JORDAN DERIVATIONS ON LIE IDEALS OF PRIME AND SEMIPRIME RINGS

Vishnu Gupta

Department of Mathematics University of Delhi, Delhi 110 007, India e-mail: vishnu_gupta2k3@yahoo.co.in

Abstract

We prove the following theorem: Let R ba a 2-torsion free semiprime ring and U a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If is an additive mapping of R into itself satisfying $(u^2)' = u'u + uu'$ and $u' \in U$ for all $u \in U$ then (uv)' = u'v + uv' for all $u, v \in U$. We also give a short and elementary proof of a theorem of Awtar [1] which extends a well known result of Herstein [5] on Lie ideals.

Throughout this paper R will denote an associative ring and U a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. So $uv + vu = (u + v)^2 - (u^2 + v^2)$ and 2uv = (uv + vu) + [u, v] are in U for all $u, v \in U$. Let ' be an additive mapping of R into itself such that $(u^2)' = u'u + uu'$ for all $u \in U$. From this we obtain.

Lemma 1. If U is Lie ideal of a ring R then

 $(uv + vu)' = u'v + uv' + v'u + vu' \text{ for all } u, v \in U.$

Let $u^v = (uv)' - u'v - uv'$. Then $u^{v+w} = u^v + u^w$, $(u+v)^w = u^w + v^w$ and $u^v + v^u = 0$ for all $u, v, w \in U$.

If R is a 2-torsion free semiprime ring, U a commutative Lie ideal of R and $u \in U$ then [u, [u, r]] = 0 for all $r \in R$. By sublemma on p.5 of [5], $u \in Z$, the

Key words: Jordan derivation, derivation, prime ring, semiprime ring, Lie ideal, 2-torsion free ring.

²⁰⁰⁰ AMS Mathematics Subject Classification: 16W25, 16N60

centre of R. Hence $U \subseteq Z$. By Lemma 1, (uv)' = u'v + uv' for all $u, v \in U$. Thus we assume that $U \not\subseteq Z$.

Lemma 2. If U is a Lie ideal of a 2-torsion free ring R then

- 1. (uvu)' = u'vu + uv'u + uvu'
- 2. (uvw+wvu)' = u'vw+uv'w+uvw'+w'vu+wv'u+wvu' for all $u, v, w \in U$.
- **Proof** (i) Using Lemma 1, evaluate (u(uv + vu) + (uv + vu)u)'= $(u^2v + vu^2 + 2uvu)'$.

(ii) Linearize u in (i).

Lemma 3. If U is a Lie ideal of a 2-torsion free ring R then $u^v x[u, v] + [u, v]xu^v = 0$ for all $u, v, x \in U$.

Proof If $u, v \in U$ then $2uv \in U$. Since R is 2-torsion free, without loss of generality we can assume that $uv \in U$. Now we evaluate $(uvx \ vu + vuxuv)'$ in two ways. By using Lemma 2, we have

$$\begin{aligned} (u(vxv)u + v(uxu)v)' &= u'(vxv)u + u(v'xv + vx'v + vxv')u + u(vxv)u' \\ &+ v'(uxu)v + v(u'xu + ux'u + uxu')v + v(uxu)v' \\ &= (uv)'xvu + uvx'vu + uvx(vu)' + (vu)'xuv \\ &+ vux'uv + vux(uv)'. \end{aligned}$$

By comparing and using $u^v + v^u = 0$, we obtain the result.

Lemma 4 ([5], p. 5). If U is a Lie ideal of a ring R then $T(U) = \{a \in R : [a, R] \subseteq U\}$ is both a subring and a Lie ideal of R containing U.

Now we prove the following Lemma which is given in [2] for prime rings.

Lemma 5. If R is a 2-torsion free semiprime ring and U a Lie ideal of R then there exists a non zero ideal M = R[U, U]R of R generated by [U, U] such that $[M, R] \subseteq U$.

