex set of Δ is S∪{Ai :
i = 1, 2, · · ·} and join xi ∈ S to Aj by an edge if and only if xi ∈ Aj . The graph
Δ is evidently a bipartite graph. Besides, X ⊆ S is a partial transversal of A

if and only if X is saturated by a matching of Δ. Considering with theorem 2,
we easily have

Theorem 3 If A is a family of subsets of a set S. Then the set of all the
finite partial transversal sets of A(i.e. X is a partial transversal set of A and
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|X| <∞) is the family of independents sets of an independence space on S.

Remark 2 (1) Let G be a bipartite infinite graph(see Figure 1) with V (G) =
(X, Y ), X = {xi : i = 1, 2, · · ·} ∪ {x}, Y = {yi : i = 1, 2, · · ·} and
E(G) = {x1y1, y1x2, x2y2, y2x3, · · · , xi−1yi−1, yi−1xi, xiyi, yixi+1, xi+1yi+1, · · ·}∪
{y∞x}. Then for any finite subset A ⊆ V (G), by the definition of matching of
graph and lemma 3, A can be saturated by a matching of G, but X can not.
Hence mp(G) does not satisfy (i4), i.e. (V (G), mp(G)) is not an independence
space.
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Figure 1

(2) In [3,p.385&4,p.74], a pre-independence spaceMp(S) is defined as a set S
together with a collection I(called independent sets) of subsets of S satisfying
(i1)-(i3). Then by the proof of theorem 2, it follows that (V (G), mp(G)) is
a pre-independence space. For A ⊆ V (G), mp(G,A) = {Z : Z ⊆ A, the
vertices in Z are saturated by a matching of G}. Then mp(G,A) = mp(G)|A
is the collection of independent sets of a pre-independence space. Based on the
discussion for A, one has that the set of all the partial transversal sets of A is
the collection of independent sets of a pre-independence space on S.
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