JORDAN DERIVATIONS ON LIE IDEALS OF PRIME AND SEMIPRIME RINGS

Vishnu Gupta
Department of Mathematics
University of Delhi, Delhi 110 007, India
e-mail: vishnu_gupta2k3@yahoo.co.in

Abstract

We prove the following theorem: Let R ba a 2 -torsion free semiprime ring and U a Lie ideal of R such that $u^{2} \in U$ for all $u \in U$. If is an additive mapping of R into itself satisfying $\left(u^{2}\right)^{\prime}=u^{\prime} u+u u^{\prime}$ and $u^{\prime} \in U$ for all $u \in U$ then $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ for all $u, v \in U$. We also give a short and elementary proof of a theorem of Awtar [1] which extends a well known result of Herstein [5] on Lie ideals.

Throughout this paper R will denote an associative ring and U a Lie ideal of R such that $u^{2} \in U$ for all $u \in U$. So $u v+v u=(u+v)^{2}-\left(u^{2}+v^{2}\right)$ and $2 u v=(u v+v u)+[u, v]$ are in U for all $u, v \in U$. Let ' be an additive mapping of R into itself such that $\left(u^{2}\right)^{\prime}=u^{\prime} u+u u^{\prime}$ for all $u \in U$. From this we obtain.

Lemma 1. If U is Lie ideal of a ring R then

$$
(u v+v u)^{\prime}=u^{\prime} v+u v^{\prime}+v^{\prime} u+v u^{\prime} \text { for all } u, v \in U
$$

Let $u^{v}=(u v)^{\prime}-u^{\prime} v-u v^{\prime}$. Then $u^{v+w}=u^{v}+u^{w},(u+v)^{w}=u^{w}+v^{w}$ and $u^{v}+v^{u}=0$ for all $u, v, w \in U$.

If R is a 2 -torsion free semiprime ring, U a commutative Lie ideal of R and $u \in U$ then $[u,[u, r]]=0$ for all $r \in R$. By sublemma on p. 5 of [5], $u \in Z$, the

[^0]centre of R. Hence $U \subseteq Z$. By Lemma $1,(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ for all $u, v \in U$. Thus we assume that $U \nsubseteq Z$.

Lemma 2. If U is a Lie ideal of a 2-torsion free ring R then

1. $(u v u)^{\prime}=u^{\prime} v u+u v^{\prime} u+u v u^{\prime}$
2. $(u v w+w v u)^{\prime}=u^{\prime} v w+u v^{\prime} w+u v w^{\prime}+w^{\prime} v u+w v^{\prime} u+w v u^{\prime}$ for all $u, v, w \in U$.

Proof (i) Using Lemma 1, evaluate $(u(u v+v u)+(u v+v u) u)^{\prime}$

$$
=\left(u^{2} v+v u^{2}+2 u v u\right)^{\prime} .
$$

(ii) Linearize u in (i).

Lemma 3. If U is a Lie ideal of a 2-torsion free ring R then $u^{v} x[u, v]+$ $[u, v] x u^{v}=0$ for all $u, v, x \in U$.

Proof If $u, v \in U$ then $2 u v \in U$. Since R is 2-torsion free, without loss of generality we can assume that $u v \in U$. Now we evaluate $(u v x v u+v u x u v)^{\prime}$ in two ways. By using Lemma 2, we have

$$
\begin{aligned}
(u(v x v) u+v(u x u) v)^{\prime}= & u^{\prime}(v x v) u+u\left(v^{\prime} x v+v x^{\prime} v+v x v^{\prime}\right) u+u(v x v) u^{\prime} \\
& +v^{\prime}(u x u) v+v\left(u^{\prime} x u+u x^{\prime} u+u x u^{\prime}\right) v+v(u x u) v^{\prime} \\
= & (u v)^{\prime} x v u+u v x^{\prime} v u+u v x(v u)^{\prime}+(v u)^{\prime} x u v \\
& +v u x^{\prime} u v+v u x(u v)^{\prime} .
\end{aligned}
$$

By comparing and using $u^{v}+v^{u}=0$, we obtain the result.
Lemma $4([\mathbf{5}], \mathbf{p . 5})$. If U is a Lie ideal of a ring R then $T(U)=\{a \in R$: $[a, R] \subseteq U\}$ is both a subring and a Lie ideal of R containing U.

Now we prove the following Lemma which is given in [2] for prime rings.
Lemma 5. If R is a 2-torsion free semiprime ring and U a Lie ideal of R then there exists a non zero ideal $M=R[U, U] R$ of R generated by $[U, U]$ such that $[M, R] \subseteq U$.