Proof We see that $[U,U] \neq 0$. Suppose [U,U] = 0. Let $u \in U$. Then [u, [u, r]] = 0 for all $r \in R$. By sublemma on p. 5 of [5], $u \in Z$. So $U \subseteq Z$, a contradiction. Let M = R[U,U]R be the ideal of R generated by [U,U], Clearly $M \neq 0$. Let $u, v \in U$ and $r \in R$. We have [u,vr] = v[u,r] + [u,v]r. Since $[u,vr], v, [u,r] \in U \subseteq T(U)$, so by Lemma 4, $[u,v]r \in T(U)$. Similarly $r[u,v] \in T(U)$. Since $[[U,U],R] \subseteq U$, $[[[[u,v],r],s],t] \in U$ for all $r, s, t \in R$. Therefore $[[u,v]rs - r[u,v]s + [s,r][u,v] - [s[u,v],r],t] \in U$. Since $[u,v]rs, [s,r][u,v], s[u,v] \in T(U)$; so $[r[u,v]s,t] \in U$ for all $r, s, t \in R$. Hence $[M,R] \subseteq U$.

Lemma 6. Let R be a 2-torsion free ring, U a Lie idea of R and $u, v \in U$. If uxv + vxu = 0 for all $x \in U$ then uxvUuxv = 0.

VISHNU GUPTA

Proof Let $y \in U$. Then (uxv)y(uxv) = -(vxu)yuxv = -v(xuy)uxv = u(xuy)vxv = ux(uyv)xv = -ux vy uxv. Hence the result.

Lemma 7. Let R be a 2-torsion free semiprime ring, U a Lie ideal of R and $v \in U$. If vUv = 0 then $v^2 = 0$ and there exists a non zero ideal M = R[U, U]R of R generated by [U, U] such that $[M, R] \subseteq U$ and Mv = vM = 0.

Proof Let vUv = 0. Then v[v, vr]v = 0 for all $r \in R$. Hence $v^2Rv^2 = 0$. Now $v^2 = 0$. We have v[mv, r]xv = 0 for all $m \in M$, $r \in R$ and $x \in U$. Hence vmvrxv = 0. So vmvr[m, v]v = 0. Now vmvRvmv = 0. Hence vMv = 0. It implies that vRMv = 0. So Mv = 0. Similarly vM = 0.

The following theorem extends the main theorem of Bresar [4] on Lie ideals.

Theorem 8. Let R be a 2-torsion free semiprime ring and U a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If ' is an additive mapping of R into itself satisfying $(u^2)' = u'u + uu'$ and $u' \in U$ for all $u \in U$ then (uv)' = u'v + uv' for all $u, v \in U$.

Proof By Lemma 3, we have $u^v x[u, v] + [u, v]xu^v = 0$ for all $u, v, x \in U$. Since $u' \in U$ for all $u \in U$ and R is 2-torsion free, without loss of generality we can assume that $u^v \in U$ for all $u, v \in U$. By Lemmas 6 and 7, there exists a non zero ideal M = R[U, U]R of R generated by [U, U] such that $[M, R] \subseteq U$ and $Mu^v x[u, v] = 0$. Therefore $u^v x[u, v]Ru^v x[u, v] = 0$. Now

$$u^{v}x[u,v] = [u,v]xu^{v} = 0 \text{ for all } u,v,x \in U.$$

$$(1)$$

Linearizing v, we get $u^v x[u, w] + u^w x[u, v] = 0$ for all $u, v, w, x \in U$. Using this relation and (1), we get $u^v x[u, w]yu^v x[u, w] = -u^v x[u, w]yu^w x[u, v] = 0$ for all $y \in U$. By Lemma 7, we have $Mu^v x[u, w] = 0$. So $u^v x[u, w]Ru^v x[u, w] = 0$. Now $u^v x[u, w] = 0$. Similarly $[u, w]xu^v = 0$. By linearizing u, we get $u^v x[z, w] + z^v x[u, w] = 0$ for all $z \in U$. Hence $u^v x[z, w]yu^v x[z, w] = -u^v x[z, w]yz^v x[u, w] = 0$ for all $y \in U$. Therefore $Mu^v x[z, w] = 0$. Now $u^v x[z, w]Ru^v x[z, w] = 0$. Hence

$$u^{\nu}x[z,w] = 0. \text{ Similarly } [z,w]xu^{\nu} = 0.$$

$$\tag{2}$$

Now $[u^v, w]x[u^v, w] = (u^v w - wu^v)x[u^v, w] = u^v(wx)[u^v, w] - wu^v x[u^v, w] = 0$. By Lemma 7, $M[u^v, w] = 0$. So $[u^v, w]R[u^v, w] = 0$. Now $u^v \in C_R(U)$, the centralizer of U. Therefore $[u^v, [u^v, r]] = 0$ for all $r \in R$. By sublemma on p. 5 of [5], $u^v \in Z$ for all $u, v \in U$. From (2), we have $u^v[z, w]xu^v[z, w] = 0$ for all $x \in U$. By Lemma 7, $Mu^v[z, w] = 0$. Now $u^v[z, w]Ru^v[z, w] = 0$. So

$$u^{v}[z,w] = 0. (3)$$

We have $u^v = -v^u$. So $2(u^v)^2 = u^v(u^v - v^u) = u^v([u, v]' + [v', u] + [v, u'])$. From (3), we have $u^v[v', u] = u^v[v, u'] = 0$. Hence

$$2(u^{v})^{2} = u^{v}[u, v]'.$$
(4)

We have $u^{v}[u, v] + [u, v]u^{v} = 0$. So $u^{v}[u, v]' + (u^{v})'[u, v] + [u, v](u^{v})' + [u, v]'u^{v} = 0$. 10. From (4), we get $4(u^{v})^{2} + (u^{v})'[u, v] + [u, v](u^{v})' = 0$. Multiplying it by u^{v} and using R is 2- torsion free, we get $(u^{v})^{3} = 0$. Now $u^{v} = 0$.

Lemma 9 ([2]). If R is a 2-torsion free prime ring, U a Lie ideal of R and $a, b \in R$ such that aUb = 0 then a = 0 or b = 0.

Lemma 10. Let R be a 2-torsion free prime ring, U a Lie ideal of R and $a, b \in R$ such that one of a, b is in U. If axb + bxa = 0 for all $x \in U$ then axb = bxa = 0. So a = 0 or b = 0

Proof Let $y \in U$. Suppose $a \in U$. Then

$$(axb)y(axb) = -(bxa)y(axb) = -b(xay)axb = a(xay)bxb = ax(ayb)xb = -(axb)y(axb).$$

By Lemma 9, we get the result.

Now we give a short and elementary proof of the following theorem of Awtar [1] which extends a well known result of Herstien [5] on Lie ideals.

Theorem 11. Let R be a 2-torsion free prime ring and U a Lie ideal of R such that $u^2 \in U$ for all $u \in U$. If ' is an additive mapping of R into itself satisfying $(u^2)' = u'u + uu'$ for all $u \in U$ then (uv)' = u'v + uv' for all $u, v \in U$.

Proof By Lemmas 3 and 10, we get $u^v x[u, v] = 0$ for all $u, v, x \in U$. Suppose $[u, v] \neq 0$. Then by Lemma 9, $u^v = 0$. Now assume that [u, v] = 0. Let $u, v \in C_R(U)$. Since $u, v \in U$, we have [u, [u, r]] = 0 for all $r \in R$. By sublemma on p.5 of [5], $u \in Z$. Similarly $v \in Z$. By Lemma 1, $u^v = 0$. Let $u \notin C_R(U)$. Then there exists $w \in U$ such that $[u, w] \neq 0$. Hence $u^w = 0$. Clearly $[u, v + w] \neq 0$. Therefore $u^{v+w} = u^v + u^w = u^v = 0$. If $v \notin C_R(U)$ then $v^u = 0$. So $u^v = 0$.

Acknowledgement The author is thankful to the referee for his helpful suggestions.

References

- R. Awtar, Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math Soc. 90(1984), 9-14.
- [2] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71(1981), 259-267.
- [3] M. Bresar and J. Vukman, Jordan derivations of prime rings, Bull. Aust. Math. Soc. 37(1988), 321-322.
- [4] M. Bresar, Jordan derivations of semi prime rings, Proc. Amer. Math. Soc. 104(1988), 1003-1006.

- [5] I. N. Herstein, "Topics is ring theory", University of Chicago Press, Chicago, 1969.
- [6] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8(1957), 1104-1110.