Proof We see that $[U, U] \neq 0$. Suppose $[U, U]=0$. Let $u \in U$. Then $[u,[u, r]]=0$ for all $r \in R$. By sublemma on p. 5 of [5], $u \in Z$. So $U \subseteq Z$, a contradiction. Let $M=R[U, U] R$ be the ideal of R generated by $[U, U]$, Clearly $M \neq 0$. Let $u, v \in U$ and $r \in R$. We have $[u, v r]=v[u, r]+[u, v] r$. Since $[u, v r], v,[u, r] \in U \subseteq T(U)$, so by Lemma $4,[u, v] r \in T(U)$. Similarly $r[u, v] \in T(U)$. Since $[[U, U], R] \subseteq U, \quad[[[[u, v], r], s], t] \in U$ for all $r, s, t \in R$. Therefore $[[u, v] r s-r[u, v] s+[s, r][u, v]-[s[u, v], r], t] \in U$. Since $[u, v] r s,[s, r][u, v], s[u, v] \in T(U)$; so $[r[u, v] s, t] \in U$ for all $r, s, t \in R$. Hence $[M, R] \subseteq U$.

Lemma 6. Let R be a 2-torsion free ring, U a Lie idea of R and $u, v \in U$. If $u x v+v x u=0$ for all $x \in U$ then uxvUuxv $=0$.

Proof Let $y \in U$. Then $(u x v) y(u x v)=-(v x u) y u x v=-v(x u y) u x v=$ $u(x u y) v x v=u x(u y v) x v=-u x v y u x v$. Hence the result.

Lemma 7. Let R be a 2-torsion free semiprime ring, U a Lie ideal of R and $v \in U$. If $v U v=0$ then $v^{2}=0$ and there exists a non zero ideal $M=R[U, U] R$ of R generated by $[U, U]$ such that $[M, R] \subseteq U$ and $M v=v M=0$.
Proof Let $v U v=0$. Then $v[v, v r] v=0$ for all $r \in R$. Hence $v^{2} R v^{2}=0$. Now $v^{2}=0$. We have $v[m v, r] x v=0$ for all $m \in M, r \in R$ and $x \in U$. Hence $v m v r x v=0$. So $v m v r[m, v] v=0$. Now $v m v R v m v=0$. Hence $v M v=0$. It implies that $v R M v=0$. So $M v=0$. Similarly $v M=0$.

The following theorem extends the main theorem of Bresar [4] on Lie ideals.
Theorem 8. Let R be a 2-torsion free semiprime ring and U a Lie ideal of R such that $u^{2} \in U$ for all $u \in U$. If' is an additive mapping of R into itself satisfying $\left(u^{2}\right)^{\prime}=u^{\prime} u+u u^{\prime}$ and $u^{\prime} \in U$ for all $u \in U$ then $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ for all $u, v \in U$.
Proof By Lemma 3, we have $u^{v} x[u, v]+[u, v] x u^{v}=0$ for all $u, v, x \in U$. Since $u^{\prime} \in U$ for all $u \in U$ and R is 2 -torsion free, without loss of generality we can assume that $u^{v} \in U$ for all $u, v \in U$. By Lemmas 6 and 7 , there exists a non zero ideal $M=R[U, U] R$ of R generated by $[U, U]$ such that $[M, R] \subseteq U$ and $M u^{v} x[u, v]=0$. Therefore $u^{v} x[u, v] R u^{v} x[u, v]=0$. Now

$$
\begin{equation*}
u^{v} x[u, v]=[u, v] x u^{v}=0 \text { for all } u, v, x \in U . \tag{1}
\end{equation*}
$$

Linearizing v, we get $u^{v} x[u, w]+u^{w} x[u, v]=0$ for all $u, v, w, x \in U$. Using this relation and (1), we get $u^{v} x[u, w] y u^{v} x[u, w]=-u^{v} x[u, w] y u^{w} x[u, v]=0$ for all $y \in U$. By Lemma 7, we have $M u^{v} x[u, w]=0$. So $u^{v} x[u, w] R u^{v} x[u, w]=0$. Now $u^{v} x[u, w]=0$. Similarly $[u, w] x u^{v}=0$. By linearizing u, we get $u^{v} x[z, w]+$ $z^{v} x[u, w]=0$ for all $z \in U$. Hence $u^{v} x[z, w] y u^{v} x[z, w]=-u^{v} x[z, w] y z^{v} x[u, w]=$ 0 for all $y \in U$. Therefore $M u^{v} x[z, w]=0$. Now $u^{v} x[z, w] R u^{v} x[z, w]=0$. Hence

$$
\begin{equation*}
u^{v} x[z, w]=0 . \text { Similarly }[z, w] x u^{v}=0 . \tag{2}
\end{equation*}
$$

Now $\left[u^{v}, w\right] x\left[u^{v}, w\right]=\left(u^{v} w-w u^{v}\right) x\left[u^{v}, w\right]=u^{v}(w x)\left[u^{v}, w\right]-w u^{v} x\left[u^{v}, w\right]=0$. By Lemma $7, M\left[u^{v}, w\right]=0$. So $\left[u^{v}, w\right] R\left[u^{v}, w\right]=0$. Now $u^{v} \in C_{R}(U)$, the centralizer of U. Therefore $\left[u^{v},\left[u^{v}, r\right]\right]=0$ for all $r \in R$. By sublemma on p. 5 of [5], $u^{v} \in Z$ for all $u, v \in U$. From (2), we have $u^{v}[z, w] x u^{v}[z, w]=0$ for all $x \in U$. By Lemma $7, M u^{v}[z, w]=0$. Now $u^{v}[z, w] R u^{v}[z, w]=0$. So

$$
\begin{equation*}
u^{v}[z, w]=0 . \tag{3}
\end{equation*}
$$

We have $u^{v}=-v^{u}$. So $2\left(u^{v}\right)^{2}=u^{v}\left(u^{v}-v^{u}\right)=u^{v}\left([u, v]^{\prime}+\left[v^{\prime}, u\right]+\left[v, u^{\prime}\right]\right)$. From (3), we have $u^{v}\left[v^{\prime}, u\right]=u^{v}\left[v, u^{\prime}\right]=0$. Hence

$$
\begin{equation*}
2\left(u^{v}\right)^{2}=u^{v}[u, v]^{\prime} \tag{4}
\end{equation*}
$$

We have $u^{v}[u, v]+[u, v] u^{v}=0$. So $u^{v}[u, v]^{\prime}+\left(u^{v}\right)^{\prime}[u, v]+[u, v]\left(u^{v}\right)^{\prime}+[u, v]^{\prime} u^{v}=$ 0 . From (4), we get $4\left(u^{v}\right)^{2}+\left(u^{v}\right)^{\prime}[u, v]+[u, v]\left(u^{v}\right)^{\prime}=0$. Multiplying it by u^{v} and using R is 2 - torsion free, we get $\left(u^{v}\right)^{3}=0$. Now $u^{v}=0$.

Lemma 9 ([2]). If R is a 2-torsion free prime ring, U a Lie ideal of R and $a, b \in R$ such that $a U b=0$ then $a=0$ or $b=0$.

Lemma 10. Let R be a 2-torsion free prime ring, U a Lie ideal of R and $a, b \in R$ such that one of a, b is in U. If $a x b+b x a=0$ for all $x \in U$ then $a x b=b x a=0$. So $a=0$ or $b=0$

Proof Let $y \in U$. Suppose $a \in U$. Then

$$
\begin{aligned}
(a x b) y(a x b) & =-(b x a) y(a x b)=-b(x a y) a x b=a(x a y) b x b \\
& =a x(a y b) x b=-(a x b) y(a x b)
\end{aligned}
$$

By Lemma 9, we get the result.
Now we give a short and elementary proof of the following theorem of Awtar [1] which extends a well known result of Herstien [5] on Lie ideals.

Theorem 11. Let R be a 2-torsion free prime ring and U a Lie ideal of R such that $u^{2} \in U$ for all $u \in U$. If ' is an additive mapping of R into itself satisfying $\left(u^{2}\right)^{\prime}=u^{\prime} u+u u^{\prime}$ for all $u \in U$ then $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ for all $u, v \in U$.

Proof By Lemmas 3 and 10, we get $u^{v} x[u, v]=0$ for all $u, v, x \in U$. Suppose $[u, v] \neq 0$. Then by Lemma $9, u^{v}=0$. Now assume that $[u, v]=0$. Let $u, v \in C_{R}(U)$. Since $u, v \in U$, we have $[u,[u, r]]=0$ for all $r \in R$. By sublemma on p. 5 of $[5], u \in Z$. Similarly $v \in Z$. By Lemma $1, u^{v}=0$. Let $u \notin C_{R}(U)$. Then there exists $w \in U$ such that $[u, w] \neq 0$. Hence $u^{w}=0$. Clearly $[u, v+w] \neq 0$. Therefore $u^{v+w}=u^{v}+u^{w}=u^{v}=0$. If $v \notin C_{R}(U)$ then $v^{u}=0$. So $u^{v}=0$.
Acknowledgement The author is thankful to the referee for his helpful suggestions.

References

[1] R. Awtar, Lie ideals and Jordan derivations of prime rings, Proc. Amer. Math Soc. 90(1984), 9-14.
[2] J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71(1981), 259-267.
[3] M. Bresar and J. Vukman, Jordan derivations of prime rings, Bull. Aust. Math. Soc. 37(1988), 321-322.
[4] M. Bresar, Jordan derivations of semi prime rings, Proc. Amer. Math. Soc. 104(1988), 1003-1006.
[5] I. N. Herstein, "Topics is ring theory", University of Chicago Press, Chicago, 1969.
[6] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8(1957), 1104-1110.

[^0]: Key words: Jordan derivation, derivation, prime ring, semiprime ring, Lie ideal, 2-torsion free ring.
 2000 AMS Mathematics Subject Classification: 16W25, 16N60

